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Abstract: Early disease detection using microarray data is vital for prompt and efficient treatment.
However, the intricate nature of these data and the ongoing need for more precise interpretation
techniques make it a persistently active research field. Numerous gene expression datasets are
publicly available, containing microarray data that reflect the activation status of thousands of genes
in patients who may have a specific disease. These datasets encompass a vast number of genes,
resulting in high-dimensional feature vectors that present significant challenges for human analysis.
Consequently, pinpointing the genes frequently associated with a particular disease becomes a crucial
task. In this paper, we present a method capable of determining the frequency with which a gene
(feature) is selected for the classification of a specific disease, by incorporating feature discretization
and selection techniques into a machine learning pipeline. The experimental results demonstrate
high accuracy and a low false negative rate, while significantly reducing the data’s dimensionality
in the process. The resulting subsets of genes are manageable for clinical experts, enabling them to
verify the presence of a given disease.

Keywords: cancer detection; classification; feature discretization; feature selection; gene expression
data; machine learning; microarray data

1. Introduction

A microarray dataset represents the expression levels of thousands of genes under
specific conditions, often represented as a matrix, where each row represents a gene,
each column represents a sample (such as a cell or tissue at a specific time), and each
cell in the matrix represents the expression level of a gene in a specific sample. These
data can be used to compare gene expression between different conditions (such as
healthy and diseased cells), by identifying patterns of gene expression. Machine Learn-
ing (ML) tools and techniques play a decisive role in automating the use of microar-
ray data, which has fostered the appearance of many publicly available gene expression
datasets [1] (see http://csse.szu.edu.cn/staff/zhuzx/Datasets.html, accessed on 2 July 2023).
These datasets are useful to learn models that are able to predict the presence of a given
disease from the gene expression data of an individual. From a scientific perspective, it
is also very important to identify the most relevant genes for a given disease classifica-
tion/detection task. However, these gene expression datasets include a large number of
features, being very high-dimensional, which poses many difficulties for human clinical ex-
perts to interpret the data. Moreover, these datasets also exhibit a small number of instances
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(usually much smaller than the number of genes/features). Consequently, the application
of classification techniques to these datasets is hindered by the well-known challenges
associated with the “curse of dimensionality” phenomenon [2,3].

In this paper (which is an extended version of our previous conference paper [4]),
we propose to use an ML pipeline including Feature Discretization (FD) [5] and Feature
Selection (FS) [6–9] blocks to learn classifiers on microarray data. By reducing the data
dimensionality and using discrete/quantized representations of the numeric features, we
aim to mitigate the curse of dimensionality. We also provide further analysis on the selected
feature subsets, aiming at identifying the smallest subset of features that are predictive of a
given disease, hopefully small enough to be interpretable by clinical experts.

In the context of related studies and surveys on microarray data classification, this
work includes the following novel contributions:

• We assess the use of Decision Tree (DT) classifiers, which have seldom been used in the
literature with this type of data, motivated by their well-known intrinsic explainability;

• We assess the combined effect of a composition of FD and FS techniques (FS has
been used more often than FD on this type of data), comparing their individual and
joint usage;

• We consistently evaluate our methods using false negative rates, which is an important
metric concerning diagnostic decisions;

• For each dataset, we identify the best combination of discretization, selection, and clas-
sification and assess the improvement of this combination as compared to the base-
line results.

The remainder of this paper is organized as follows. Section 2 overviews the state
of the art in DNA microarray techniques and reviews some approaches in more detail.
The proposed approach, as well as the microarray datasets used in the experiments, are
presented in Section 3. The experimental evaluation is reported in Section 4. Finally,
Section 5 ends the paper with concluding remarks and future work directions.

2. Related Work on DNA Microarrays

Section 2.1 reviews the DNA microarray technique and the corresponding data generation.
Then, we analyze the key aspects of the use of FD and FS techniques, in Sections 2.2 and 2.3,
respectively. In Section 2.4, we describe the two classifiers used in the experimental
evaluation in this work. Finally, Section 2.5 details some of the existing approaches for
microarray data classification.

