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Abstract: Protein variation that occurs during alternative splicing has been shown to play a major
role in disease onset and oncogenesis. Due to this, we have developed OutSplice, a user-friendly
algorithm to classify splicing outliers in tumor samples compared to a distribution of normal samples.
Several tools have previously been developed to help uncover splicing events, each coming with
varying methodologies, complexities, and features that can make it difficult for a new researcher to
use or to determine which tool they should be using. Therefore, we benchmarked several algorithms
to determine which may be best for a particular user’s needs and demonstrate how OutSplice differs
from these methodologies. We find that despite detecting a lower number of genes with significant
aberrant events, OutSplice is able to identify those that are biologically impactful. Additionally, we
identify 17 genes that contain significant splicing alterations in tumor tissue that were discovered
across at least 5 of the tested algorithms, making them good candidates for future studies. Overall,
researchers should consider a combined use of OutSplice with other splicing software to help provide
additional validation for aberrant splicing events and to narrow down biologically relevant events.

Keywords: algorithm; benchmarking; alternative splicing; head and neck cancer; software

1. Introduction

Alternative splicing is a crucial biological process involving the differential inclusion,
exclusion, and rearrangement of exons across eukaryotic tissues. This results in coding
regions from the same gene being stitched together in various possible arrangements,
allowing for a vast expansion of protein diversity as well as alterations in protein phenotype
and expression [1]. The variation that occurs during this post-transcriptional process
presents a significant source of functional changes in proteins and allows for the onset of
numerous diseases, including cancer [2]. Many studies have demonstrated that aberrant
splicing plays a major role in the oncogenesis of several cancers. For example, CD44
(cell-surface receptor) has numerous splice variants whose up-regulation contributes to
the onset and metastasis of breast and colon cancer [3–5]. Additionally, exon skipping
events on MDM2 (proto-oncogene) produce the MDM2-ALT1 alternative isoform, whose
expression causes accelerated tumorigenesis in rhabdomyosarcomas [6].
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Determining the impact of splicing on cancer requires not only identifying each variant
but also further characterizing whether this event is tumor-specific. In the case of head and
neck cancer, we have previously shown that splice events can cause mutation-independent
oncogenic pathway activation [7]. The ability of aberrant splicing to change protein function
specific to tumors also results in the generation of neoantigens that can represent novel
targets for enhancing response to immunotherapy [8–10]. While the study of somatic
mutations alone has led to the discovery of neoantigens in cancers, these alterations may
be limited in tumors with a low mutational burden [11,12]. This is particularly evident in
head and neck cancer, whose tumors display variable mutational changes but have a large
degree of splicing events [8,13]. In this context, knowledge of tumor-specific alternative
splicing events is critical to our understanding of head and neck cancer onset and to the
creation of drugs for immunotherapy treatments.

Previously, we developed an algorithm to detect splicing based on the outlier ex-
pression of junctions in tumors relative to normal samples [7]. Multiple methods and
software packages have been developed in the past for documenting alternative splicing.
This includes transcript isoform estimation [14–17], differential exon expression [18–21],
the generation of inclusion levels [22–26], and building splicing graphs [27–31]. While
many of these methods are powerful, they are often more complex than our outlier junction
approach and capture differences in mean isoform usage that are not tailored for handling
heterogeneous tumor transcriptomes [32]. Therefore, we have developed OutSplice, a soft-
ware package in Bioconductor with a GenePattern implementation for our outlier analytics
to identify novel splicing events in a user-friendly fashion and determine splicing events
as they occur in each individual tumor [7,33,34]. Given all the methods for differential
splicing analysis, it is crucial to determine which algorithms and software will be best
for each individual user’s needs. Previous studies have looked into comparing different
splicing tools; however, these studies primarily focus on benchmarking measures such as
precision, recall, and FDR [35,36]. While this is crucial to tool selection, it is also important
to compare the complete pipelines of these tools, as they each have varying complexities
in their usage and differences in their output. This “ease-of-use” may be helpful for new
researchers. This includes identifying tools requiring fewer processing steps and scripting
knowledge to ease entry into the field.

We therefore compared OutSplice to several differential splicing detection algorithms
(edgeR, LeafCutter, psichomics, rMATS, and Whippet) by benchmarking the number of
significant events found, runtime, required memory, required inputs and outputs, and
general usability against an RNA-seq dataset of 47 oropharyngeal squamous cell carcinoma
tumors (OPSCC) and 25 normal samples. A synthetic RNA-seq dataset was also created to
measure each model’s performance against “ground truth” over-expressed alternatively
spliced transcripts. Each algorithm used here was selected to represent every major splicing
methodology. Transcript isoform estimation, however, was not included in this study as
the current primary software utilizing this method, cuffdiff and MISO, demonstrate either
extremely long runtimes or only utilize pairwise sample comparisons. Instead, given the
similarities between psichomics and OutSplice regarding how junction read counts are
measured, this tool was also selected along with the popular rMATS software. Additionally,
we also compared OutSplice to other previously developed outlier detection methods,
FRASER and LeafCutterMD [37,38]. Here we describe how OutSplice is unique from
these previously developed tools and identify 17 genes that matched across at least 5 of
the tested algorithms, providing high confidence for the presence of biologically relevant
aberrant splicing.

