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Abstract: Tuberculosis (TB) is one of the leading infectious causes of death worldwide. The effective
management and public health control of this disease depends on early detection and careful treat-
ment monitoring. For many years, the microscopy-based analysis of sputum smears has been the
most common method to detect and quantify Mycobacterium tuberculosis (Mtb) bacteria. Nonetheless,
this form of analysis is a challenging procedure since sputum examination can only be reliably
performed by trained personnel with rigorous quality control systems in place. Additionally, it
is affected by subjective judgement. Furthermore, although fluorescence-based sample staining
methods have made the procedure easier in recent years, the microscopic examination of sputum is a
time-consuming operation. Over the past two decades, attempts have been made to automate this
practice. Most approaches have focused on establishing an automated method of diagnosis, while
others have centred on measuring the bacterial load or detecting and localising Mtb cells for further
research on the phenotypic characteristics of their morphology. The literature has incorporated
machine learning (ML) and computer vision approaches as part of the methodology to achieve these
goals. In this review, we first gathered publicly available TB sputum smear microscopy image sets
and analysed the disparities in these datasets. Thereafter, we analysed the most common evaluation
metrics used to assess the efficacy of each method in its particular field. Finally, we generated
comprehensive summaries of prior work on ML and deep learning (DL) methods for automated TB
detection, including a review of their limitations.

Keywords: microscopy; machine learning; Mycobacterium tuberculosis; automated medical diagnosis;
cell detection; fluorescence; brightfield; classification; regression; segmentation

1. Introduction

Globally, tuberculosis (TB) is the leading infectious cause of death worldwide [1].
Mycobacterium tuberculosis (Mtb) is the causative bacteria of TB, which is spread by droplets
and aerosols dispersed through coughing. Up to 85% of cases affect the lungs, which is
called pulmonary TB. Other, extrapulmonary organs or tissues, such as the brain, kidneys,
bone, and skin can also be affected by TB. The research presented in this paper has an
emphasis on pulmonary TB as it focuses on the automated analysis of digital images
generated from sputum smears to detect the Mtb bacteria that cause TB. According to the
World Health Organisation (WHO), up to 2 billion people worldwide have Mtb bacteria
in their bodies, with up to 10 million instances of active illness and 2 million deaths every
year [2]. For several decades, TB has been treatable with antibiotics, but the emergence
of drug-resistant bacterial strains, such as multi-drug resistant (MDR) and extensively
drug resistant (XDR) TB, is making antibiotic treatment more difficult [3]. The largest
burden of morbidity and death from TB occurs in poor and middle-income nations, where
healthcare resources are limited [4]. The early detection of TB improves a patient’s chances
of successful treatment and recovery while also reducing transmission and lowering the
risk that drug-resistant pathogens will emerge [2,5,6].
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The slower progress that has been achieved in the automation of TB microscopy can
be reflective of several factors [7]. The automation of TB microscopy is a difficult problem
to tackle due to, for example, the challenges associated with segmenting and tracking Mtb
cells due to their irregular shape and tendency to clump together [8]. There may also be
an underlying assumption that smear microscopy is soon to be replaced for primary TB
diagnosis by newer molecular methods, which disincentivises scientific effort to improve
smear microscopy methods. However, we contend that the further investigation of AI
approaches to sputum smear microscopy is important for three reasons. Firstly, microscopy
is still widely used, and there are practical obstacles to the implementation of replacement
techniques in many settings. Secondly, microscopy still has a role, not yet supplanted by any
other method, in treatment monitoring. Thirdly, and perhaps most importantly, microscopy
may have a specific research value in understanding heterogeneity in TB treatment response
at the level of individual cell morphology [8,9]. There is no replacement technology for this
function in the foreseeable future. There are clear examples where detailed microscopy-
based studies of single cells have led to important advances in our understanding of crucial
questions about pathogens that cause human infection [10]. Multicolour fluorescence
microscopy has contributed to the elucidation of the developmental morphologies of the
malaria parasite Plasmodium falciparum [10]. High-content confocal microscopy imaging
has been successfully performed to help identify the factors that influence disease severity
in infections caused by M. abscessus, an organism in the same bacterial family as Mtb [11].
These results illustrate the potential applications for similar tools in TB.

2. Importance of Microscopy

Sputum smear microscopy has traditionally been the primary method for diagnosing
TB. In this method, sputum samples from individuals whose presumptive TB symptoms
include a productive cough are thinly smeared, heat-fixed onto slides, and stained using
special laboratory techniques. The staining procedure depends on the unusual properties
of Mtb cells, particularly their very thick, lipid-rich cell wall, which takes up selective dyes
and then resists decolourisation with a dilute acid rinse. The result is that the dye becomes
concentrated in short, rod-like structures, approximately 0.2–0.5 × 1.0−7 µm in size, called
acid-fast bacilli (AFB) [12–14]. Not all AFB are Mtb cells, but, in the correct clinical context,
the detection of AFB in sputum is highly suggestive of pulmonary TB.

There are two main staining and microscopy approaches that are used to visualize AFB.
The traditional approach, called the Ziehl–Neelsen method, uses carbol fuschin to label
AFB red against a blue background. A conventional, brightfield light microscope at ×1000
magnification is used to examine the sputum. Newer fluoresence-based protocols use
auramine O to stain AFB bright yellow-green against a black background. A fluorescence
microscope (using, for example, a light-emitting diode or laser as a light source to excite
the auramine O) is required for this approach, but sputum can be examined at ×400 magni-
fication, and the overall procedure is faster [13]. Semi-quantitative grading methods have
been created to estimate the bacterial burden in a patient’s lungs from the concentration of
AFB seen in each microscopic field of view. The findings of sputum smear microscopy are
often described as ‘negative’, ‘scanty’, ‘1+’, ‘2+’, or ‘3+’, with each successive categorization
indicating a higher bacterial load [12].

Although sputum smear microscopy has long been the mainstay of pulmonary TB
diagnosis, recent advances in molecular microbiology have resulted in many centres across
the globe switching their attention away from smear microscopy and toward polymerase
chain reaction-based technologies (such as the Xpert MTB/RIF assay) for TB diagnosis in
recent years [15]. Molecular methods have several advantages: they are faster, less subjec-
tive, provide more precise bacterial identification, and also supply genetic information on
the likelihood of antibiotic resistance in the Mtb cells that they find [2,15].

It would be wrong, however, to suggest that smear microscopy is now redundant.
Even when heavily subsidized by donors, molecular diagnostics are expensive, and the
WHO has not endorsed the Xpert MTB/RIF assay for treatment monitoring because the
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test remains positive in some patients even when therapy is working well [2]. Sputum
smear microscopy, on the other hand, is lower-cost, and gradings can remain effective for
triaging baseline disease severity and prognosis, with possible implications for treatment
inividualisation. At present, smear microscopy remains the WHO’s recommended tool for
monitoring treatment response [2,15].

Mtb are slowly replicating bacteria, so smear microscopy provides data considerably
faster than waiting for organisms to grow in culture, which is the conventional gold stan-
dard for TB diagnosis in clinical microbiology practice [12]. When done well, microscopy
has a high specificity (99%) for detecting Mtb cells, and it has also become more sensitive
since switching from Ziehl–Neelsen to fluorescent auramine-based methods (from 0.34–0.94
to 0.52–0.97 according to one systematic review) [16,17]. The wide ranges of diagnostic
sensitivity described in that paper also reflect the technique’s complexity and subjectivity.
Some researchers also use microscopy to measure changes in the appearance (e.g., size,
shape, and lipid content) of individual Mtb cells during TB treatment in order to better
understand the changes seen in bacterial phenotype during therapy [18].

Disadvantages of Microscopy and Motivation for Computer-Based Automatic Detection

This paper has already touched on some of the obstacles to using microscopy effectively
for clinical patient management and microbiological research on Mtb. For microscopists,
maintaining a high level of skill necessitates a consistent commitment of time. To stay
proficient, WHO guidelines recommend that practitioners should study at least 25 slides
every day [2]. Examining a slide is complex: viewed down the microscope, each slide is
sub-divided into tiny fields of view (FOV), which must be examined one by one. Human
error, fatigue, and subjective decision making are certain to impair specificity and sensitivity
results. Some slides are difficult to interpret because some AFB have unusual appearances;
additionally, some non-bacterial components (artefacts) inside the sputum matrix resemble
Mtb cells and may be misidentified as such. Artificial intelligence techniques may present a
means to surmount some of these challenges. This paper aims to explore and answer the
following questions regarding tuberculosis artificial intelligence (TB–AI):

• What datasets of TB microscopy images are available online, and what microscopy
methods were used to generate them?

• What challenges to the development of AI image analysis methods are presented by
the level of variability in currently available TB microscopy image datasets?