2.1. DNA Microarrays: Acquisition Technique and Resulting Data

Gene expression microarrays, also known as DNA microarrays, are laboratory tools
used to measure the expression levels of thousands of genes simultaneously, thus pro-
viding a snapshot of the cellular function (for technical details, see learn.genetics.utah.
edu/content/labs/microarray/, accessed on 2 July 2023). A DNA microarray has the
following characteristics:

• It is composed by a solid surface, arranged in columns and rows, containing thousands
of spots;

• Each spot refers to one single gene and contains multiple strands of the same DNA,
yielding a unique DNA sequence;

• Each spot location and its corresponding DNA sequence is recorded in a database.

The DNA microarray data acquisition process includes four stages, as depicted
in Figure 1.

1. Extraction of ribonucleic acid (RNA) from the sample cells and drawing out the messenger
RNA (mRNA) from the existing RNA, because only the mRNA develops gene expression.

2. CDNA creation: a DNA copy is made from the mRNA using the reverse transcriptase
enzyme, which generates the complementary DNA (CDNA). A label is added in the
CDNA representing each cell sample (e.g., with fluorescent red and green for cancer

learn.genetics.utah.edu/content/labs/microarray/
learn.genetics.utah.edu/content/labs/microarray/
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and healthy cells, respectively). This step is necessary since DNA is more stable than
RNA and this labeling allows identifying the genes.

3. Hybridization: both CDNA types are added to the DNA microarray and each spot
already has many unique CDNA. When mixed together, they will base-pair each other
due to the DNA complementary base pairing property. Not all CDNA strands will
bind to each other, since some may not hybridize being washed off.

4. Analysis: the DNA microarray is analyzed with a scanner to find patterns of hybridiza-
tion by detecting the fluorescent colors.

Figure 1. Overview of the DNA microarray technique data acquisition from samples [4].

The following are possible outcomes of the analysis stage:

• A few red CDNA molecules bound to a spot, if the gene is expressed only in the cancer
(red) cells;

• A few green CDNA molecules bound to another spot, if the gene is expressed only in
the healthy (green) cells;

• Some of both red and green CDNA molecules bound to a single spot on the microarray,
yielding a yellow spot; in this case, the gene is expressed both in the cancer and
healthy cells;

• Finally, several spots of the microarray do not have a single red or green CDNA strand
bound to them; this happens if the gene is not being expressed in either type of cell.

On the one hand, the red color flags the higher production of mRNA in the cancer cell
as compared to the healthy cell. On the other hand, the green color states that we have a
larger production of mRNA in the healthy cell, as compared to the cancer cell. However,
a yellow spot suggests that the gene is expressed equally in both cells and therefore it is not
related with the disease, because when the healthy cell becomes cancerous its activity does
not change.

Figure 2 depicts the process of generating a dataset using the DNA microarray tech-
nique summarized in Figure 1.

Figure 2. Dataset generation with gene expression data from DNA microarray data acquisition [4].
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2.2. Feature Discretization

DNA microarray datasets are composed of high dimensionality numeric feature
vectors. These features contain a large amount of information regarding gene expressions,
but they also contain irrelevant fluctuations (noise) [10], which may be harmful for the
performance of ML algorithms. The use of FD techniques, which convert continuous
(numeric) features into discrete ones, may yield compact and adequate representations
of the microarray data, with less noise [11,12]. In other words, FD aims at finding a
representation of each feature that contains enough information for the learning task at
hand, while ignoring minor fluctuations that may be irrelevant for the task at hand. FD
methods can be supervised or unsupervised, depending on whether label information is
used or not, respectively [11].

The Equal Frequency Binning (EFB) method [13], which is unsupervised, discretizes
continuous features into a given number of intervals (bins), which contain approximately
the same number of instances. The Unsupervised Linde-Buzo-Gray 1 (U-LBG1) method
discretizes each feature into a specified number of intervals, by minimizing the Mean
Squared Error (MSE) between the original and the discretized feature. The number of
intervals may be decided by demanding that the MSE be lower than some threshold (∆) or
by specifying the maximum number of bits per feature (q).