2. Materials and Methods
2.1. Data Preparation

The 47 primary tumor tissue samples used for the differential splicing analyses in
each algorithm were obtained from a patient cohort with HPV-related OPSCC [39]. The
25 normal tissue samples used for the comparisons consisted of oropharynx mucosal tissue
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obtained from uvulopalatopharyngoplasty (UPPP) surgical samples in cancer-unaffected
controls. RNA was extracted using the mirVana miRNA Isolation Kit (Ambio, Forster City,
CA, USA) and quantified with a NanoDrop spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). The Illumina TruSeq stranded total RNA seq poly A+ Gold reduction
kit was used to prepare the RNA library (San Diego, CA, USA). RNA was then sequenced
using the HiSeq 2500 platform sequencer (Illumina, San Diego, CA, USA) with the TruSeq
Cluster Kit (Illumina, San Diego, CA, USA), resulting in a mean read depth of 80 million
100× 100 paired-end reads per sample that were then trimmed to remove adaper sequences
and low-quality reads. Final compressed FASTQ files ranged from sizes of 1.4 gigabytes
(GB) to 6.6 GB.

2.2. Computational Resources

Every algorithm and software were run on the National Resource for Network Biology
(NRNB) cluster hosted by the San Diego Supercomputer Center (SDSC) using the Simple
Linux Utility for Resource Management (SLURM) system for job management and measur-
ing resource usage. Every step in the pipeline for each algorithm was given a maximum
allocation of 8 CPUs. Elapsed time and max resident set size (maxRSS) were recorded for
each step in the corresponding algorithm pipeline. For pipeline steps that required samples
to be processed individually, an array job was submitted to run in parallel, with runtime
being recorded as an average across all samples.

2.3. Genome Index Building and Alignment

For the algorithms that required Binary Alignment Map (BAM) files containing aligned
reads, genome indices were built and aligned using STAR v2.7.1a [40]. The reference annota-
tion and assembly files required to build the reference were obtained from GENCODE [41].
All reads present in the trimmed FASTQ files were decompressed and aligned to the Hu-
man Genome Build 38 (hg38). STAR 2 Pass Mode was used to improve splice junction
quantification [42].

2.4. Algorithm Data Formatting Pipelines

All algorithm pipelines were run by following the usage guides for each corresponding
step in their pipeline, starting from FASTQ file input, to emulate the process an average
user would need to use after getting their sequencing data. Pipelines were run using the
default settings with the following exceptions made when available: library type (upstream
reads were derived from the reverse strand), # of threads (8), paired end reads (True). The
significance threshold was set to a false discovery rate (FDR) adjusted p-value of 0.05 for all
algorithms. All splicing events were mapped to the hg38 genome for annotation.

2.4.1. OutSplice Pipeline

For OutSplice, junction read counts were obtained from STAR’s SJ.out.tab output. The
total number of raw counts was obtained from STAR’s #Uniquely Mapped Reads result in
the Log.Final.out output. Gene expression data for OutSplice was obtained by following the
Cancer Genome Atlas (TCGA) RSEM v2 normalization pipeline using RSEM v1.3.1 [15,43].
The RSEM transcript reference directory was created using the aforementioned annotation
and assembly files from GENCODE.

To help users prepare and format their data for use with OutSplice, we have developed
the OutSplice Formatter tool, which will extract junction count, raw count, and gene
expression data from STAR and RSEM output for use with the actual algorithm. Utilizing
a perl script from the University of North Carolina’s Bioinformatics utilities, an optional
upper quartile normalization is integrated into the Formatter and was used to normalize
the expected gene counts from RSEM (https://github.com/mozack/ubu, accessed on 16
March 2023). This formatter is open source and available on our GitHub (https://github.
com/GuoLabUCSD/OutSpliceFormatter/tree/Version1.0.0, accessed on 16 March 2023).

https://github.com/mozack/ubu
https://github.com/GuoLabUCSD/OutSpliceFormatter/tree/Version1.0.0
https://github.com/GuoLabUCSD/OutSpliceFormatter/tree/Version1.0.0
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When running OutSplice v1.0.1, the program will first convert the raw junction counts
from STAR into reads per million (RPM) by dividing the original counts by the total number
of raw counts. These are then further normalized by gene expression by dividing by the
quartile normalized expression values from RSEM. Outliers are then detected through
a rank sum approach, a modified version of the Ghosh method, where an outlier must
have greater than 0.00001 normalized RPM relative to gene expression [44,45]. OutSplice is
open source and available on Bioconductor and GenePattern (https://bioconductor.org/
packages/release/bioc/html/OutSplice.html, accessed on 26 April 2023).