• What metrics have been employed previously to assess the efficacy of AI techniques
in the analysis of TB microscopy images, and what are their respective advantages
and limitations?

• What specific machine learning (ML) and deep learning (DL) techniques have been
performed for TB microscopy image analysis, and what knowledge can be distilled
from their applications in approaches that did and did not work?

3. Datasets

In order to access and review relevant data on TB–AI, a detailed screening was un-
dertaken of several academic databases. Systematic searches were carried out in PubMed,
Scopus, and Web of Science using a combination of the following terms as keywords:
“tuberculosis” AND “microscopy” AND “automated (including automation OR pattern
recognition” OR “image processing” OR “artificial intelligence” OR “deep learning”). These
searches were completed on 29 January 2023. No restrictions were placed on the year of
publication. The scientific publications identified from these searches were screened by
title, abstract, and full text. Those that were written in English and described the automated
analysis of an original dataset of TB microscopy images were curated on a spreadsheet,
and duplicates were removed. The additional platforms Google Scholar, ResearchGate,
Academia.edu, and arXiv were searched in a similar manner to identify relevant content
within conference abstracts and grey literature documents, which are not well-represented
in indexed databases. Reference lists and bibliographies from all papers selected for inclu-
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sion were also screened to identify any additional datasets that may have been missed by
this search strategy. Figure 1 provides an overview of the aforementioned procedure.

Figure 1. A comprehensive outline of the methodology employed for collating all pertinent informa-
tion presented in this work.

Once all publications containing relevant datasets were identified for inclusion, the
metadata were mapped for each publication, including whether the database used for
analysis was currently openly accessible online (see Table 1). The supplementary metadata
included the geographical origin of the publication and the specific microscopy technique
employed. Furthermore, a record was made of any quantitative evaluation metrics that
were stated for each work, along with their corresponding values. This was carried out to
facilitate a succinct and cohesive comparison between methods, where applicable.

As described above, conventional brightfield and fluorescence microscopy are used
for Mtb bacterium visualisation; consequently, TB–AI research utilises datasets of images
derived from both of these methods. Although fluorescence microscopy increases sensi-
tivity, it can also lower specificity since fluorescence makes bacteria and other elements
in sputum more apparent; some of these other elements may be mistaken for Mtb cells as
a result. Fluorescence microscopy has only become widely available as a TB diagnostic
tools in many centres over the last decade and has higher operational costs than brightfield
microscopy. A combination of these factors may explain why, particularly in older studies,
image datasets are based on brightfield microscopy [19,20].
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To the best of our knowledge, there are currently five databases for Mtb sputum
smears that are accessible online. These databases are as follows in chronological order:
the CDC Public Health Image Library (PHIL) [21], Kaggle Tuberculosis Image Dataset [22],
TB_IMAGES_DB_BACILLI.V1 [23], the Ziehl–Neelsen sputum smear microscopy image
database (ZSNM-iDB) [24], and lastly, another database collected from brightfield mi-
croscopy sputum smears(TBDB) [25]. Only 5 (11%) studies used one of these datasets that
are currently available online, while the remainder of the work reviewed in this paper made
use of individually owned proprietary datasets. Of course, research based on proprietary
datasets is still very valuable, but the lack of shared access to the raw image data creates
challenges and reduces the transparency of comparative research between groups and
methods. Table 2 presents additional details pertaining to the aforementioned datasets.

Table 1. Datasets. Only 20% of all datasets in automated TB research were based on fluorescence-
stained sputum smears, suggesting that the vast majority of datasets used brightfield microscopy
and were proprietary. In addition, 88% of the fluorescence datasets were used in Europe, and only
two were used in the Americas and Asia.

Paper Year Microscopy
Type

Region of
Image

Generation

Region of
Method

Development

Purpose of
Research

AI
Method

Used

Dataset
Online

Veropoulos et al. [26] 1998 Fluorescence N/A Europe Diagnosis ML No

Forero-Vargas et al. [27] 2002 Brightfield N/A Europe Detection ML No

Forero et al. [28] 2003 Fluorescence Europe Europe Detection ML No

Forero et al. [29] 2004 Fluorescence Europe Europe Detection ML No

Forero et al. [30] 2006 Fluorescence Europe Europe Detection ML No

Sadaphal et al. [31] 2008 Brightfield America America Detection ML Yes [21]

Costa et al. [32] 2008 Brightfield America America Detection ML No

Makkapati et al. [20] 2009 Brightfield N/A Asia Detection ML No

Sotaquŕa et al. [33] 2009 Brightfield America America Quantification DL No

Khutalang et al. [34] 2010 Brightfield Africa Africa Detection ML No

Osman et al. [35] 2010 Brightfield Asia Asia Diagnosis ML No

Osman et al. [36] 2010 Brightfield Asia Asia Diagnosis ML No

Osman et al. [37] 2010 Brightfield Asia Asia Diagnosis ML No

Zhai et al. [38] 2010 Brightfield N/A Asia Detection ML No

Nayak et al. [39] 2010 Brightfield Asia Asia Quantification DL No

Chang et al. [40] 2012 Flueorescence Africa America Diagnosis ML No

Costa-Filho et al. [41] 2012 Brightfield America America Detection ML Yes [23]

Santiago-mozos et al. [42] 2014 Brightfield N/A Europe Diagnosis ML No

Ayas & Ekinci [43] 2014 Brightfield Asia Asia Detection ML No

Costa-Filho et al. [44] 2015 Brightfield America America Detection ML Yes [23]

Govindan et al. [45] 2015 Brightfield America Asia Detection ML Yes (partially) [21]

Gosh & Nasipuri [46] 2016 Brightfield Asia Asia Diagnosis ML No

Priya et al. [47] 2016 Brightfield Africa Asia Detection ML No

Soans et al. [48] 2016 Brightfield N/A Africa Quantification DL No

López et al. [49] 2017 Brightfield N/A America Detection DL No

Yan & Zhuang [50] 2018 Brightfield Asia Asia Detection ML Yes [23]

Kant & Srivastava [3] 2018 Brightfield N/A Asia Diagnosis DL No

Panicker et al. [51] 2018 Brightfield America Asia Detection DL Yes
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Table 1. Cont.

Paper Year Microscopy
Type

Region of
Image

Generation

Region of
Method

Development

Purpose of
Research

AI
Method

Used

Dataset
Online

Samuel & Kanna [52] 2018 Brightfield Asia Asia Detection DL Yes

Xiong et al. [53] 2018 Brightfield Asia Asia Diagnosis DL No

Mithra & Emmanuel [54] 2018 Brightfield Asia Asia Quantification DL Yes [24]

Díaz-Huerta et al. [55] 2019 Brightfield America America Detection ML No

Ahmed et al. [56] 2019 Brightfield N/A Asia Diagnosis DL No

Hu et al. [57] 2019 Brightfield Asia Asia Diagnosis DL No

El-Melegy et al. [19] 2019 Brightfield Asia Africa Detection DL No

Mithra & Emmanuel [54] 2019 Brightfield Asia Asia Diagnosis DL Yes [24]

Vente et al. [58] 2019 Fluorescence Africa Europe Quantification DL No

Yousefi et al. [59] 2020 Brightfield N/A America Detection ML No

Serrão et al. [60] 2020 Brightfield America America Detection DL No

Swetha et al. [61] 2020 Brightfield N/A Asia Diagnosis DL No

Zachariou et al. [62] 2022 Fluorescence Africa Europe Detection DL No

Zachariou et al. [63] 2022 Fluorescence Africa Europe Quantification DL No

Challenges with Dataset Standardisation

Irrespective of the dataset used, a consistent challenge when analysing TB microscopy
image is that the process of sputum smear preparation and image capture can be prob-
lematic to standardise. Even when carefully written standard operating procedures are
meticulously followed, expectorated sputum is variable in consistency and difficult to
homogenise. This affects the thickness of smears and consequently influences the degree of
background material and stain uptake on microscopy slides (see Figure 2). Once slides have
been prepared, the process of reading them comprises magnification (typically from ×400
to ×1000) and sequential examination of small FOVs. At this stage, when researchers are
preparing collections of FOVs for automated analysis, procedures vary. The most common
options are: (i) the manual inspection and creation of an image set by an expert [58,63],
(ii) auto-focus algorithms [3,29,38], or (iii) successive cropping of the whole slide followed
by a filtering stage to remove FOVs void of bacteria [62]. Individual fields of view, or sub-
sections of them, are often additionally cropped into even smaller images, wherein bacteria
are present. All of these methods ultimately utilise FOVs of arbitrary dimensions, i.e., there
are no pre-specified standards for the width and height of each image. Furthermore, each
image collection might differ in terms of spatial dot density, which alters the magnification
levels of a bacterium’s physical size. Additionally, researchers in different settings may
regularly have different hardware (e.g., digital cameras with different specifications).