The supervised Minimum Description Length Principle (MDLP) method recursively
divides the feature values into multiple intervals, using an information gain minimization
heuristic (entropy). Please refer to [14] for a formal description of this method and to [5,13]
for additional insights on other FD approaches.

2.3. Feature Selection

In the presence of high-dimensional data, dimensionality reduction techniques [9,15] are
often essential to obtain adequate representations of the data and to improve the ML models
results, effectively addressing the “curse of dimensionality”. One type of dimensionality
reduction technique that has been successful with microarray data is FS [9,15]. FS techniques
select a subset of features from the original set by following some selection criterion. One way
to perform FS is to rank the features according to their relevance, assessed by a given function,
which can also be supervised (if it uses label information) or not. For microarray data, the use
of FS techniques is also known as Gene Selection (GS). Some well-known methods that have
been used for microarray data are the following:

• Unsupervised methods—Laplacian Score (LS) [16], spectral (also known as SPEC) [17],
and term-variance [18];

• Supervised methods—Fisher Ratio (FiR) [19], Fast Correlation-Based Filter (FCBF) [20],
Maximum Relevance Minimum Redundancy (MRMR) [21], ReliefF [22], and Relevance-
Redundancy Feature Selection (RRFS) [23].

The RRFS method can also work in unsupervised mode using the mean-median (MM)
relevance metric, defined, for the i-th feature, as

MMi = |Xi −median(Xi)|, (1)

with Xi denoting the mean of the i-th feature. In supervised mode, RRFS uses as relevance
measure the Fisher ratio [19], also known as Fisher score, defined as (for the i-th feature)

FiRi =

∣∣∣X(−1)
i − X(1)

i

∣∣∣√
var(Xi)(−1) + var(Xi)(1)

, (2)

where X(−1)
i , X(1)

i , var(Xi)
(−1), and var(Xi)

(1), are the sample means and variances of
feature Xi, for the patterns of each of the two classes (denoted as −1 and 1). This ratio
measures how well each feature alone separates the two classes [19], and has been found to
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serve well as a relevance criterion for FS tasks. For more than two classes, FiR for feature
Xi is generalized [6,24] as

FiRi =

c

∑
j=1

nj

(
Xi

(j) − Xi

)2

c

∑
j=1

njvar
(

X(j)
i

) , (3)

where c is the number of classes, nj is the number of samples in class j, and Xi
(j) denotes

the sample mean of Xi, considering only samples in class j; finally, Xi is the sample mean
of feature Xi. Among many other applications, the Fisher ratio has been used successfully
with microarray data, as reported by Furey et al. [25]. When using the Fisher ratio for FS,
we simply keep the top-rank features.

Recent surveys on FS techniques can be found in [26–28]. The use of FS techniques for
microarray and related data is surveyed in [29–32].

2.4. Classifiers

In this section, we briefly review two successful classifiers, commonly used for mi-
croarray data: support vector machines (SVM) and decision trees (DT).

2.4.1. SVM

SMVs [33–36] follow a discriminative approach to learn a linear classifier. As is well-
known, a non-linear SVM classifier can be obtained by the use of a kernel, via the so-called
kernel trick [33]: since the SVM learning algorithm only uses inner products between feature
vectors, these inner products can be replaced by kernel computations, which are equivalent
to mapping those feature vectors into a high-dimensional (maybe non-linear) feature space.
With a separable dataset, a SVM is learned by looking for the maximum-margin hyperplane
(a linear model) that separates the instances according to their labels. In the non-separable
case, this criterion is relaxed via the use of slack variables, which allow for the (penalized)
violation of the margin constraint; for details, see [35,36]. SVMs are well suited for high-
dimensional problems, such as the ones addressed in this paper. Although the original
SVM formulation is inherently two-class (binary), different techniques have been proposed
to generalize SVM to the multi-class case, such as one-vs-rest (or “one-versus-all”) and
one-vs-one [37,38]. We have chosen the SVM classifier because it has been reported in the
literature to yield the best results on this type of data.