2.4.2. edgeR Pipeline

Differential splicing was performed using edgeR v3.42.2. For edgeR, read counts were
obtained using the featureCounts function in Rsubread v2.14.2 [46,47]. Default settings
were used with exceptions for paired end reads, exclusion of meta features, and multiple
overlap as per the edgeR user guide for alternative splicing analysis (https://bioconductor.
org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf, accessed
on 16 March 2023). Genes were filtered to only include those with at least 10 read counts
in a minimum number of samples and 15 counts across all samples. Normalization of the
data was then performed using the recommended and default trimmed mean of M values
(TMM) method.

2.4.3. LeafCutter/LeafCutterMD Pipeline

Aligned BAM files generated by STAR were indexed using SAMtools v1.15.1 and
converted to JUNC files using RegTools v.0.5.2 [48,49] with an anchor length of 8 base pairs
(bp) and a required intron length between 70 and 500,000 bp. A Python script provided
by LeafCutter v0.2.9 was then run to perform intron clustering, where 30 split reads were
required to support the identification of a cluster to be passed into the LeafCutter differential
splicing script. Annotation codes were made using the beforementioned hg38 annotation
file from GENCODE and given to LeafCutter’s visualization script for use with the LeafViz
application. For LeafCutterMD, the above steps were repeated on 25 tumor samples for
comparison with FRASER.

2.4.4. Psichomics Pipeline

Differential splicing was performed using psichomics v1.26.0. (https://nuno-agostinho.
github.io/psichomics/articles/custom_data.html, https://nuno-agostinho.github.io/psichomics/
articles/CLI_tutorial.html, accessed on 16 March 2023). Junction counts were obtained from
STAR’s SJ.out.tab file. Per the usage guide, events were filtered to include only those
with a change in percent spliced in (PSI) greater than 0.1 to help remove non-biologically
relevant events.

2.4.5. rMATs Pipeline

Differential splicing was performed using rMATS v4.1.0. STAR-aligned BAM files
were used for the initial input. A read length of 100 was specified along with the variable
read length option to account for the trimmed reads.

2.4.6. Whippet Pipeline

A Whippet v1.6.1 provided Julia script was first used to quantify the original FASTQ
files, and the software-specific index was built using the same annotation and assembly files
used for STAR. The resulting PSI files were then passed into Whippet’s “delta” script for
differential splicing analyses. The resulting events were then filtered to include only those
whose change in PSI was greater than 0.1 and had a splicing probability of at least 90%.

2.4.7. FRASER Pipeline

Outlier analysis was performed using FRASER v1.12.1 on 25 tumor samples. Split and
non-spliced reads were extracted from the aligned BAM files using FRASER’s countRNA-

https://bioconductor.org/packages/release/bioc/html/OutSplice.html
https://bioconductor.org/packages/release/bioc/html/OutSplice.html
https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
https://nuno-agostinho.github.io/psichomics/articles/custom_data.html
https://nuno-agostinho.github.io/psichomics/articles/custom_data.html
https://nuno-agostinho.github.io/psichomics/articles/CLI_tutorial.html
https://nuno-agostinho.github.io/psichomics/articles/CLI_tutorial.html
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Data function. Read counts were then filtered and normalized by requiring 20 split reads
and an absolute change in PSI of 0.3 for an intron to pass the filter. Hyperparameters utilized
were also tuned and set prior to model fitting (http://www.bioconductor.org/packages/
release/bioc/vignettes/FRASER/inst/doc/FRASER.pdf, accessed on 16 March 2023).

2.4.8. Simulated Data Creation

The first 1000 genes present on chromosome 1 were selected for use from the GEN-
CODE hg38 gtf file. Uncharacterized genes on open reading frames, RPS genes, and those
listed without a HGNC symbol were ignored. For each gene, the Ensembl Canonical
transcript was selected from the gtf file. Additionally, for 200 genes, an alternatively
spliced transcript was selected. These data were then provided to Polyester to generate
FASTA files containing the simulated reads for 20 “Normals” and 40 “Tumors” using a
baseline number of reads per transcript of 600 [50]. To establish a “ground truth” for
event over-expression and to simulate tumor heterogenity, transcripts were given varying
expression levels relative to the baseline. Canonical transcripts were given an expression
level between 1 and 2× the baseline expression. Alternatively, spliced transcripts were
then given an expression level of 1× for the normal samples, 1–2× for 20 tumor samples,
and 4–5× for the remaining 20. These 200 transcripts would then be considered to have
true overexpression for the calculation of the evaluation metrics. BBTools was then used
to convert the polyester output into FASTQ format for use with each splicing algorithm
(https://sourceforge.net/projects/bbmap/, accessed on 16 May 2022). Each algorithm was
run as previously described, with an exception for the unstranded library type. OutSplice
was run with a fold-change cutoff of 2 instead of the default value of 10 to account for the
overall lower degree of expression variation.