This all has implications for downstream biological research based on image interpreta-
tion. For example, knowing and comparing the physical size of a bacterium under different
physiological or treatment conditions may be useful for research into the effectiveness of
TB therapy, but measurement of this is impossible if image dimensions and magnification
are not standardized and recorded at the time of image collection. Studies using online
accessible image sets illustrate this problem. Yan et al. [50] evaluated their approach to Mtb
cell detection from Ziehl–Neelsen-stained smears on their own proprietary dataset and the
online ZNSM-iDB dataset [24], with the latter yielding much lower accuracy because the
dimensions and resolutions vary considerably within the ZNSM-iDB images.
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Table 2. Details of currently accessible online sputum smear microscopy image datasets. The last column provides information about the manner in which the
database represents various classes, if mentioned. Most annotated databases commonly utilise bounding boxes as a method for annotation. However, the TBDB
database does not provide explicit documentation on how its labels are constructed.

Image Dataset Name URL Content of Dataset Image Annotation Label Type

CDC Public Health Image Library [21] phil.cdc.gov
(accessed on 22 August 2023)

Microscopy images within general
collection of TB-related images,
25 brightfield slides
15 fluorescence slides

None N/A

Kaggle Tuberculosis Image Dataset [22] kaggle.com/datasets/saife245/tuberculosis-
image-datasets (accessed on 22 August 2023)

1265 brightfield images Yes Bounding Boxes

TB_IMAGES_DB_BACILLI.V1 [23] Free access can be applied for at tbimages.ufam.
edu.br (accessed on 22 August 2023)

120 brighfield images Yes Bounding Boxes

ZNSM-iDB [24]
drive.google.com/drive/folders/
1HPcJzwKi76WwCFYj7dHUgVA31dAyFyTF
(accessed on 22 August 2023)

9 sets of brightfield images
(50–90 images per set)

Yes Bounding Boxes

TBDB [25] Freely available by contacting the authors 3102 brightfield images Yes Not specified

phil.cdc.gov
kaggle.com/datasets/saife245/tuberculosis-image-datasets
kaggle.com/datasets/saife245/tuberculosis-image-datasets
tbimages.ufam.edu.br
tbimages.ufam.edu.br
drive.google.com/drive/folders/1HPcJzwKi76WwCFYj7dHUgVA31dAyFyTF
drive.google.com/drive/folders/1HPcJzwKi76WwCFYj7dHUgVA31dAyFyTF


BioMedInformatics 2023, 3 731

(a) (b)
Figure 2. The background/bacteria contrast and magnification levels of two fluorescence images
prepared with Nile red staining are different between the two images. For (a), the magnification is
×1000, while for (b), it is ×800. White arrows indicate the presence of bacteria

ML and DL are data-driven, and the majority of methodologies employed suffer from
a lack of an appropriate volume of training data, which has a substantial impact on perfor-
mance. The fact that so few openly available TB smear microscopy datasets exist and the
absence of standardisation in the methods used to generate them may have contributed to a
situation where the majority of publications in the TB–AI field utilise their own dataset both
for training and the evaluation of their methods. This reduces the likelihood that the results
of one method can be easily replicated within other settings. Approaches that generate
promising results in one dataset may not do so on another. Therefore, consideration should
be given to whether it is possible to establish databases of microscopical images according
to agreed standardised protocols and parameters. Although this would be desirable, it may
be difficult to achieve because some of the causes of variability between datasets outlined
above are hard to eliminate.

4. Evaluation of Performance Metrics

In the development of any new method, the formulation of evaluation metrics that
reflect the industry standard is required so that the performance of a novel method can
be compared to the current state of the art. In most of the research on TB detection,
classification is used to assess a method’s ability to discriminate between FOVs that contain
Mtb bacteria and those that do not. Other works choose to employ a segmentation step prior
to classification, during which they locate Mtb bacteria. The primary distinction between
the two tasks is that the former involves making a diagnostic decision based on an FOV,
whereas the latter determines whether or not individual objects belong to the bacterial class.
Instead of making a binary decision on whether a certain FOV includes Mtb bacteria or not,
some methods also take a quantitative approach, using regression to count the number of
bacteria present in each FOV. We sought to compile a set of performance measurements
for each category of applicable techniques, including classification, segmentation, and
regression. These performance metrics convey empirical information when applied to a
model’s test set, but they are also sometimes applied to a model’s training data to draw
further inferences about the model’s behaviour.

4.1. Classification Metrics

The most commonly utilised evaluation metric for any method of making a binary
classification for a given medical diagnosis is its capacity to accurately differentiate between
positive and negative occurrences [64]. This is also true in TB detection/diagnosis research.
It is noteworthy that the terminology associated with the two aforementioned words
(diagnosis and detection) differs in context. Diagnosis refers to the ability of a given test or
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method to distinguish between samples from potential patients, indicating whether they
are positive for the disease (i.e., afflicted) or negative for the disease (i.e., not afflicted).
Detection refers to the capacity of a given method to precisely determine the location of
Mtb bacteria or any other type of bacteria, for that matter. Consequently, it is possible for an
automated diagnostic approach to yield an accurate outcome (positive or negative) for all
the erroneous rationales, wherein the verdict is not grounded on the detection of bacteria but
rather on other factors. Consequently, this method cannot be considered a tool for detection.
In addition to accuracy, which consists of correct vs. incorrect outcomes, it is important
to describe four groups of possible outcomes. The successfully categorised groups are the
accurately predicted true-positive (TP) and true-negative (TN) model outcomes, where, i.e.,
instances of the two classes are correctly classified. In contrast, instances of the negative
class that were incorrectly predicted as positive are known as false positives (FP). Similarly,
false negatives (FN) relate to positive class members who were incorrectly predicted as
negatives. The definition of accuracy is:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

However, accuracy is often insufficient for evaluating medical diagnostic models. Its
shortcomings are obvious when assessing models with imbalanced datasets, which is the
situation for the majority of medical artificial intelligence (AI) applications of data sampling
and the properties of the domain. It is possible that imbalances in the instances across the
classes are caused by the way they were collected or sampled from the problem domain.
Sensitivity (also known as recall) and specificity are also very significant metrics that are
frequently employed in TB diagnostics/detection research. Sensitivity is used to assess
model performance since it reveals the number of positive occurrences that the model
accurately predicted. A model with high sensitivity will have few false negatives, meaning
it will miss some positive examples. Sensitivity is defined as:

Sensitivity =
TP

TP + FN
(2)

Consider the case of a disease medical test. Specificity refers to a test’s capacity to
exclude individuals without a disease. The specificity of a test is the fraction of individuals
who test negative for the ailment who actually do not have it. This statement may also be
written as:

Speci f icity =
TN

TN + FP
(3)

Despite the fact that there are fewer studies that utilise DL than ML in TB, they have
been consistently scoring higher in sensitivity and specificity, as shown in Figure 3.

Precision measures the proportion of the positively predicted occurrences that were
accurately classified. Precision is defined as follows:

Precision =
TP

TP + FP
(4)

Precision is also known as the predictive positive rate (PPR), which is often accompa-
nied by receiver operating characteristics (ROC) and the area under the ROC curve (AUC).
When the context of the task focuses more on accurately identifying positive samples and
less on accurately identifying negative samples, it is important to provide an informa-
tive analysis using the PPR metric [49,52,62]. These measures assist in the analysis of the
trade-off between the true-positive rate (TPR), commonly referred to as sensitivity, and the
false-positive rate (FPR), also known as the complement of specificity, across the different
decision thresholds of a binary classification model. The FPR is defined as:

FPR =
FP

FP + TN
(5)
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(a)

(b)

Figure 3. Comparative analysis of the sensitivity (a) and specificity (b) attained by works utilising
ML and DL. Even though they are fewer in number, DL algorithms routinely score > 90 on both
sensitivity and specificity.

The AUC is a scalar value that represents the area under the ROC curve. It summarizes
the overall performance of the model across all classification thresholds. The AUC value
ranges from 0 to 1, where:

AUC = 0.5 : The model fails to exhibit superior performance when compared to random
guesses.

AUC > 0.5 : The model outperforms random guessing, with greater AUC values indicating
superior performance.

AUC = 1.0 : The model has perfect discriminatory power, achieving a true-positive rate
of 1 and a false-positive rate of 0.