2.4.2. DT

DT classifiers [33] also adopt a discriminative approach. A DT is a hierarchical model,
in which each local region of the data is classified by a sequence of recursive splits, using a
small number of partitions. The DT learning algorithm analyzes each (discrete or numeric)
feature for all possible partitions and choose the one that maximizes one of the so-called
impurity measures. The tree construction proceeds recursively and simultaneously for
all branches that are not yet pure enough. The tree is complete when all the branches
are considered pure enough, that is, when performing more splits does not improve the
purity, or when the purity exceeds some threshold. There are several algorithms to learn
a DT. The most popular are the Classification and Regression Trees (CART) [39], the ID3
algorithm [40] and its extension, the well-known C4.5 [41,42] algorithm. A survey of
methods for constructing DT classifiers can be found in [43], which proposes a unified
algorithmic framework for DT learning and describes different splitting criteria and tree
pruning methods. DT are able to effectively handle high-dimensional and multi-class data.
We have chosen DT because it is a different classification approach, which has seldom been
applied to this type of data and provides intrinsically explainable classifiers.
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2.5. Related Approaches

Many unsupervised and supervised FD and FS techniques have been employed on
microarray data classification for cancer diagnosis [1,44,45]. Since microarray datasets are
typically labeled, the use of supervised techniques is preferred, as supervised methods
normally outperform unsupervised ones.

Some unsupervised FD techniques perform well when combined with some classifiers.
For instance, the Equal Frequency Binning (EFB) technique followed by a Naïve Bayes (NB)
classifier produces very good results [46]. It has also been reported that applying Equal
Interval Binning (EIB) and EFB with microarray data, followed by SVM classifiers, yields
good results [47]. It has also been shown that FS significantly improves the classification
accuracy of multi-class SVM classifiers and other classification algorithms [48].

An FS filter (i.e., a FS method that is agnostic to the choice of classifier that will be
subsequently used) for microarray data, based on the information-theoretic criterion named
Double Input Symmetrical Relevance (DISR) was proposed by [47]. The DISR criterion is
found to be competitive with existing unsupervised FS filters.

The work in [49] explores FS techniques, such as backward elimination of features,
together with classification using Random Forest (RF) [50]. The authors concluded that RF
has better performance than other classification methods, such as Diagonal Linear Discrimi-
nant Analysis (DLDA), K-Nearest Neighbors (KNN), and SVM. They also showed that their
FS technique led to a smaller subset of features than alternative techniques, namely Nearest
Shrunken Centroids (NSC) and a combination of filter and nearest neighbor classifier.

The work in [51] introduced the use of Large-scale Linear Support Vector Machine
(LLSVM) and Recursive Feature Elimination with Variable Step Size (RFEVSS), improving
the Recursive Feature Elimination (SVMRFE) technique. The improvement upgrades RFE
with a variable step size, to reduce the number of iterations (in the initial stages in which
non-relevant features are discarded, the step size is larger). The standard SVM is upgraded
to a large-scale linear SVM, thus accelerating the method of assigning weights. The authors
assess their approach to FS with SVM, RF, NB, KNN, and Logistic Regression (LR) classifiers.
They conclude that their approach achieves comparable levels of accuracy, showing that
SVM and LR outperform the other classifiers.

Recently, in the context of cancer explainability, the work in [52] considered the
problem of finding a small subset of features to distinguish among six classes. The goal
was to devise a set of rules based on the most relevant features that can distinguish classes
based on their gene expressions. The proposed method combines a FS-based Genetic
Algorithm (GA) with a fuzzy rule-based system to perform classification on a dataset with
21 instances, more than 45,000 features, and six classes. The proposed method generates ten
rules, with each one addressing some specific features, making them crucial in explaining
the classification results of ovarian cancer detection.

