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Abstract: A common consequence of diabetes mellitus called diabetic retinopathy (DR) results in
lesions on the retina that impair vision. It can cause blindness if not detected in time. Unfortunately,
DR cannot be reversed, and treatment simply keeps eyesight intact. The risk of vision loss can be
considerably decreased with early detection and treatment of DR. Ophtalmologists must manually
diagnose DR retinal fundus images, which takes time, effort, and is cost-consuming. It is also more
prone to error than computer-aided diagnosis methods. Deep learning has recently become one of the
methods used most frequently to improve performance in a variety of fields, including medical image
analysis and classification. In this paper, we develop a federated learning approach to detect diabetic
retinopathy using four distributed institutions in order to build a robust model. Our federated
learning approach is based on Vision Transformer architecture to classify DR and Normal cases.
Several performance measures were used such as accuracy, area under the curve (AUC), sensitivity
and specificity. The results show an improvement of up to 3% in terms of accuracy with the proposed
federated learning technique. The technique also resolving crucial issues like data security, data
access rights, and data protection.
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1. Introduction

In recent years, deep learning (DL) has been widely used to streamline processes in the
medical industry. The expertise and popularity of research and development in DL have
increased dramatically in areas like disease screening systems, automated diagnosis, prognosis
or treatment prediction [1–3], and smart health care [4], which have the potential to significantly
enhance clinical workflow [5,6]. With the aid of image-based data such as retinal images, optical
coherence tomography (OCT) images, and OCT angiography (OCTA) images, DL algorithms
have been developed in ophthalmology to detect and classify a variety of ocular diseases,
including diabetic retinal diseases [7,8], age-related macular degeneration [9,10], retinopathy of
prematurity [11], and glaucomatous optic neuropathy [12–14].

The development of DL algorithms also demonstrated their capacity for using reti-
nal images to diagnose and predict serious illnesses such diabetes [15], chronic kidney
disease [16], cardiovascular events [17], and Alzheimer’s disease [18]. Additionally, DL-
based ocular image processing can be combined with telemedicine to detect and track eye
disease in patients receiving primary care and treatment in community clinics [19]. Deep
learning requires a large and diverse training dataset collection to increase robustness and
generalizability. In order to create DL algorithms that are workable in many real-world
scenarios, multicenter research is becoming more and more crucial [20,21]. The “centralized
learning” paradigm is currently the most popular model for such collaborative multicenter
initiatives, in which data from several sites are sent to and gathered in one location in
accordance with inter-site agreements. Big data gathering and resource sharing could, how-
ever, cause practical complications, and it frequently takes time to find solutions to ethical
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and privacy-related problems. Even anonymous raw images used in medical imaging can
contain sensitive patient data. Since age [22], sex [23], cardiovascular risk factors [17], or
mortality risk [24] might be predicted from fundus images or OCT scans, retinal images, for
example, are as distinctive as fingerprints [25] and very sensitive. De-identified magnetic
resonance imaging (MRI) images can be used to rebuild human faces [26]. Therefore, the
“distributed learning” paradigm [27] has been established to divide data among multiple
institutions rather than combining it into a single pool in order to preserve data privacy
and eliminate the potential danger of raw data leakage in the conventional paradigm (i.e.,
centralized learning). Federated learning (FL) [28–30], a recent development in distributed
learning, enables many medical institutions to cooperatively train AI models without data
exchange. It greatly facilitates AI research and development in the healthcare industry,
where access to vast amounts of data and various centres are often required due to the high
value of the data. For model training and testing, the traditional DL approach calls for
combining all accessible data from several institutions into a single source. On the other
hand, FL uses a distributed learning paradigm in which numerous participants train a
model locally on their own data and then send model changes to a central server to be
combined into a consensus model [31]. It eliminates the need to centralize all acquired data
or provide collaborators immediate access to sensitive data. No data are transferred or
directly accessed between institutions; instead, each one retains its data locally.