The F-measure (or F1-score) enables the combination of precision and recall into a
single metric that encompasses both characteristics. Neither precision nor recall alone
provide a comprehensive explanation of a model’s performance. Indeed, a model may
reach perfect (or near-perfect) precision while its recall remains low, and vice versa. The
F-measure enables the merging of the two aforementioned metrics into one score. After
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calculating precision and recall, the two scores can be combined to determine the F-measure,
which is defined as:

F−measure =
(2 · Precision · Recall)

Precision + Recall
(6)

4.2. Regression Metrics

Some research concentrates on estimating the overall number of bacteria present
within a given FOV with the end objective of quantifying bacterial load as a contributor
to illness severity in patients. Multiple works have chosen regression analysis for the
aforementioned tasks, therefore forecasting a real number even when the actual count can
only be an integer [58,63]. This choice is prompted by the desire to preserve information
regarding the uncertainty involved in deducing the bacterial count. Typically, the mean
average error (MAE), mean squared error (MSE), and coefficient of determination (R2) are
employed. Taking the average of all observations, the MAE measures the absolute distance
between the observations (the images of the dataset) and the regression predictions. The
absolute value of these distances is used to correctly account for negative errors. MAE is
mathematically expressed as:

MAE =
1
n

n

∑
i=1

∣∣∣ytrue
i − ypred

i

∣∣∣ (7)

The mean absolute percentage error (MAPE) is a metric that is used to assess the
accuracy of predictions by calculating the absolute percentage error for each data point.
This error is determined by taking the absolute difference between the true value and
the predicted value, and then dividing it by the true value. Subsequently, the formula
computes the mean absolute percentage errors for each individual data point, followed
by the multiplication of this average by a factor of 100 in order to represent the error in
a percentage format. The MAPE is an essential metric for assessing the performance of
prediction models, particularly in situations where datasets are challenging to normalise
and have a broad spectrum of numerical values. Moreover, the MAPE demonstrates
robustness in instances where there are outliers or extreme values within the dataset. This
is due to its emphasis on the relative errors rather than the absolute magnitude of errors.
This particular attribute renders it a valuable measure for practical contexts in which
deviations are prevalent and the precise prediction of such exceptional values is of utmost
importance. The MAPE is defined as:

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣ytrue
i − ypred

i
ytrue

i

∣∣∣∣∣× 100 (8)

In contrast, the distance may be squared to provide differentiability in all instances of
outcomes; this process makes it easier to perform mathematical operations in comparison
to a non-differentiable function, such as the MAE. One of the major drawbacks of the MAE
is that it cannot be differentiated at zero. Numerous optimization techniques often employ
differentiation to obtain the optimal parameter values for the evaluation metric. It may
be difficult to calculate gradients in the MAE. Absolute distances are removed and each
distance is squared to define the MSE:

MSE =
1
n

n

∑
i=1

(
ytrue

i − ypred
i

)2
(9)

The key difference between the MSE and MAE is how each penalises errors caused
by comparing the predicted data to the ground-truth data. Since the MSE is a squared
error, it penalises large errors more heavily than absolute error since the errors are squared
rather than just calculated as a difference. Therefore, the MAE is not sensitive to the outliers
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within a given dataset. Consequently, the robustness of each metric and when it should be
used is contingent on the nature of the task being evaluated.

The root-mean-squared error (RMSE) is derived from the MSE in a manner analogous
to the relationship between the MAE and MAPE. The inclusion of the square root operation
in the calculation of the RMSE guarantees that the resulting value is expressed in the same
units as the original data. This characteristic enhances the interpretability of the RMSE and
facilitates its comparison to the scale of the target variable. The RMSE is mathematically
expressed as:

RMSE =

√
1
n

n

∑
i=1

(ytrue
i − ypred

i )2 (10)

Lastly, represents the fraction of the variance in the dependent variable that the linear
regression model explains. It is a scale-free score; therefore, whether the numbers are small
or large, R2 will always be less than one. Therefore, it indicates the predictor variables’
ability to explain the variation in the response variable. It can be expressed as:

R2 = 1− ∑(yi − ŷ)2

∑(yi − ȳ)2 (11)

It is used to describe the extent to which the independent variables in a linear re-
gression model explain the variability of the dependent variable. The value of R2 always
increases as independent variables are added, which may lead to the inclusion of redundant
variables in the regression model.

4.3. Segmentation Metrics

Similar to the context of classification, pixel-wise accuracy is a popular criterion in
segmentation; however, in this context of image-to-image pixel similarity overlap, it is less
relevant and helpful. As the bulk of a microscopy slide or FOV is the background, it is
evident that a model may achieve high accuracy without identifying any Mtb bacilli. In
actuality, the model is learning to recognise background data rather than objects of interest
(bacteria). A more suitable metric is to quantify the overlap of pixel similarity between the
predicted segmented images and the ground-truth segmented images. A frequent metric
for this specific task is the Sorensen–Dice (SD) coefficient (also known as F1-score), which
is defined as follows:

SD =
2 · |S1 ∩ S2|
|S1 + S2|

(12)

where S1 is the number of elements in set 1, i.e., the pixel values in an image. Likewise, S2
holds the numbers of elements in set 2. Another common metric that is similar to SD is the
Jaccard index (also known as the intersection over union (IoU)). As in the concept of (SD),
this method computes the degree of pixel similarity overlap between two images, specifi-
cally between predicted images and corresponding ground-truth images. The definition of
the Jaccard index between two sets is:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

(13)

Thus, similar to the SD, the greater the number reached (which can range from 0 to
1), the better. While the two metrics have some similarities, they are different and serve
different purposes in image segmentation tasks. Given a value for the SD coefficient S, it is
possible to determine the corresponding Jaccard index value J, and vice versa. In general,
the Jaccard metric tends to punish single occurrences of incorrect classification more than
the SD, even when both metrics agree that a single case is incorrect. The Jaccard index
quantifies the degree of similarity between two images by computing the ratio of the size
of their intersection to the size of their union. Conversely, the SD coefficient quantifies
the proportion of the shared elements (pixel values) between two sets in relation to the
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combined total of the elements in both sets. To summarise, the concepts of intersection
size and intersection area are interrelated and utilised to quantify distinct aspects of the
overlap of regions of interest (ROIs) within an image. The size of the intersection denotes
the quantity of shared elements between ROIs given two images, whereas the area of the
intersection represents the spatial coverage of that overlap. Therefore, the SD tends to
evaluate performance closer to the average, while the Jaccard score measures performance
closer to the worst-case scenario. However, from the perspective of averaging these scores
across a large number of inferences, both suffer from an additional disadvantage: they
both overemphasise the significance of sets with few or no actual ground-truth positive
sets. In a typical example of image segmentation, if an image contains just a single pixel
of a detectable class and the classifier recognises that pixel and one other pixel, the SD
is 2/3, and the Jaccard index is much worse, at 1/2. Such errors may significantly affect
the average score for a series of images. In conclusion, each pixel inaccuracy is weighted
inversely proportionately to the size of the ROIs between two images as opposed to being
treated equally.

The evaluation of the proximity of a structure’s perimeter is an alternative method.
Given model-predicted images with highlighted objects of interest and their matching
ground-truth images, the closer the distance between these structures, the more similar
they are. The Hausdorff distance quantifies the distance between two subsets of a metric
space, thus transforming a set of non-empty compact subsets of a metric space into its own
metric space. The Hausdorff distance between two point sets, S1 and S2, is defined as:

H(S1, S2) = max(h(S1, S2), h(S2, S1)) (14)

where h(S1, S2) is defined as:

h(S1, S2) = max
s1∈S1

min
s2∈S2
‖s1 − s2‖ (15)

and is the directed Hausdorff distance between S1 to S2. The metric requires some un-
derlying norm to be defined (‖·‖); the L2 (or Euclidean distance) is typically employed
as the norm. In certain instances, the traditional Hausdorff distance may result in unfair
performance assessments due to the fact that it penalises single outliers. Additionally,
there are some studies that have used the Hausdorff distance as a bidirectional metric
for image comparison and evaluation, including in the context of the modified William
index (MWI) [65]. The MWI is a similarity index that combines the Hausdorff distance
and the mean absolute distance between two sets of points or regions in an image. In fact,
the authors used the Hausdorff distance in their work to determine the distance between
each predicted structure and the actual structure in a given set of images [66]. Table 3
provides insight into what evaluation metrics are used by works that include an evaluated
segmentation stage.

Table 3. Table displaying several assessment measures used by each publication. Each metric is
separated by commas inside the metric column, and its associated quantity is listed in the value
column. To be included in this table, publications must (i) conduct a segmentation step and (ii) give
an assessment measure with an official value.

Paper Hausdorff Distance Jaccard Index SD

Khutlang et al. [66] 0.96 N/A N/A

Soans et al. [48] 0.06 N/A 87%

Diaz-Huerta et al. [55] N/A 96% N/A

Mithra & Sam Emmanuel [54] N/A 95% N/A

Zachariou et al. [63] N/A 94% 89%
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5. Research Utilising ML

In this section, we will provide a synopsis of all the research that has been conducted
employing ML algorithms in conjunction with computer vision techniques. Anything
that does not adhere to the convention of deep convolutional neural networks (DCNN) is
regarded as traditional ML; it is therefore included in this section. Table 4 shows a summary
of the most common evaluation metrics used by all papers included in this section.