3. Results and Discussion
3.1. OutSplice

When considering differential splicing in the context of cancer research, the hetero-
geneity of tumors can make it difficult to identify both the splicing events that occur across
the cohort and the individual events that occur per sample. To combat this, OutSplice
was specifically designed to work with tumor biology to detect differences in splicing
between tumor and normal samples. To do such, OutSplice integrates a software package
to implement a modified version of the Ghosh method to call outlier splicing events by
setting a minimum level of expression relative to normal samples [44,45]. In this algorithm,
each tumor sample’s normalized junction expression is compared to the distribution of
normal samples, allowing for the identification of an outlier event per sample. Next, a
Fisher’s exact test with an FDR correction is performed on each event, comparing the
number of outliers in each group, so both over- and under-expressed events occurring in a
significant number of tumors will be identified and counted. OutSplice can then determine
the splice burden and the types of events that occurred in each sample, allowing users to
quickly distinguish which samples in their cohort underwent the highest amount of signifi-
cant splicing and what kind of events were included. This method has previously been
introduced and shown to identify functionally active splice variants of AKT3, DOCK5, and
LOXL2 that promote oncogenesis in head and neck cancer [7,33,34]. The development of a
unified software package for this outlier analysis in OutSplice and a user-friendly interface
with GenePattern notebook facilitates broader applicability for differential splicing analysis
in cancer.

Among the algorithms for differential splicing, OutSplice is among those that require
the fewest processing steps (Figure 1, Supplementary Table S1). The formatter and algo-
rithm are both able to be run in one function, so users will not have to do their own separate
normalizations or data handling. Additionally, it contains a function that is formatted
to work immediately with data downloaded from the TCGA/Firebrowse. Firebrowse is
a collection of processed data from the TCGA for numerous cancer types and contains

http://www.bioconductor.org/packages/release/bioc/vignettes/FRASER/inst/doc/FRASER.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/FRASER/inst/doc/FRASER.pdf
https://sourceforge.net/projects/bbmap/


BioMedInformatics 2023, 3 858

junction and gene expression data. This direct linkage to TCGA analysis could be of great
benefit to researchers who would like to study splicing in various types of cancer.
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When benchmarking the runtime and memory requirements for OutSplice compared
to other differential splicing tools, OutSplice was among the algorithms with higher mem-
ory usage and longer overall runtimes (Supplementary Table S2). A major reason for this
is that external software, STAR and RSEM, were used to get the expression counts for the
algorithm, lengthening the process. Here, STAR’s SJ.out.tab output is used to provide the
number of uniquely mapping reads that specifically span exon-exon junctions instead of all
possible overlapping reads that algorithms such as edgeR utilize. This may be beneficial
as it can better designate the specific splicing event that is occurring rather than just the
overall expression of an exon. Optionally, RSEM can then be used on a per-sample basis to
determine the gene expression level that these junctions will be normalized by. While the
direct normalization of STAR’s gene count output would be faster overall, RSEM may be
more effective as a measure of gene expression given its ability to better handle ambiguous
and multimapping reads [15].
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3.2. edgeR

EdgeR detects splicing alterations by measuring the difference in exon expression
between groups based on the log fold change in exon expression compared to the log fold
change of gene expression [18]. To determine expression levels in each exon, edgeR fits a
negative binomial model based on a matrix of read counts provided by external software
such as STAR and featureCounts. These tools will measure all reads that align with each
exon in the sample to provide a representation of the expression level of each coding region.

When starting from raw FASTQ input, the overall edgeR pipeline was found to have
one of the longest runtimes and the highest amount of data formatting compared to the
other available software. The biggest contributor to this length was FeatureCounts, which
took the longest time to process all 72 samples and generate a count matrix. Disregarding
alignment and read counting, this tool does demonstrate one of the fastest runtimes;
however, there are several steps involved in the preparation process that must be written
in an R script. While user guides can help, new users may struggle to deal with specifics
in their data. For example, standard GENCODE gtf files will list paralogous genes and
ENSEMBL version numbers that cause edgeR to throw an error due to duplicate and
non-standard row names. Therefore, this method will require more time based on user
knowledge compared to other tools.