The FL paradigm for model training is based on three main steps: (i) the global
model is initially initialized by the central server and then distributed to each contributing
institution; (ii) each institution trains the mode using its local data and then sends the local
model back to the central server; and (iii) the central server aggregates all local models to
update a new global model and redistributes it to all collaborators. Until the global model
performs consistently, these processes are repeated back and forth. In both standard DL
and FL, the model training process is the same. However, the sole distinction between the
DL and FL training paradigms is that the DL requires that a central institution train the
model on all data, whereas FL permits local training by each institution. This distributed
training strategy has an enormous amount of potential to protect data privacy among
many institutions and avoid the possible risk of data leakage from data centralization
because only the model characteristics (such as model parameters or gradients) are to be
sent out from institutions. To increase the model’s resilience and generalizability, it can be
trained and validated using numerous datasets. FL therefore offers enormous data privacy
advantages over traditional centralized learning systems, particularly in AI research and
the healthcare industry.

Numerous applications for medical image analysis currently employ FL. This dis-
tributed learning approach can build a robust model using large and varied medical
imaging datasets obtained from numerous institutions while maintaining patient privacy
and data ownership. Its potential for detecting various retinal illnesses using ocular images
like OCT and retinal fundus imaging has already been demonstrated in ophthalmology.

For the classification of referable diabetic retinopathy (RDR) utilizing OCT and OCTA
from two separate institutions, Yu et al. [32] used the FL framework. The FL model’s
performance was compared to the models trained using data from the same institution
and from different institutions. The performance was superior to that of those trained on
data from other institutes and on par with that trained on local data. The study showed
thar FL may be used to classify DR and make it easier for diverse institutions to work
together in the real world. The study additionally examined the FL method for applying
microvasculature segmentation to various datasets in a simulated setting. The authors
created a reliable FL framework for segmenting the microvasculature in OCTA images.
Four distinct OCT devices were used to collect the image datasets. Their FL models
achieved an accuracy (ACC) score of 0.762–0.880, an F1 score of 0.677–0.909 and an AUC of
0.910–0.979; the internal models achieved performances of 0.809–0.908, 0.778–0.921, and
0.884–0.978, respectively.
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The disease known as retinopathy of prematurity (ROP), which is one of the main
causes of young blindness globally, is distinguished by the development of abnormal
fibrovascular retinal structures in premature infants. A deep learning model for ROP
was developed using the FL technique, which was investigated by Hanif et al. [33] and
Lu et al. [34]. Utilizing 5245 ROP retinal images from 1686 eyes of 867 preterm children
in neonatal intensive care at seven hospital centres in the United States, Lu et al. [34]
trained and validated DL models. Three image-based ROP graders assigned the images as
clinical diagnoses of plus illness (plus, pre plus, or no plus), as well as a reference standard
diagnosis (RSD). With an AUC ranging from 0.93 to 0.96, the models trained using the
FL technique performed on par with those trained using the central learning strategy in
the majority of DL model comparisons. Additionally, utilizing only a single institution’s
worth of data, the FL model outperformed the locally trained model in terms of AUC
score in four of seven sites. The FL model maintained its accuracy and consistency across
heterogeneous clinical data sets from various institutions, which differed in sample sizes,
disease prevalence, and patient demographics.

The potential of FL to reconcile the disparity in clinical diagnosis of ROP severity
between institutions was shown in the second trial by Hanif et al. [33]. An FL model was
created based on the ROP vascular severity score (VSS) rather than the consensus RSD. The
amount of VSS in the study’s eyes with no additional illness differed significantly from
those with the condition. VSS might be arbitrary, with wide variations across experts in
clinical settings that could have an impact on epidemiology or clinical research [35]. The
researchers discovered that there were substantial institutional differences in the number of
patients with preplus illness (p < 0.001). They discovered disparities in the institutional VSS
and the level of vascular severity classified as no plus (p < 0.001) among institutions using
the DL-derived VSS trained on the data from all institutions using FL. The institutional
VSS and mean gestational age showed a significant, inverse connection (p = 0.049, adjusted
R2 = 0.49).