Table 4. This table summarises the outcomes of the most frequently employed evaluation metrics,
namely accuracy, sensitivity, and specificity. There is considerable variation between the evaluation
metrics used between different studies, emphasising that there is no accepted gold standard and
illustrating the difficulty of comparing research carried out in different settings.

Paper Accuracy Sensitivity/Recall Specificity

Veropoulos et al. [26] 97.90% 94.10% 99.10%

Forero-Vargas et al. [27] N/A N/A 91.00%

Forero et al. [28] N/A 93.30% 91.68%

Forero et al. [29] N/A 86.66% 99.74%

Forero et al. [30] N/A 94.67% 98.10%

Sadaphal et al. [31] N/A N/A N/A

Costa et al. [32] N/A 76.65% 88.65%

Makkapati et al. [20] N/A N/A N/A

Khutalang et al. [66] 86.85% 99.95% 77.62%

Osman et al. [36] 86.32% N/A N/A

Osman et al. [35] 98.07% 100.00% 96.19%

Osman et al. [37] N/A N/A N/A

Zhai et al. [38] N/A 100.00% 94.00%

Chang et al. [40] N/A 92.30% 88.00%

Santiago-Mozos et al. [42] N/A 73.53% 99.99%

Ayas et al. [43] N/A 75.77% 96.97%

Costa-Filho et al. [16] 91.45% 93.41% 89.50%

Costa-Filho et al. [44] 93.25% 93.75% 88.46%

Govindan et al. [45] N/A 72.89% N/A

Gosh et al. [46] N/A 93.90% 88.20%

Priya et al. [47] 91.30% 91.59% 88.46%

Aymas et al. [67] 70.52% N/A N/A

Yan et al. [50] N/A 97.46% 93.99%

Diaz-Huerta et al. [55] 98.66% N/A N/A

5.1. Image Gradient-Based Approaches

The principle underpinning the image gradient-based approach is to employ an edge
or ridge detector to extract gradient intensities in the spatial domain of an image or a
colour space threshold by determining bacteria pixel values beforehand. The latter method
uses graphical displays of data, such as histograms, to analyse pixel hue bands in order
to establish what colour range bacteria are more usually found in. This is often the initial
stage of the procedure since the eventual aim is to convert images into binary masks, fully
erasing the background and with likely microorganisms as white contours. In the next
stage, a shape descriptor is employed to extract the characteristics of the shape of the bacilli.
The approach thereafter differs, with some research opting to utilise a classifier, while other
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studies attempted to manually deduce the difficult requirements with the use of heuristic
information on bacterial shape.

Veropoulos et al. work [26] was possibly the first published paper towards automatic
TB diagnosis. He devised a five-step methodology, combining computer vision techniques
with a simple neural network as a classifier. First, a Canny edge detector was employed
to detect object boundaries and save image processing time. Pixel linking was used to
fix damaged structures caused by noise, and then the resulting image was translated
from its spatial domain to its frequency domain using discrete Fourier transform (DFT).
Following the calculation of Fourier coefficients to serve as form descriptors for bacteria,
these coefficients were input into four kinds of classifiers: K-nearest neighbours, a neural
network, a Kernel–Adatron algorithm [68], and a support vector machine (SVM). The
best performance measure recorded by the authors was 97.9% accuracy. Even though
this work considered bacteria in their simplest form (i.e., a singular elongated structure),
its most significant contribution is that it indicates the feasibility of TB detection using
computer-aided image analysis. In fact, another study published more than a decade later
used the Canny edge detector as its primary approach for identifying bacteria [42]. In
addition, an extra pre-processing step with an adjustable colour threshold was established
for the green colour component of the image. Then, two successive SVM classifiers were
used, the first of which discarded incorrectly identified objects from the previous stage and
the second of which classified these objects based on their pixel value. The former classifier
employed a collection of rotation and translation invariant characteristics of each candidate
object as input.

Forero et al. [28] used a similar method, which included a segmentation phase com-
prised of a Canny edge detector, morphological operators, and the classification of the
resulting image. Different bacilli characterisation and the use of just clustering approaches
for the classification part are two major variations. Forero et al. [29] published yet an-
other work using a similar concept, with the significant distinction being that autofocus
algorithms were utilised for the magnification levels and construction of FOVs. Despite
comparable or somewhat worse results than the two preceding attempts [26,28], this was
the first study to implement automated FOV generation. Next, Forero et al. [30] released a
further work that categorised colour thresholding and form descriptors using clustering
algorithms. However, they used Gaussian mixture models this time since they were able
to create a distribution of class features. Therefore, an instance of the bacterium class is
represented in the feature space as a mixture of Gaussians. Although the results were com-
parable with their previous results, the dataset was produced manually using a fluorescence
microscope.

In addition, a further study using colour thresholds in the segmentation stage was pub-
lished, in which the authors were able to isolate bacteria from an image’s background [32].
They subtracted the red and green channels from an RGB image and determined a threshold
value that distinguished objects of interest from the background. The absence of a classifi-
cation step prompted the authors to develop a heuristic filtering stage. Another method
used colour thresholding as their principal technique in bacterium segmentation [20]. Their
proposed approach was to select the hue range x◦–360◦, where x is an adaptable number
dependent on the input image. Similarly, no classification technique was used, only a
filtering stage utilising heuristic knowledge of bacterium morphology characterisation.
The authors reported no evaluation metrics. In both works, it is evident that the absence
of an automated classifier had a harmful impact on the results in comparison to earlier
works [26,28–30]. Two approaches for segmenting TB images using chromatic information
are shown in a third work that does not include a classifier [27]. The first technique is
based on the information contained in each distinct chromatic histogram and the fuzzy
segmentation of colour images. The second technique is a straightforward colour filtering
comparison of the inverse of the yellow-stained bacteria (blue channel) with the product of
the other two chromatic channels.
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Osman and his colleagues published similar works [35,37]. In their first paper, the
authors designed a colour-filtering stage utilising the hue range in conjunction with lumi-
nance and adaptive parameters [36]. This work was conducted only for the purpose of
segmentation and used the k-means clustering technique for testing. Although no evalu-
ation metrics were provided by the authors, the findings indicate that some background
still surrounds the bacteria in the images. Using their segmentation technique to expand
on their work from the prior paper, where I = 2 [36], the resulting segmented image was
clustered into background and non-background regions [35]. After calculating the moments
of the second and third order, a set of seven Hu invariant moments was generated. The
generated features were then fed into a genetic algorithm neural network (GA-NN) for
classification. The authors did not report specificity or sensitivity, just 88.54% accuracy
in correctly classifying bacteria. In their third article, they used the same segmentation
method as in the first, but this time, they employed the geometrical characteristics of
Zernike moments [37]. Additionally, a hybrid multi-layered perceptron (HMLP) was used
for their final classification stage, which is similar to today’s popular Resnet [69] in that
it skips connections and adds an identity to the layer activation function. Another work
employed colour space transformations in two independent colour spaces, HSV and CIEL *
a * b * c, isolating the H and L components from each. An adaptive threshold was used on
both of these derived components to distinguish the bacteria from the background.

Remaining within the scope of colour space transformation, the initial approach
taken was to create a scalar selection from the following colour spaces: RGB, HSI, YCbCr,
and Lab [16]. The components and removal of the components of these colour spaces
were employed for pixel classification in the segmentation step. In the second step, a
feedforward neural network pixel classifier with selected features as inputs was used
to separate bacilli pixels from the background. In the third stage, geometric properties,
particularly eccentricity, and a newly proposed colour-based property, colour ratio, were
employed for noise filtering. Using their technique from the first step, the authors released a
second paper with the addition of three filters that used RGB space components: rule-based,
geometric, and size filters [44]. This combination was then utilised as an input for an SVM
and NN. In this work, the authors improved their sensitivity results from 91.5% to 96.80%.
Yan et al. retrieved channel a from the Lab space and then extracted the edges (bacterial
structures) using a gradient threshold [50]. In addition, the aspect ratio, circularity, and
area were employed to eliminate incorrectly detected structures.