EdgeR does offer many benefits to users. EdgeR is available as a Bioconductor package,
making installation fairly straightforward, and it offers the largest variety of options regard-
ing data processing compared to other algorithms. This can be of great use to researchers
who want to use different normalization methods, have more complicated experimental
set-ups, or have larger groups. EdgeR’s output is also extremely straightforward to under-
stand, consisting of a single matrix with all exons found and an automatically calculated
FDR-corrected p-value to help ease significant event identification.

3.3. LeafCutter

To identify differences in splicing, LeafCutter focuses on the excision of introns based
on clusters of overlapping split reads spanning exon-exon junctions rather than exon
expression. This way, splice junctions can be identified without relying on often incomplete,
predefined events [22]. From here, LeafCutter then uses a Dirichlet-multinomial model to
fit and compare the counts of identified introns in the clusters.

Disregarding read alignment and counting, LeafCutter did take slightly longer than
the rest of the tested algorithms to process the data and also required some manual format-
ting steps such as BAM file indexing with SAMtools and a BAM to JUNC file conversion
with RegTools. These steps are able to finish fairly quickly but would most likely warrant
the need for a cluster that can process multiple samples at one time if given large datasets
and the need to learn other Bioinformatic tools. However, all of these steps will manage
read-counting for the user, meaning external software is not required for expression mea-
surement. Further, each of these steps is performed with low memory requirements. If
users already have BAM files available, then LeafCutter can make for a good choice for
users with few computational resources in exchange for a longer overall runtime.

After generating results, LeafCutter will output FDR-corrected p-values at the cluster
level for each gene, PSI metrics for each individual event, and, if given a GTF annotation file,
canonical/cryptic junction labels. FDR correction at the cluster level could be a potential
downside for some users, as this may make the interpretation of significance at individual
events difficult. Additionally, if the user would like to map these events to a gene, they
will need to manually build annotation codes from a gtf file using the provided function.
Despite this, the inclusion of a PSI metric at the event level may be useful for determining
the likelihood an individual event will be called, and canonical junction labels greatly aid
with the discovery of novel junctions.
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3.4. Psichomics

When detecting splicing differences between groups, like LeafCutter, psichomics also
leverages the number of reads spanning exon-exon junctions to generate inclusion levels.
However, instead of using clusters of overlapping introns distinguished by split reads,
psichomics calculates the percent spliced in metric for every event in every sample by the
proportion of reads aligned to the junction supporting the inclusion isoform [24].

Psichomics includes some major benefits regarding data preparation. While the
software does have multiple steps required for processing that require some knowledge of
R to manually run each function from the command line, it comes with a graphical user
interface that greatly speeds up and eases this process, making it a great resource for those
with no programming knowledge. Additionally, like OutSplice, psichomics is also able to
work immediately with data from the TCGA/Firebrowse, allowing for instant analysis of
cancer-related studies.

After data analysis, psichomics was found to have the lowest memory usage and
one of the fastest runtimes across all algorithms. The tool avoids the need to run other
software to generate the read matrices and will directly pull the junction mapping results
straight from the STAR SJ.out.tab output after alignment and normalize the results for each
sample during the PSI calculation. However, it is important to note that if the user does not
already have junction read count matrices to quantify, then STAR will be required, raising
memory usage.

Some major benefits of psichomics also include their variety of output. FDR-corrected
p-values are provided for event identification in addition to the PSI calculations and event
type. Additionally, psichomics contains in-built principal component analyses, allowing
the user to see which events are causing the greatest degree of separation between the two
groups in question. However, one major downside of the output is that it relies on the
existence of alternative splicing annotations from other tools, such as VAST-TOOLS [51].
While these annotations for hg38 are provided by default, this makes the identification and
discovery of novel splicing events difficult [24].

3.5. rMATS

Similar to the beforementioned LeafCutter and psichomics packages, rMATS generates
inclusion levels based on the number of read counts spanning the splice junctions. However,
it also additionally leverages the read counts of the individual exons involved in the event
to aid with event identification. To do this, rMATS uses a hierarchial framework with a
binomial and logit-normal distribution, allowing the model to account for both estimation
uncertainty and replicate variability [26].

The biggest benefit seen with the rMATS pipeline is the few steps required to use the
algorithm. Following installation, users just need to create text files designating the experi-
mental and control groups and then run a single all-in-one function. However, rMATS was
shown to have one of the longest runtimes as well as the highest memory usage, meaning
more computational resources will need to be dedicated for use with this algorithm.

Regarding the resulting output, rMATS provides several useful statistics for the user.
This includes an automated annotation of the events with their gene symbol, an FDR-
corrected p-value, the difference in inclusion levels between the groups tested, and the type
of event found.

3.6. Whippet

Whippet’s method for differential splicing relies on building splicing graph represen-
tations of each sample’s transcriptome [27]. After creating an index from the provided GTF
annotations and the genome sequence FASTA, Whippet aligns raw RNA-sequencing reads
to a contiguous splicing graph, allowing the user to directly use their FASTQ files with the
tool instead of having to install and use an aligner such as STAR.