Lo et al. [36] presented federated learning for microvasculature segmentation and
diabetic retinopathy classification using OCT images. The DR classification was divided
into the non-RDR and RDR classes. The simulation used four clients to demonstrate the
federated learning configuration for microvasculature segmentation and to compare it to
other collaborative training techniques. For RDR classification, federated learning was
used across several institutions, and it was compared to models that were trained and
tested using data from the same institution (internal models) and from different institutions
(external models), respectively. Federated learning provided results that were comparable
to internal models for both applications. The federated learning model specifically per-
formed similarly for microvasculature segmentation (mean DSC across all test sets, 0.793)
to models trained on a fully centralized dataset (mean DSC, 0.807). The internal models
attained a mean AUC of 0.956 and 0.973 for RDR classification, while federated learning
attained a mean AUC of 0.954 and 0.960. The other derived assessment indicators show
similar results.

Nasajabour et al. [37] investigated three models using standard transfer learning,
Federated Averaging (FedAVG), and Federated Proximal (FedProx) frameworks. The
authors demonstrated that the three models, including standard, FedAVG, and FedProx,
are able to detect DR and non-DR images with an ACC of 0.92, 0.90, and 0.85, respectively.

Mohan et al. [38] proposed a DR severity grading technique based on FL. They combined
the Federated Averaging technique and the median of the categorical cross-entropy loss. The
authors proposed a central server to extract the features from the fundus images in order to
identify the DR signs. In their study, they considered five clients holding different prepro-
cessed fundus images obtained from public dataset such as MESSIDOR-2 [39], IDRID [40],
Kaggle [41], and a local dataset collected from the Silchar Medical College and Hospital.
Their proposed approach obtained an ACC score of 0.98, a specificity of 0.99, a precision of
0.97 and an F1 score of 0.97.



BioMedInformatics 2023, 3 951

The FL model offers a generalizable method for evaluating clinical diagnostic paradigms
and severity of illness for epidemiologic review without disclosing patient information,
according to the study’s findings.

In this study, we provide a novel approach for FL based on Vision Transformers
(FLViT) for DR classification (DR and Normal). The approach allows clients the sharing of
their ViT models with the central server in order to build a robust model. Our study solves
the problem of confidentiality and data security. Finally, we compare the performance of
the models trained with FLViT and local trained models (Non-FLViT). Our contribution
includes the development of Transformer vision models that are trained locally and shared
with the server; the server aggregates the ViT models according to the federated learning
process for the task of DR classification using the fundus images. Our objective is also
to investigate the performance of this technique, as none of the studies to date have
ever integrated the Transformer vision models into their FL framework to detect diabetic
retinopathy. In our study, we use four publicly available datasets: APTOS [42], MESSIDOR-
1 and MESSIDOR-2 (merged into a single dataset), IDRiD and Eyepacs. Each dataset is
assumed to be assigned to an institution. Figure 1 offers an overview of our methodology.

Figure 1. Proposed federated learning architecture for DR detection.

2. Vision Transformer

Vision Transformer (ViT) is a deep neural network based on an attention mechanism
that utilizes a remarkably wide receptive field. The ability to attain state-of-the-art (SOTA)
performance in NLP and the ability to represent long-range dependency inside an image
have inspired the vision community to investigate exploring its use for vision problems [43].
The ViT was one of the successful attempts to apply transformers directly on images, and it
was compared to SOTA convolutional neural networks in image classification tests [44]. In
addition to its great performance, ViT’s straightforward modular design offers vast applicability
in a range of tasks with little modification. Chen et al. [45] presented an image processing
transformer, one of the successful multi-task models for various computer vision tasks, by
segmenting ViT into a shared body and task-specific heads and tails. The encoder–decoder
technique was applied. ViT’s SOTA performance was recently demonstrated when it was used
to identify and forecast the severity of diabetic retinopathy [46–48].