Using just the RGB space, the authors defined conditions on each different component
of the space that best met the criteria for distinguishing bacteria from the background in a
binary image [46]. To eliminate false contours, i.e., predicted regions of interest that were
not bacteria, the shape, colour, and granularity features of the predicted contours were
computed. Consequently, they used a fuzzy classifier in conjunction with the previously
calculated characteristics to determine if a particular contour belonged to the class of
bacteria or not. Priya et al. employed an active contour technique for their segmentation,
which may be described as the application of energy forces and restrictions to separate the
pixels of interest for further processing and analysis from the image [47]. After the image
was segmented, the border shape of the areas of interest was characterised by 15 Fourier
descriptors (FDs), with the most prominent being chosen using fuzzy entropy measures.
These particular FDs of the TB objects were input to the SVM learning algorithm of an MLP
neural network.

Yousefi et al. [59] suggested a novel statistical model of the form and colour of TB
bacilli in Ziehl–Neelsen-stained light microscope images in order to detect the bacilli in
these images. These basic statistical models were used as a universal library for rebuilding
any bacillus with different background colours and may overcome the challenges associated
with geometric feature extraction techniques. Based on the eigenvalues of the shape and
colour models, the authors classified the individual bacilli and overlapping bacilli in the rest
of the picture using several approaches. The k-NN classifier performed the best among the
evaluated classifiers, with an average accuracy of 82.7% for single-bacilli and overlapping
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bacilli recognition. In addition, the accuracy of their method for recognising bacteria
and overlapping bacteria from artefacts and background was 99.1%. However, based on
their imbalanced dataset and results, it seems that their algorithm was trained to classify
background rather than bacteria.

5.2. Stochastic-Based Approaches

This section focuses on publications that aimed to develop probabilistic inferences over
a given distribution using some type of stochastic-based methodology. In the literature,
both unsupervised (such as k-means) and supervised (such as Bayesian classifier) methods
have been used. Govindan et al. provided an example of unsupervised learning-based
segmentation in which they utilised k-means clustering in conjunction with decorrelation
stretching to identify areas of interest [45]. Consequently, dilating and eroding morpho-
logical operators were required to close any broken edges in the final segmented image.
Fourier descriptors, eccentricity, and compactness were the feature types utilised for con-
tour information extraction. Finally, the candidate contours were classified using an SVM
model. Alternatively, a random forest approach, which is a supervised learning method to
classify each pixel as a possible bacilli area based on local colour distributions, could be
employed [43]. Each pixel was thus labelled as either a prospective TB bacilli pixel or not.
Then, each pixel group was rotated, scaled, and centred inside a bounding box before being
classified using the described RF learning algorithm trained on manually designated TB
bacterium patches in the training images.

Sadaphal et al. serves as a prime example, as it employed Bayesian segmentation
based on the a priori knowledge of bacterial colour [31]. In addition, after the application
of morphological operations, a set of shape criteria evaluated whether predicted objects
of interest belonged to the bacteria class, were probable bacteria, or were not bacteria.
These criteria included the ratio of axis length, eccentricity, and area. A similar method
was described in which two Bayesian pixel classifiers were used to partition brightfield
microscopy images into background and bacteria [66]. The extraction of geometrically
transformed invariant features and the optimization of the feature set by feature subset
selection and Fisher transformation were performed on the resulting binary images. The
authors compared the outcomes of two object classifiers, NNs and SVMs, using a subset
of the collected features. The accuracy, sensitivity, and specificity were all reported to
be more than 95%. In the same year, they published a second work with a similar two-
step approach, but this time, the segmentation was accomplished using a mixture of
Gaussian classifiers [34]. As seen by their findings, this method worked best for both stages
(segmentation and classification). In this work, the overall sensitivity was increased by
over 2%, while both accuracy and specificity were reduced by more than 4%.

Gaussian-based techniques can also be seen in the literature. The authors of one paper
in this realm used a white top hat transform and template matching with a Gaussian kernel
to binarize images into a black background and white regions of interest. As is usually done,
diluting and eroding morphological operators were utilised to close fractured contours. The
binarized image was then used for feature extraction using Hu’s moments, geometric and
photometric features, and histograms of oriented gradients (HOG). Finally, these features
were used to classify whether each candidate contour belonged to the bacterium class
using an SVM. Another paper using a Bayesian classifier based on a Gaussian mixture
model was published [55]. Despite not being promoted as a diagnosis, the authors’ work
consisted of segmentation, correctly distinguishing bacteria from the background. The
last stochastic paper released included adaptive signal-processing approaches, such as the
least mean squares and reduced rank with eigendecomposition algorithms, both of which
contain learning parameters for optimization during training [67]. Similar to Diaz-Huerta’s
work, there was no classification per se since this was a study focused on segmentation only.
Although the authors reported competitive results, a total of 650 images were captured,
but only 80 were utilised owing to noise, focus, and stain difficulties. However, one may
argue that the reasons they reduced their dataset are the same as those that inspired the
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automated detection of tuberculosis and the difficulties of manually examining TB smear
slides. In Section 2, we have already outlined that reading sputum smear microscopy sides
is prone to subjective evaluation due to the variability in staining and image generation
methods. Therefore, using only high-quality, noise-free images for TB–AI assessment may
introduce selection bias to the research and limit comparison with other real-world works
that have used a more representative range of images [3,28,30,39,58,63].

6. Research Utilising DL

In this section, all publications whose primary focus was DL, which often includes
the use of convolutional neural networks (CNNs) or deep convolutional neural networks
(DCNNs), are presented. Using CNNs for feature extraction and/or classification places
the task into the gradient-based domain. To deduce the behaviour of a local image in
response to sudden shifts in pixel values, individual kernels or receptive units perform
sequential locus convolutions on the image. Typically, the detection of Mtb bacteria or TB
diagnosis is approached in two ways in the literature. The first typically involves a two-fold
approach that utilises an image processing technique, such as Canny edge detection, to
pre-process the image. This may include operations such as the binarisation of the image,
the contour extraction of objects, or noise removal, as we have seen before in Section 5.1.
Rather than utilising generic DCNN models, the alternative approach involves design-
ing a DCNN architecture that is customised to suit the particular task being addressed.
The two aforementioned approaches are not inherently mutually exclusive, as proposed
methods frequently incorporate a combination of both approaches. Table 5 presents a sum-
mary of the predominant evaluation metrics employed by previous methods discussed in
this section.

Table 5. Table summarises most common evaluation metrics for DL paper results. In general, works
applying DL methods are more recent than those employing ML techniques. As may be deduced, the
usage of evaluation metrics has become more standardised in recent years.

Paper Accuracy Sensitivity/Recall Specificity

Lopez et al. [49] N/A N/A N/A

Kant et al. [3] 99.80% 83.78% N/A

Panicker et al. [51] N/A 97.13% N/A

Samuel et al. [52] 95.05% N/A N/A

Xiong et al. [53] N/A 97.94% 83.65%

Ahmed et al. [56] 96.07% N/A N/A

Hu et al. [57] 98.40% 98.00% 98.4%

El-Melegy et al. [19] N/A 98.4% N/A

Mithra et al. [70] 97.55% 97.86% 98.23%

Serao et al. [60] 99.67% 99.98% 99.34%

Zachariou et al. [62] N/A 89.02% 100%

6.1. Custom-Made CNN Architectures

Lopez et al. provided a technique for the automated classification of brightfield smear
microscopy patches employing RGB, R-G, and greyscale patch versions as inputs to a
CNN [49]. A disadvantage of this method is the lack of a detection stage, since the
input consisted of small patches containing bacteria (or not). The majority of techniques
incorporated a detection phase that enabled the localisation of bacteria, thereby automating
a significant portion of an otherwise laborious manual process. This technique does not
completely automate the nature of the aforementioned process. Another method involving
the training of manually clipped patches using whole slide images (WSI) was published [53].
The training was carried out with a pretrained CNN on the CIFAR-10 dataset, with the
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input size set at 32× 32 pixels. To improve the results, Boostrap training was implemented.
Although the authors did not include any further architectural information, the results
were promising, with 97.94% sensitivity and 83.65% specificity.

Another method that used manually cut positive (bacteria containing) and negative
patches (void of bacteria) was described by Serrao et al. [60]. Each patch binarisation
involved the segregation of background and foreground regions, where the latter corre-
sponded to Mtb bacteria. Finally, the authors combined 100 of these patches into a 400× 400
pixel mosaic image. These mosaic images were inputs for the three CNNs proposed by
the authors. All of the methods listed in this section so far have a key restriction in that
they are not fully automated, as they focus on manually cropped, two-digit-sized patches.
Zachariou et al., on the other hand, proposed a method to automatically and sequentially
slide over the slide to crop FOVs, excluding negative FOVs while keeping all positive
ones [62]. They proposed two distinct encoders, one of which was trained to differentiate
between bacteria by inferring pixel intensity, while the other was trained to do so by deduc-
ing bacterial shape. This approach effectively generated feature maps based on these two
criteria. The first feature extraction process involved utilising a greyscale FOV as input. In
contrast, the subsequent feature extraction process involved utilising a binarised FOV as
input. This was due to the fact that the pixel intensity was no longer relevant in the latter
case, as the FOV was now comprised solely of black (background) and white (foreground)
elements. Finally, the feature maps of the two encoders were concatenated and input to a
third CNN, whose linear layer produces a positive or negative classification result given
a FOV.