A survey of common classification techniques and related methods to increase their
accuracy for microarray analysis can be found in [1,44]. The experimental evaluation is
carried out in publicly available datasets. The work in [53] surveys the use of FS techniques
for microarray data. For other related surveys, please see [51,54–56].

3. Proposed Approach

In this section, we describe our approach to DNA microarray classification with FD
and FS. Section 3.1 describes the key characteristics of the public domain datasets used in
the experimental evaluation. Section 3.2 details the pipeline of techniques we apply to the
data, as well as the procedures that we follow. Finally, Section 3.3 describes the metrics
used in our experimental evaluation.

3.1. Microarray Datasets and Clinical Tasks

Table 1 summarizes the main characteristics of the 11 microarray datasets considered in
this work [57], available at (https://csse.szu.edu.cn/staff/zhuzx/Datasets.html, accessed
on 2 July 2023). In this table, n denotes the number of instances, d indicates the number of

https://csse.szu.edu.cn/staff/zhuzx/Datasets.html


Biomedinformatics 2023, 3 591

features, and c the number of classes. We also show the d/n ratio as well as the number of
instances in each class. Finally, we display the number of numeric and categorical/nominal
features in each dataset.

Table 1. Microarray datasets: n is the number of instances, d is the number of features, and c is the
number of classes. Also shown are the number of instances per class and the number of numeric and
categorical features.

Name n d d/n c Instances per Class Numeric, Categorical

Breast [58] 97 24,481 252.38 2 46, 51 24,188, 293
CNS [59] 60 7129 118.81 2 39, 21 7129, 0
Colon [60] 62 2000 32.25 2 40, 22 2000, 0
Leukemia [61] 72 7129 99.01 2 47, 25 7129, 0
Leukemia_3c [61] 72 7129 99.01 3 38, 25, 9 7129, 0
Leukemia_4c [61] 72 7129 99.01 4 38, 21, 9, 4 7129, 0
Lung [62] 203 12,600 62.06 5 139, 17, 6, 21, 20 12600, 0
Lymphoma [63] 66 4026 61.00 3 46, 11, 9 4026, 0
MLL [64] 72 12,582 174.75 3 28, 24, 20 11,270, 1312
Ovarian [65] 253 15,154 59.89 2 162, 91 15,151, 3
SRBCT [66] 83 2308 27.80 4 29, 11, 18, 25 2308, 0

These datasets have many more features than instances, n � d, which creates a
challenge in applying ML techniques due to the curse of dimensionality [2,6]. The datasets
have a large number of features (with d ranging from 2000 to 24,481). In addition, all
datasets have a small number of instances (with n ranging from 60 to 253). For some
datasets, we also have class imbalances. Table 2 details the classification task for each
dataset presented in Table 1.

Table 2. Microarray dataset clinical tasks regarding cancer detection [4].

Name Clinical Task Regarding Cancer Detection

Breast Breast cancer diagnosis
CNS Central Nervous System tumor diagnosis
Colon Colon tumor diagnosis
Leukemia Acute Lymphocytic Leukemia and

Acute Myelogenous Leukemia diagnosis
Leukemia_3c Distinguishes types of blood cells which became cancerous
Leukemia_4c Distinguishes types of blood cells which became cancerous
Lung Lung cancer diagnosis
Lymphoma Distinguishes subtypes of non-Hodgkin lymphoma
MLL Distinguishes types of acute leukemia, including

Mixed Lineage Leukemia
Ovarian Ovarian cancer diagnosis
SRBCT Distinguishes types of of Small Round Blue Cell Tumors

In the datasets with two classes, we have the following binary classification tasks:

• Detecting the presence of a specific cancer (such as in CNS, Colon, and Ovarian);
• Detecting the re-incidence of a disease (Breast dataset);
• Diagnosing between two types of cancer (Leukemia dataset).