Transformers come in a variety of variations, but for the purpose of this study, we
used the ViT-B32 model in each institution. For each ViT model, we added a flatten
layer, a batch normalization layer followed by a dense layer of size 11, and then a layer
of batch normalization followed by Softmax function to offer the probability of binary
classification (DR or Normal). Non-FLViT was locally trained using the same model of
FLViT hyperparameters and 100 epochs on the same data division.
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3. Diabetic Retinopathy Datasets

In this section, we present the dataset used in each institution. The name of the
institution has the same name as the dataset.

3.1. APTOS

The Asia Pacific TeleOphthalmology Society 2019 Blindness Detection (APTOS 2019)
dataset’s retinal images were used in this investigation. It is an open (Kaggle) competition
called APTOS [42]. The related dataset includes 3662 retinal images that were gathered
from various individuals who lived in India’s rural areas. The RGB (Red–Green–Blue)
images were taken with a Fundus camera. Following that, the samples were labelled
by experienced medical professionals who divided the severity of blindness into five
categories: no DR, mild DR, moderate DR, severe DR, and proliferative DR. The fundus
images were taken in a variety of settings. Figure 2 shows some fundus images from the
APTOS dataset.

Figure 2. Example of fundus images from the APTOS dataset.

3.2. MESSIDOR-1 and MESSIDOR-2

A total of 1200 color images of the retinal fundus of the eyes were collected by three
ophthalmological departments and are available in MESSIDOR-1 [39], and MESSIDOR-2
contains 1748 images. A Topcon TRC NW6 non-mydriatic retinograph equipped with a
3 CCD camera with a 45-degree field of view and resolutions of 1440 × 960, 2240 × 1488,
and 2304 × 1536 was obtained. In this study, we merged the two datasets to obtain one set
called MESSIDOR. Figure 3 shows some fundus images from the MESSIDOR dataset.

Figure 3. Example of fundus images from the MESSIDOR dataset.

3.3. IDRID

The dataset in [40] consists of 516 photos with a range of pathological DR circum-
stances; the images were all centred close to the macula and were taken with a Kowa VX-10
alpha digital fundus camera with a 50-degree field of view (FOV). The resolution of the
images is 4288 × 2848 pixels. Each image was given a diagnosis by medical profession-
als, who also graded each image’s retinopathy from zero (normal) to four (severe) and
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determined whether or not DR was present. Figure 4 shows some fundus images of the
IDRID dataset.

Figure 4. Example of fundus images from the IDRID dataset.

3.4. Eyepacs

The dataset in [41] contains about 88,702 high-resolution images taken under various
imaging circumstances. These retinal images were taken from a set of individuals, and for
each person, left and right eyes received two images apiece. The images were captured
using various camera sizes and types, which may alter how left and right seem to the eye.
This dataset is inconsistent since “proliferative DR” images make up a small percentage
of the dataset whereas normal images with the label “0” represent an enormous class. An
example of a fundus image from the Eyepacs dataset can be seen in Figure 5. Because
the number of this base is greater than that of the other datasets, we took a sample of
6000 images to train and test the ViT models.

Figure 5. Example of fundus images from the Eyepacs dataset.

Table 1 offers a general summary of the dataset used in our study.

Table 1. Public datasets used for training and testing in our study.

Name Nbr. of Images Resolution Uses

EyePACS 6000

1440 × 960
2240 × 1488
2304 × 1536
4288 × 2848

DR grading
Exudates, Hemorrhage
and Microaneurysms detection

MESSIDOR 1200
1440 × 960

2240 × 1488
2304 × 1536

Exudates, Hemorrhage,
Microaneurysms and
abnormal blood vessel detection

MESSIDOR-2 1748
1440 × 960

2240 × 1488
2304 × 1536

Exudates, Hemorrhage,
Microaneurysms and
abnormal blood vessel detection
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Table 1. Cont.