6.2. Automatic Creation of FOVs

Kant and Srivastava also used a patchwise classifier that categorised whether a par-
ticular patch included bacteria or not [3]. In this instance, though, an autofocus method
was utilised to construct 20× 20 pixel patches from the full slide. The CNN used to classify
these patches was composed of five convolutional layers and no linear layers. Similarly,
Samuel and Kanna presented another paper describing an automated technique for acquir-
ing FOVs from microscope slides [52]. Then, these FOVs were utilised to train a customised
InceptionV3 model with transfer learning to derive bacteria inference feature maps. Finally,
these feature maps were employed as training data for an SVM to determine whether or not
a specific image FOV included bacteria. Next, a method providing a classification approach
for complete slides was presented [57]. Taking into account the settings of high-resolution
slide (which are usually gigabytes in size), the authors developed a dataset creation tech-
nique based on non-overlapping subgraph partition. ResNet [71], InceptionV3 [72], and
DenseNet [73] were utilised with transfer learning to assess their method. InceptionV3
fared the best, with a WHO error rate of less than 5% when reading a slide for diagnosis.
However, when more than one bacillus was present, the subgraph partitioning method
sometimes resulted in an incorrect count of bacteria, which could cause difficulties when
estimating bacterial load.

6.3. Gradient-Based Approaches

In this section, we examine publications that applied a multi-step process in which, in
the first transitional stage, the input images were segmented using a gradient-based CV
algorithm. Panicker et al., for instance, utilised the fast nonlocal means method to denoise
their images, followed by Otsu’s threshold to binarize the images into background and
foreground [51]. The authors then fed these images into a CNN with five layers and one
linear layer for pixel classification. Although their methodology surpassed similar earlier
efforts, it was incapable of classifying bacteria with non-standard Mtb shapes, i.e., anything
other than elongated rods. In another work [70], the channel area thresholding (CAT)
technique was proposed for bacterial image segmentation. The intensity-based local bacilli
characteristics were derived utilising a location-oriented histogram and sped-up robust
feature (SURF) algorithm extraction. Deep belief neural networks were used to classify the
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bacilli items precisely following segmentation. In another similar paper, brightfield sputum
images were preprocessed by employing noise reduction and intensity modulation [61].
Their segmentation method solely used CAT in addition to the features, such as the HOG
and the SURF, that were extracted. Classification was conducted using a CNN classifier,
which classified the bacillus as mild, moderate, or severe depending on the number of pixels
classified as belonging to the bacteria class. Although the authors indicated significant
sensitivity and specificity, they provided no more information on the architecture of the
employed model.

6.4. Employing Existing Models for Mtb Feature Extraction

For this section, we examine papers that employed existing architecture models as the
foundation of their methodology, with or without transfer learning. For instance, Ahmed
et al. proposed a method in which they categorised numerous bacteria associated with
a variety of diseases [56]. To do this, they used InceptionV3 with transfer learning and
discarded all fully connected layers, thereby functioning as a feature encoder. Later, the
collected features from InceptionV3 were flattened and fed into an SVM classifier. Following
this, El-Melgey et al. presented a work in which they utilised a faster region-based CNN
(RCNN) to swiftly localise bacteria using ground-truth bounding boxes [19]. However, due
to the high likelihood of false positives, the authors introduced a second step to determine
whether the projected bounded boxes actually belonged to the bacterium class. The authors
presented comparative evaluation results for their methodology; however, it is worth
noting that the bounding boxes utilised in this approach were limited in size and could
only accommodate a single bacterium. This represented a notable limitation of the method,
as bacterial cells frequently became clogged and overlapped with one another.

7. Research on Mtb Bacteria Quantification

As described in Section 4.2, some TB–AI work has been conducted with the aim
of not only detecting the presence or absence of Mtb but quantifying the bacterial load
within microscopy images. For clinicians, the quantification of the sputum bacterial load
in patients with pulmonary TB can help assess disease severity and the likelihood of
treatment success [74]. Monitoring changes in bacterial load over time can also help to
track treatment success, so there are several potential advantages of this approach. Similar
to the preceding sections, some researchers have chosen to utilise a multi-stage approach to
quantify bacteria, while others manually segmented and counted the bacteria present. The
previously mentioned setting provides a proficient illustration of the approach employed by
Sotaquirá et al., whereby sputum smear images were converted into YCbCr and Lab colour
spaces and subsequently evaluated for their relative differences [33]. The quantification of
bacterial population was ascertained through the computation of the mean size of bacilli,
taking into account the image resolution and the pixel count of the segmented image. Aside
from their qualitative and visual results, the authors provided no evaluation metrics for
any stage. Moreover, the heuristic information at the core of their method was dependent
on image dimensions and, as explained in Section 3, it is not prudent to assume that all
datasets will include images with the same dimensions. Finally, the limitations of this
study are evident, as the manual enumeration of bacteria undermines the objective of
streamlining the TB diagnosis and detection process.

Subsequently, Nayak et al. proposed a technique that employed colour segmentation
and colour space transformation [39]. They described their approach as a five-step process.
These stages are as follows: (i) colour-based segmentation, (ii) connected component
labelling, (iii) size thresholding on the resulting contours, and (iv) proximity grouping,
followed by (v) size constraints. The contours produced by the aforementioned process
were utilised to determine how many bacteria were present. Keeping with this section’s
aim in mind, the image was segmented, and detected objects of interest were manually
counted using the HSI colour model [48]. Given this image alteration, a knowledge
database was constructed and passed to a decision tree classifier in order to determine
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which HSI component values corresponded to the bacterium class. Lastly, similar to the
previous research, proximity groupings and size constraints were used to eliminate false
negatives, instances in which the background was incorrectly identified as belonging to the
bacterium class. By thresholding the hue range, a hue-colour-component-based approach
was utilised to segment bacilli, and morphological characterisation was employed to
determine whether or not the bacilli were valid [75]. By thresholding the area, perimeter,
and contour characterizations, other artefacts were eliminated. Using the area, perimeter,
and shape characteristics, clumps of bacilli were detected. Counting occurred following
the segmentation of bacilli and bacilli clusters.

The proposed method was comprised of three steps: segmentation, feature extraction,
and classification [54]. The input sputum smear microscopy image was first subjected to a
colour space transformation, followed by thresholding to generate a segmented image. The
image’s length, density, area, and histogram characteristics were collected for FHDT-based
classification, which classified contours as low bacilli, non-bacilli, and overlapping bacilli.
A function (in this case, a decision tree) of entropy, referred to as a Hyco-entropy-based
decision tree (HEDT), was created for optimum feature selection. The HEDT algorithm’s
key contribution lies in its ability to simultaneously manage both continuous and discrete
variables during the decision tree construction process. Conventional decision trees are
predicated on the principle of information gain, which is efficacious for categorical variables,
but its applicability to continuous variables may be unreliable. The HEDT approach
overcomes this constraint by integrating entropy-based techniques to manage continuous
variables. In addition, a fuzzy classifier was used for a classification analysis in order to
determine the number of overlapping bacilli. Perhaps the most significant addition of
this study is that it was the first to propose an automated method for bacilli counting, as
opposed to previous research that accomplished this manually.

In one of the most recent publications on this subject, Vente et al. suggested a somewhat
complex approach for the localisation of bacteria, utilising edge detection, Fourier analysis,
and morphological operators and then calculating the bacterial count in areas of interest
using simple regression [58]. The authors reported a 6.5% error on the test set. A second
recent publication employed a multi-stage pipeline to provide a bacterial count from
an image collection [63]. The pipeline was comprised of four stages: annotation using
cycle-consistent generative adversarial networks (Cycle-GANs), the extraction of salient
image patches, the classification of the extracted patches, and regression to obtain the final
bacteria count. At every stage of the pipeline, work was performed using some kind of
CNN architecture. The authors reported an error rate of less than 5% when determining
the number of bacteria.