The first major benefit of Whippet is that every other algorithm tested required a
BAM file to run, except for Whippet. This is a major benefit to researchers who do not
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have access to the high computational power/memory required by RNA-seq aligners
(Supplementary Table S2). Whippet is also able to optionally take aligned BAM files to help
build the initial index. If the user has experience with merging BAM files, this could be a
useful feature to help with the identification of unannotated splicing regions.

Regarding Whippet’s output, the software is able to provide the types of events found
and the PSI metric; however, it does not calculate significant p-values. Instead of these
designations, Whippet suggests that events should be filtered to include those with a
Probability Score of at least 90% and a change in PSI greater than 0.1, with adjustments
based on user preference and experimental set-up. Whippet also includes entropy metrics
that demonstrate the degree of uncertainty associated with the splicing event. Each of these
metrics, while beneficial, may be difficult for an inexperienced user to select and interpret
properly, so researchers may want to consider their experience level before use. Another
potential downside to consider is that Whippet does not automatically convert provided
Ensembl IDs to gene symbols, which means the user will need to be able to use available
mapping algorithms such as AnnotationDBI or biomaRt.

3.7. Gene Overlap and Algorithm Comparisons

First, we sought to compare the results of differential splicing analysis to our outlier-
based analysis method. After obtaining the initial results from each differential splicing
algorithm, individual events were mapped to the gene they lie on, and the number of
unique genes containing specific splicing events was counted and compared to see the
degree of overlap. Regarding the total number, LeafCutter and rMATS were able to identify
the greatest number of genes (3159 and 3691 genes, respectively) that could be considered
to have significant splicing alterations, whereas OutSplice identified the least (261 genes).
The first reason for this lower number of identifications is partially because, by default,
OutSplice will filter out junctions on the X and Y chromosomes, as cancer is not specific
to differences in biological sex. This resulted in 86 LeafCutter-significant genes and 115 in
rMATS not being detected by OutSplice at all. Secondly, OutSplice uses an additional filter
where a minimum degree of normalized expression relative to normal must be met before
an outlier can be called, thus removing many events that would not be biologically relevant.
Psichomics and Whippet also identified fewer genes compared to LeafCutter, at 345 and
1021 genes, respectively. Similarly, psichomics and Whippet allow for significant events
to be filtered by having to meet a minimum change in PSI, thus lowering the number of
detected genes with significant events. Therefore, while a greater number of identifications
is useful for finding new/unannotated splicing events, it should not be the only defining
metric to consider when interpreting splicing results.

When determining the number of gene overlaps across the algorithms, the greatest
number of overlaps occurred between LeafCutter and rMATS and between LeafCutter
and edgeR (Supplementary Figure S1) [52]. The overlap between LeafCutter and rMATS
can most likely be explained by their similar methodologies of leveraging the number of
split-reads spanning splice junctions to generate inclusion levels. The overlap between
LeafCutter and edgeR is most likely explained by both identifying large numbers of genes,
thus providing the greatest opportunity for overlap. Interestingly, most other pairwise
comparisons of the algorithms did not show high overlap, emphasizing how different each
algorithm is at designating what constitutes a significant event. Researchers will need to
account for this possibility and potentially run multiple algorithms, as a gene of interest
missed by one method may be detected by another.

When looking for overlapping genes, 17 genes were found in ≥ 5 of the tested
algorithms (Table 1). Multiple algorithms for detecting these provide support for true
differential splicing events and could be strong candidates for PCR validation. However,
due to differences in coordinate labeling and the large number of potential splice events
that can occur on a single gene, it can be difficult to confirm if the exact same splicing event
was detected by each tool (Supplementary Table S3). To aid with this task, the interactive
genomics viewer can be used to visualize differences in the read alignments across the
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samples. Through this method, we see that one of these genes, ECM1, displays an easily
distinguishable exon skipping event that most algorithms detect exactly but label differ-
ently (Figure 2) [53]. Here, the exon at coordinate position chr1:150511457-150511831 shows
increased expression in tumor tissue compared to normal. This indicates that the exon is
being “skipped” over in normal tissue and may indicate the production of a new peptide in
tumors. This figure also illustrates a major challenge in alternative splicing annotation and
how there is a lack of a standardized method for event labeling across different algorithms.
Researchers will need to take note of this if running multiple different splicing softwares,
as different regions that point to the same event could be easily missed. While this event
was found to be a major splicing event by most algorithms, it was not marked as significant
in edgeR despite the exon being detected. This could be because edgeR’s negative binomial
model relies on having low dispersion and low variability across the replicates, which is
not usually the case with tumors that are often heterogeneous.
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Figure 2. The ECM1 exon “skipping” event was identified by five of the algorithms tested. Brackets
indicate the unique coordinate annotation provided by each corresponding algorithm for the singular
junction event.