Name Nbr. of Images Resolution Uses

IDRID 516 4288 × 2848
Exudates,
Hemorrhage, Microaneurysms
and abnormal blood vessel detection

APTOS 3662 2124 × 2056
Exudates,
Hemorrhage, Microaneurysms
and abnormal blood vessel detection

4. Federated Learning

Deep learning (DL) models are frequently trained centrally, with client-site data kept,
and model owners have access to the client data. Data sensitivity makes it difficult in
many situations to gather diverse and comprehensive datasets. This makes it challeng-
ing to build strong deep learning models, which necessitate suitably vast and diverse
datasets. FL, which decentralises the training of machine learning models, is presented by
McMahan et al. [31] as a solution to this issue. Clients can participate in DL model training
in FL by each training a model with a local dataset and then sharing the model parameters
with other clients. The authors employ a method known as “Fedavg,” which is a weighted
average of the models. In our study, we use the Fedavg approach with ViT models for
detecting DR. The global model is initially initialized in Fedavg. The current global model
wt is then sent by the central server to a chosen subset C of all institutions K in each round
t. The set St represents the chosen institutions. Each institution k then updates its local
model parameters and sends them to the server after training the model on its own local
data Pk to produce a model wt + 1k. The server then uses the equation below to combine
the weights of the received models to create a new global model,

wt+1 = ∑
kεSt

nk
nt

wk
t+1,

where nk is the number of samples at institution k and nt is the total number of samples
from all institutions. The server transmits the aggregated model to the institutions in the
network after the training is completed.

5. Metrics

For performance evaluations, we used the following metrics: Accuracy (ACC), Sensi-
tivity (SN), and Specificity (SP). These measures are described as follows:

SN =
TP

TP + FN
, (1)

SP =
TN

TN + FP
, (2)

ACC =
TP + TN

TP + FN + TN + FP
, (3)

where TP stands for the true positive rate and reflects the number of correctly labeled
positive cases; TN stands for the true negative rate and indicates the number of correctly
labeled negative cases. The number of positive cases that are incorrectly labeled as positive
is indicated by the FP and the FN indicators, respectively. Area under the curve (AUC), a
performance statistic widely used for medical classification issues to show where the model
compromises between accurate and incorrect diagnoses, is derived using the ROC curve.
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6. Results

In this section, we report the DR detection using FLViT and Non-FLViT results from
each institution.

Keras Library [49] was used to develop the FLViT. The training was carried out using
Nvidia P6000 [50]. RectifiedAdam [51] was used as an optimizer, and the Batch size was
fixed to 32 for each model with 100 rounds. All CXR images were resized to 224 × 224.

For APTOS institution, after 100 rounds using the FLViT technique, the model achieved
a high ACC score of 0.95 and 0.94 for Non-FLViT which is a modest improvement by 1%.
For MESSIDOR institution and after 100 rounds, the model obtained an ACC of 0.79 using
the FLViT method and 0.76 for Non-FLViT (an improvement of 3%). This shows the model
learned more important features by using the FLViT technique. Same in IDRID institution,
the ACC score was improved by 2% when using the FLViT technique. The model provided
an ACC score of 0.71 and 0.69 for Non-FLViT. The sensitivity score for detecting DR is
higher when the model is trained on the FLViT technique. The model achieved a SN score
of 0.85 vs. 0.77 for Non-FLViT. Eyepacs institution achieved an improved ACC score of 0.71
with FLViT and 0.68 for Non-FLViT. Unlike IDRID, the FLViT technique helps the model to
improve the specificity with a score of 0.83 vs. 0.63 for Non-FLViT.