8. Discussion

We described progress in approaches to TB–AI using conventional ML methods in
Section 5, DL methods in Section 6, and techniques for bacterial counting and quantification
in Section 7. Furthermore, we also illustrated challenges to conducting successful research
in this field. Even meticulous slide preparation for smear microscopy can generate images
of variable quality with unpredictable artefacts and background staining in the sputum
matrix. TB–AI works that selected only high-quality images for analysis sometimes reported
significant performance results, which could not be replicated in a real-world setting.
The decision-making process involved in reading stained sputum smears is inherently
subjective. If two experienced microscopists were asked to carefully apply manual labels to
Mtb cells in a series of smears, there would almost certainly be some differences in their
labelling. When the same images are read by a computer-assisted system, these challenges
will remain, and any method of image analysis will always be limited by the standardised
quality of the input data. TB–AI analysis will, at least, apply the same uniform approach to
the reading of ‘difficult’ slides.
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The development of clear guidelines for the creation of image datasets to be used for
TB–AI work would be beneficial. Although it may be extremely difficult for laboratories
around the world to settle on completely unified approaches using identical equipment,
closer agreement on the essential characteristics of datasets for AI work would remove
some of the current variability. Ideally, open-source, standardised, and annotated template
datasets could be developed across research centres, which would save time and resources
when developing new methods. The involvement of the WHO or other international
bodies may help to coordinate this effort. ‘Training’ and ‘test’ combinations of standardised
and individually created ‘proprietary’ image collections could also be used to study the
robustness of new tools, bearing in mind prior experience that methods do not always
translate well between datasets [50]. The establishment of a standardised dataset and
evaluation metrics would enable researchers to evaluate the effectiveness of their methods
across multiple image sets. This would reduce the necessity of adjusting model parameters
and increase the applicability and comparability of the methods. For example, Zachariou et
al. [63] have developed a technique that lowers the complexity of FOVs from fluorescence
microscopy from coloured to greyscale images and increases the visibility of Mtb bacteria.
Applying that approach to images from other datasets, including those based on brightfield
images, would be useful.

Consensus agreement on commonly reported benchmarks for evaluation metrics such
as the classification and segmentation of FOVs to localise Mtb bacteria would also help to
reduce variability when developing and accessing new techniques. Coordination between
groups active in this field, perhaps supported by WHO guidelines, may be useful here
because, at present, different works using entirely different methods [63,66] to report the
effectiveness of their AI methods cannot be directly compared with one another. In this
work, we have successfully compiled the predominant evaluation metrics utilised in each
specific category, namely classification, regression, and segmentation. As evidenced by
the tabulated results presented in this paper, a distinct disparity exists among the various
methods in terms of the reported evaluation metrics. Hence, if one method employs
specificity as its evaluation metric, while another method incorporates both accuracy and
sensitivity, it is not possible to directly compare the two methods. The presence of a
substantial number of methods that are not directly comparable gives rise to a significant
gap in research within this particular field, as it hampers researchers’ ability to ascertain
the effectiveness or ineffectiveness of these methods.

As observed, ML techniques exhibit a broad spectrum of sensitivity/recall and speci-
ficity scores. The successful integration of ML and heuristic knowledge, specifically the
incorporation of anticipated cell geometric features into the algorithm, is a significant
contributing factor to some methods that show higher sensitivity. However, this approach
also presents a challenge as the same factor that enhances the method’s ability to detect
Mtb bacteria also increases its susceptibility to false positives, thereby adversely impact-
ing specificity [34,38]. Methods that incorporated a preliminary segmentation stage or a
hybrid approach, commonly by leveraging CNNs as feature extraction mechanisms and
subsequently feeding these feature maps into another classification/regression algorithm
such as an SVM, consistently attained superior results [57,60]. In addition, akin to ML
methodologies, DL techniques frequently employ amalgamated shape descriptors in the
form of an additional CNN [62] or an image processing algorithm such as HOG, SURF,
or CAT [54,61]. In light of the respective advantages of ML and DL, it is advisable for
researchers in the domain of TB–AI to reconsider their endeavours pertaining to medical
diagnosis. Sputum smear microscopy continues to hold significance, although its accuracy
is contingent upon the performance of the operator in a subjective manner. Nevertheless, at
present, it serves as the sole means by which microbiologists can facilitate clinical research
concerning TB treatment. Consequently, a significant research gap exists in the automation
of academic research associated with the monitoring of TB treatment. This is primarily due
to the predominant focus of existing methods on cell detection and medical diagnosis.
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Unfortunately, the current literature on the quantification of Mtb bacteria in smear
microscopy images is too sparse to draw conclusions on the most appropriate methods for
this aim. Certain works have utilised a pipeline approach to achieve complete automation
of the quantification process, which may involve a segmentation stage. However, to
improve our knowledge of the best ways to achieve bacterial quantification, additional
work is necessary. At present, a limited number of methods have automated the counting
process; otherwise, the counting process is carried out manually. Another manual process
that has received limited attention is the creation of FOVs from sputum sample slides. As
previously elucidated, the operator must perform the sequential scanning, zooming, and
cropping of potential areas of the slide that may contain TB bacteria in order to make any
diagnostic assessment. Hence, it is generally observed that microbiologists prioritise certain
topics as being of utmost significance, while researchers focusing on TB–AI tend to allocate
their efforts towards alternative areas.

Another area in which TB–AI falls behind is its deficiency in explainable artificial
intelligence (XAI) techniques. Despite receiving considerable attention in multiple fields,
including in healthcare and medical research [76], DL algorithms have not been widely
implemented in clinical practice [77]. This is primarily due to the need for the enhanced
transparency and interpretability of ML models, particularly in critical applications such as
disease diagnosis and treatment. Furthermore, XAI methods strive to enhance transparency
and interpretability in the decision-making mechanisms of AI models, often favouring
simpler and more comprehensible representations over intricate ones. Finally, the model
should provide justifications for its decisions by emphasising the relevant features or
patterns in the input data that influenced the outcome. This is crucial for establishing the
model’s trustworthiness and accountability as it aligns with the overarching objective of
addressing the aforementioned issue of exclusion [77]. Within the realm of tuberculosis
(TB) research, XAI techniques can be employed to offer valuable understanding regarding
the decision-making mechanisms of AI models utilised for diverse undertakings, including
TB identification, classification, and prognosis. Several XAI techniques have the potential
to be employed in TB–AI research. The integration of microscopy and XAI techniques
has been explored in prior methods despite its relatively limited prevalence in the field
and has proven to be highly effective in the detection of leukaemia and babesia [78,79].
The aforementioned advantages are evident; thus, it is recommended that future research
efforts in the field of TB–AI incorporate these advantages as well.

9. Conclusions

Efforts to automate the analysis of sputum smear microscopy images have gradually
advanced over a period over more than twenty years, but several obstacles remain to be
addressed. A significant limitation is the absence of comparative analyses between the
different TB–AI methodologies that have been described. Image-sets used by different
research groups vary because of differences in sample preparation, microscopy protocols,
and imaging techniques. The absence of uniformity in datasets is important because
their influence on the reported efficacy of methods has been observed to be substantial.
Additionally, it would be beneficial to establish benchmarks for the evaluation of each
category of TB–AI activity (namely classification, regression, and segmentation), so that
work carried out by different researchers can be compared, even if those researchers also
choose to employ their own additional metrics.

Notwithstanding these challenges, it may be observed that machine learning and
deep learning techniques have achieved notable successes, with each approach possessing
its own strengths. It has also been demonstrated in prior research that the detection of
Mtb bacteria necessitates reliance on pixel intensity and shape regardless of whether the
approach employs machine learning or deep learning techniques. One limitation of this
work pertains to its exclusive focus on microscopy as a modality for investigating this
particular disease. Several other contributions in the field of TB–AI that involve the analysis
of computed tomography scans or chest radiographs from patients with pulmonary TB
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have been excluded as a result of this. Some of these approached may have potentially
made valuable contributions to the analysis of microscopy images. For instance, a method
utilised for CT scans could potentially be adapted and applied to microscopy images, albeit
with certain modifications to account for their unique characteristics. In summary, in this
paper we have achieved the following:

• A collection of publicly available datasets has been curated, encompassing relevant
extracted data along with any supplementary annotations.

• We conclude that the provision of guidelines for both datasets and evaluation metrics
is crucial in establishing standardisation. This will enable researchers to universally
compare and assess their approaches.

• We have conducted a comprehensive review of existing DL/ML methods on TB–AI,
specifically focusing on their application in medical diagnosis, cell detection, and cell
quantification. Furthermore, we have critically examined the merits and limitations of
these methods.

Overall, the process of TB diagnosis from sputum samples is changing worldwide,
with less reliance on microscopy in many centres and increasing focus on rapid molecular
tools such as Xpert MTB/RIF. In the medical context, microscopy, whether it is brightfield or
fluorescence, cannot be considered the definitive standard for tuberculosis diagnosis [80–82].
However, this does not mean that TB–AI work to automate smear microscopy image analysis
is no longer of value. Smear microscopy still plays an important role in assessing disease
severity and monitoring therapy. The direct visualisation, quantification, and description
of Mtb cells are still essential research techniques. Extending TB–AI work to count and
objectively report on the phenotypic characteristics of Mtb cells during antbiotic exposure
may be an important future direction for this field.
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