This ECM1 event can further be viewed through the algorithms themselves. Except
for Whippet and rMATS, each algorithm has its own in-built but different method for
visualizing significant events that will be up to user preference to decide between when
selecting a tool. LeafCutter allows for the installation of LeafViz, which provides nice
illustrations of the intron cluster in question and all of the individual splicing events that,
when grouped together, are marked as significant. For ECM1, this is noted by the higher
PSI for the outer exons compared to the inner “skipped” exon (Figure 3a). OutSplice will
provide waterfall plots of the normalized junction expression that allow the user to see
how several individual tumor samples overall have a higher expression of the ECM1 event
compared to the overall distribution of expression in normal tissue (Figure 3b). Similar
to LeafCutter, psichomics also allows you to visualize the ECM1 event’s difference in PSI;
however, it does this through distribution plots, which illustrate the higher PSI in tumors
compared to normal (Figure 3c). Lastly, edgeR will plot the log fold change in expression
of the exon in question. Here, edgeR was able to detect the “skipped” ECM1 exon and
showed a positive log fold change, indicating upregulation in tumors; however, it was not
able to mark the event as significant (Figure 3d).
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Table 1. Genes with significant differential splicing found in ≥5 of the tested differential splicing
algorithms, their descriptions, and the types of events found. “X” indicates which algorithms
identified significant splicing in the given gene.

Gene with
Significant Splicing

Event(s)
Description Event Types Found edgeR LeafCutter OutSplice Psichomics rMATS Whippet

ECM1 Extracellular Matrix
Protein 1

Skipping and Alternative
5′ Splice Sites X X X X X

COL6A3 Collagen type VI
alpha-3 chain

Skipping and Mutually
Exclusive Exons X X X X X

KIAA1217 Embryonic skeletal
system development

Skipping, Alternative
First Exon, Retained
Intron, and Mutually

Exclusive Exons

X X X X X

HDAC9 Histone deacetylase 9

Skipping, Alternative
First Exon, Tandam Start

Site, and Mutually
Exclusive Exons

X X X X X

MBNL1 Muscleblind-like
splicing regulator 1

Skipping and Mutually
Exclusive Exons X X X X X

VPS39 VPS39 subunit of the
HOPS complex

Skipping and Tandam
Start Site X X X X X

PLEKHG1
Pleckstrin homology
and RhoGEF domain

containing G1

Skipping, Insertion,
Tandam Start Site, and

Mutually Exclusive
Exons

X X X X X X

ITGB4 Integrin subunit beta 4 Skipping X X X X X X

PTPN6
Protein tyrosine

phosphatase
non-receptor type 6

Skipping, Alternative
Acceptor, Alternative

First Exon, Alternative 3′

Start Site, Mutually
Exclusive Exons, and

Retained Introns

X X X X X

MTMR1 Myotubularin-related
protein 1

Skipping and Mutually
Exclusive Exons X X X X X

PARD3 Par-3 family cell
polarity regulator

Skipping, Alternative 5′

Splice Site, Alternative
First Exon, and Mutually

Exclusive Exons

X X X X X

NUMA1 Nuclear mitotic
apparatus protein 1

Alternative First Exon,
Tandem Transcription

Start Site, Retained
Intron, and Mutually

Exclusive Exons

X X X X X

RABGAP1L RAB GTPase-activating
protein 1 Skipping and Insertion X X X X X

MDM2 Proto-oncogene
Skipping, Alternative

First Exon, and Mutually
Exclusive Exons

X X X X X

MCM7
Minichromosome

maintenance complex
component 7

Skipping, Alternative
First Exon, and Retained

Intron
X X X X X

MEI1
Meiotic

double-stranded break
formation protein 1

Skipping, Insertion, and
Deletion Events X X X X X

FCGR2B FC gamma receptor IIb Skipping and Retained
Intron X X X X X
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To benchmark OutSplice with other available algorithms for differential splicing anal-
ysis, we generated in silico RNA-seq data. These data only included annotated transcripts
and splicing events, with increased expression of these events in half of the simulated
“Tumor” samples. In this simulated model, OutSplice had modest performance compared
to the other algorithms, having a lower sensitivity and higher false discovery rate (Table 2).
OutSplice was designed to identify highly aberrant outliers within heterogeneous datasets
that have greater than 10× the difference in event expression between Tumor and Normal
sample groups and also to identify novel, unannotated junctions. The performance of these
features was not able to be accurately captured in the simulated Polyester data. However,
in real-world data, OutSplice has been successful in identifying several functionally active
splicing events that have been validated with polymerase chain reactions and functional
assays [7,33,34,54,55].
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Table 2. Evaluation metrics for each algorithm on the simulated dataset. FDR indicates the False
Discovery Rate. “Identified Genes” indicates genes with splicing events that were detected by the
algorithm regardless of significance level. “Identified + Significant Genes” indicates genes with
splicing events that were both detected by the algorithm and significant at an algorithm-provided
p-value of ≤0.05. Since Whippet does not record the p-value, significance was defined as genes with
a splicing probability of at least 90% and a difference in percent spliced value > 0.1.