The confusion matrix for APTOS institution using FLViT is shown in Figure 6a, and
Figure 6e presents the confusion matrix for Non-FLViT. As we can see, the model trained
with the FLViT technique detects more true positives compared to Non-FLViT. The result
is the same for MESSIDOR institution. The detection of DR is improved when using the
FLViT technique, as we can see in Figure 6b. The FL model detects 112 cases for DR and
71 for Non-FLViT (see Figure 6f). The confusion matrix for IDRID institution using FLViT
is shown in Figure 6c, and Figure 6g presents the confusion matrix for Non-FLViT. The
model trained with the FLViT technique detects more true positives and true negatives
compared to Non-FLViT. This shows that the FLViT technique helps the model to improve
its performance. Figure 6d is the confusion matrix for Eyepacs institution using the FLViT
technique. The model detects more DR cases compared to the Non-FLViT presented in
Figure 6h.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 6. Confusion matrices of APTOS FLViT (a), Non-FLViT (e); MESSIDOR FLViT (b), Non-FLViT (f);
IDRID FLViT (c), Non-FLViT (g); Eyepacs FLViT (d), Non-FLViT (h) (DR vs. normal) classification.

Figure 7 shows the AUC curves for APTOS institution, an AUC score of 0.95 for the FLViT
technique and 0.94 for Non-FLViT (less than FLViT by 1%). For MESSIDOR institution (Figure 8),
the model obtained an AUC score of 0.83 for FLViT and 0.74 for Non-FLViT. The result is the
same for IDRID institution (see Figure 9). The FLViT model achieved an AUC score of 0.74
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and 0.73 for Non-FLViT. On the Eyepacs institution, the model obtained an AUC of 0.77 when
using the FLViT model and 0.76 for Non-FLViT (see Figure 10). This shows that the suggested
technique offers a significant improvement compared to the trained local models.
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Figure 7. ROC curves of Non-FLViT and FLViT for APTOS institution classification (DR vs. normal).
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Figure 8. ROC curves of Non-FLViT and FLViT for MESSIDOR institution classification (DR vs. normal).
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Figure 9. ROC curves of Non-FLViT and FLViT for IDRID institution classification (DR vs. normal).
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Figure 10. ROC curves of Non-FLViT and FLViT for Eyepacs institution classification (DR vs. normal).

Table 2 summarizes the performance scores obtained for each institution for FLViT
and Non-FLViT techniques.

Table 2. Performance measures using FLViT vs. Non-FLViT with Vision Transformer models.

FLViT Non-FLViT

Institutions ACC AUC SP SN ACC AUC SP SN

APTOS 0.95 0.95 0.95 0.95 0.94 0.94 0.95 0.94

MESSIDOR 0.79 0.83 0.89 0.55 0.76 0.74 0.94 0.35

IDRID 0.71 0.74 0.54 0.85 0.69 0.73 0.58 0.77

Eyepacs 0.71 0.77 0.83 0.56 0.68 0.76 0.63 0.72

For a comparison with the CNN model, we chose one of the robust CNN models
named DenseNet-121. The model offers interesting results in the classification of medical
images according to several studies. Table 3 shows the results of this model with a federated
(FL-CNN) and a non-federated learning (Non-FLCNN) technique. As we can see, the model
obtains lower results compared to the transformer in terms of accuracy and AUC, and
the sensitivity and specificity are almost close. This shows that the approach with Vision
Transformers performs better than the CNN.

Table 3. Performance measures using FL-CNN and Non-FLCNN.

FL-CNN Non-FLCNN

Institutions ACC AUC SP SN ACC AUC SP SN

APTOS 0.94 0.93 0.93 0.93 0.91 0.91 0.92 0.94

MESSIDOR 0.80 0.83 0.90 0.53 0.74 0.73 0.93 0.37

IDRID 0.71 0.73 0.60 0.80 0.68 0.72 0.56 0.80

Eyepacs 0.67 0.72 0.87 0.51 0.65 0.76 0.66 0.68

7. Discussion

The demand for labeled ground-truth data considerably rises as deep learning ap-
plications become more complicated. A single client frequently lacks the resources to
obtain the data required to build an accurate model. Additionally, medical images are
securely protected by several privacy regulations, creating a considerable barrier to client’s
collaboration on data sharing. Additionally, it is possible that models developed primarily



BioMedInformatics 2023, 3 958

using a single data island are greatly overfitted, which would restrict their ability to be
applied to new data in the future. Federated learning offers a way to jointly train a model
while maintaining the privacy of the image data.

In our study, we investigated the use of federated learning to expand the useful dataset
size that frequently comes along with highly specialized studies in novel methodologies,
such as disease classification on fundus images. Federated learning could make it easier
for groups researching rare diseases to work together as there are fewer open-sourced
datasets that are available to the public and more images that are kept inside of individual
institutions. We concentrated on the use-case of federated learning that promotes multi-
institutional collaborative studies towards more specialized research areas, even though
there is merit for using it to increase the generalizability of tasks with widely accessible
datasets like fundus imaging.

The performance of federated learning was better than that of internal models. When
evaluated on data from the other domain and when a model was produced that outper-
formed those trained and tested at various sites, the findings for the classification problems
indicated that all participants gained from federated learning. However, on the Eyepacs
dataset, which contains more images than other datasets, the federated learning models
underperformed the internal models. Further research into the impact of data distribution
and uneven datasets on federated learning is warranted in light of this.

A model that can generalize to numerous datasets and perform as well as internal
models was trained with the help of the federated learning framework. We predict that the
federated models will perform better on fundus images from an unidentified source since they
were trained on a more varied pool of data. The performance of each model on data obtained
by devices produced by the same company is one area that needs more investigation.

The volume and variety of training data is a restriction of federated learning, much
like for traditional deep learning. The Eyepacs dataset had a lot more images than the other
three datasets, therefore one client trained by iterating over more steps per epoch. However,
each client model was given identical weighting when averaging the aggregated client
models. In spite of the data imbalance, this was performed to ensure that the federated
model was not biased against one particular data source. The smaller datasets could be
further enhanced as an option, but the benefits may be minor because each client model is
combined into a global model.

Federated learning is employed to train distributed models across a variety of devices,
including smartphones, wearable medical devices, automobiles, and Internet of Things
(IoT) devices. They aid in the development of a strong model, but the training data are
retained locally rather than being shared, resolving issues with data security, privacy, and
access rights.

In the FL system, the learning process is typically orchestrated by a central server,
which also updates the model based on client training outcomes. The fault tolerance of
such a star-shaped server-client architecture is reduced: it does not address the issue of
information governance, and it necessitates a powerful central server, which may not
always be available in many real-world scenarios with a sizable number of clients [52,53].

Clients may be exposed to risks because of a server being present in the network.
To compromise the entire local training group, the attacker could, for instance, utilize
a fine-tuning approach to produce some malicious updates that are subsequently sent
from the central parameter server. Federated learning systems that depend on a solitary
parameter server also run a risk of failing. Training may be stopped or interrupted if the
main parameter server is compromised by the attacker.

Thus, the completely decentralized FL was offered as a solution to the aforementioned
issues, replacing client-to-client communication with peer-to-peer communication between
linked clients [54].
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8. Conclusions

In this work, we created a framework that enables numerous users to undertake
federated learning on decentralized data. With the help of our findings, we were able to
demonstrate that federated learning models can outperform the internal models, offering an
effective means for increasing the data pool while protecting patient privacy. The suggested
approach develops an accurate and cooperative DL based on the ViT model for multi-
institution collaborations without risking data privacy, which is crucial in ophthalmology
healthcare, particularly in ocular image processing. This was performed to learn ways to
use FL successfully and efficiently in actual clinical situations. To obtain better outcomes,
future work may include more clients, which would enhance the suggested technique
even more. Additionally, we anticipate conducting comprehensive empirical investigations
using different methodologies such as split federated learning to increase the degree of
data privacy.
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