Identified Genes Identified + Significant Genes

True
Positive

Total
Identified Sensitivity Specificity FDR True

Positive

Total
Identified +
Significant

Sensitivity Specificity FDR

edgeR 200 1014 1 0.03 0.8 192 265 0.96 0.91 0.28

LeafCutter 185 213 0.93 0.97 0.13 181 194 0.91 0.98 0.07

OutSplice 91 366 0.46 0.67 0.75 78 336 0.39 0.69 0.77

psichomics 108 123 0.54 0.98 0.12 102 115 0.51 0.98 0.11

rMATS 149 392 0.75 0.70 0.62 115 120 0.58 0.99 0.04

Whippet 200 972 1 0.07 0.79 77 79 0.39 1 0.03

3.8. Outlier Analysis and Comparison

In addition to OutSplice, two primary alternative methods that exist for identifying
splicing outliers are LeafCutterMD and FRASER. However, unlike OutSplice, both of
these algorithms are intended for the discovery of individual outliers in the context of
rare diseases. LeafCutterMD, like regular LeafCutter, uses the same intron clustering and
Dirichlet-Multinomial approach to detect splicing events but includes statistical tests to
determine how likely the intron counts are coming from the actual distribution [38]. With
FRASER, alternative acceptors, donors, and splicing efficiencies are quantified based on
the split and non-split reads across exon-exon junctions. The data is then fit with a beta-
binomial distribution for each metric, and outliers are found as those that deviate from the
model [37].

To compare FRASER to LeafCutterMD, we looked at the same aforementioned bench-
marks; however, due to the high memory requirement needed to count split reads with
FRASER, the dataset was trimmed to only include 25 of the tumor samples. Here, we
found LeafCutterMD to be far less memory-intensive while also having a much faster
runtime. After STAR alignment and intron clustering, we found that LeafCutterMD was
able to finish the outlier analytics in just 8 min with 4 GB of memory. Due to FRASER’s
RNA counting step, the algorithm’s pipeline took significantly longer at approximately
15 h, with a high memory usage of 197 GB, making it more difficult to run for users with
minimum computational resources. Additionally, it was found that LeafCutterMD was
able to identify more genes with significant splicing outliers at 166, compared to the 33
found with FRASER.

However, there are some important benefits regarding FRASER’s output compared
to LeafCutterMD. Unlike FRASER, LeafCutterMD users will need to manually get gene
symbol annotations with packages such as GenomicRanges to map the often-large number
of provided gene coordinates while also having to manually adjust p-values. Additionally,
unlike both OutSplice and LeafCutterMD, FRASER can calculate splicing efficiency, which
is useful for those studying intron retention.

While LeafCutterMD and FRASER can be used for the detection of splicing outliers,
both of these methods are not meant to be used for the comparison of tumor samples and
controls included with OutSplice but rather are specifically designed to identify rare events
across the disease group only. This means that if many tumors contain an event that is an
outlier compared to normal but not to each other, then it will not be detected through these
two methods. Since tumors are highly variable with a high degree of splicing alterations
compared to normal, it is crucial to identify both significantly shared outliers and significant
individual outliers. OutSplice is uniquely capable of performing both differential splicing
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and outlier splicing, and in doing so, we will be able to determine if there is a particularly
common splicing region producing a protein that can be targeted during immunotherapy
or if the region is so unique that treatment will only work in some select patients.

4. Conclusions

Overall, we find that OutSplice will be most useful for the identification of rare splicing
events in line with tumor biology. However, if a user would like to screen for the largest
number of potentially significant alterations from all known junction events, LeafCutter
may be the best choice. In a setting with low computational resources, Whippet is another
option. After running each algorithm, we also found minimal overlap in the discovered
splicing alterations across the algorithms. Future studies should include the development
of a pipeline capable of running each tool and compiling the results to automatically match
genes or specific junction coordinates to provide higher confidence for identified events.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedinformatics3040053/s1. Figure S1: Number of overlapping
genes with significant splicing differences between tumor and normal tissue in each algorithm. Table
S1: Comparisons per step in each algorithm’s pipeline. Table S2: Runtime and maxRSS comparisons
for differential splicing algorithms. Table S3: Significant genomic coordinates provided by each
algorithm for each gene with high algorithm overlap.
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