The multi-class datasets address the following problems:

• Distinguishing among different types of cells (Leukemia_3c, Leukemia_4c, and Lymphoma);
• Distinguishing between healthy situation and the presence of cancer (Lung, MLL,

and SRBCT).
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3.2. Machine Learning Pipeline

Our proposal combines FD and FS techniques before classification. Our aim is to attain
low classification error rate, false negative rate, and false positive rate. Moreover, we also
intend to find the smallest subsets of features that are most relevant for each classification
task. In detail, the steps of our approach are:

• Choosing the techniques under evaluation;
• Building a ML pipeline using data representation/discretization, dimensionality re-

duction, and data classification techniques;
• Comparing the performance of these techniques, using standard metrics;
• Identifying, for each dataset, the best technique as well as the best subset of features.

Figure 3 summarizes the pipeline proposed in this paper, while Algorithm 1 describes
this ML pipeline in a more formal way.

Figure 3. The detailed stages taken in this study [4], numbered from (1) to (7).

In line 2 of Algorithm 1, we preprocess each dataset, which includes the following
key steps:

1. Mapping all nominal class labels to a number (for instance: no cancer corresponds to
0, whereas cancer corresponds to 1); this is performed because some algorithms do
not accept nominal labels.

2. Filling the missing values with the most frequent value in the corresponding feature.
We used the SimpleImputer method from Scikit-learn. This is only required for the
Lymphoma dataset, as it was the only one with missing values.

3. Removing constant features, since they provide no information for classification. This
is only required for the Breast dataset, in which d is reduced from 24,481 to 24,188.

In line 3, we instantiate and initialize the LOO (leave-one-out) procedure for training
and testing classifiers, which is then applied to all evaluations throughout. By using LOO,
we achieve a better estimate of the generalization error and the other evaluation metrics,
when compared to standard 10-fold cross validation (CV). Since the number of instances n
is small, it is preferable to resort to LOOCV.

In line 12, we count how many times a feature is selected in the FS stage of the pipeline.
Since we are using a LOO scheme, each feature can be selected from 0 to n times. We sort
these counters in descending order, and take their values as a measure of feature relevance.
This way, we implement stage (7) of the pipeline. The code for the experimental part of
this work is written in Python (version 3.7) and resorts to Scikit-learn and other standard
packages, such as Pandas, Numpy, and Scipy. The code and the datasets are available at
(https://github.com/adaranogueira/cancer-diagnosis-ml, accessed on 2 July 2023).

https://github.com/adaranogueira/cancer-diagnosis-ml
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Algorithm 1 Machine learning pipeline.
Input: 11 DNA microarray datasets, described in Table 1.
Output: Error rate (Err). False negative rate (FNR). False positive rate (FPR). Percentage
of the selected features (m′).

1: for data ∈ datasets do
2: Preprocess the data.
3: Initialize the leave-one-out cross validation (LOOCV) procedure.
4: for each LOOCV fold do
5: Split the instances of the data into training and test sets.
6: Apply feature normalization (scaling to the 0 to 1 range) on each feature on the

training and test sets.
7: for f d ∈ FD techniques do
8: Apply stage (3) as depicted in Figure 3
9: for f s ∈ FS techniques do

10: Apply stage (4).
11: Select features on the discretized training and test sets.
12: Compute how many times a feature was selected.
13: for classi f ier ∈ classi f ication techniques do
14: Apply stage (5).
15: Save the classifier predictions (stage (6))
16: end for
17: end for
18: end for
19: end for
20: end for
21: For all datasets and combinations of techniques applied in this pipeline, compute the

confusion matrix using the saved predictions (stage (6)).
22: Compute Err, FNR, and FPR using the confusion matrix.
23: Compute m′, the percentage of selected features.

3.3. Evaluation Metrics

We now describe the metrics employed for performance evaluation. In this context, we
consider that a positive prediction relates to cancer while a negative prediction is the absence
of cancer. The well-known metrics true negative (TN), true positive (TP), false positive (FP),
and false negative (FN) are considered. The accuracy (Acc) and error rate (Err) measures the
proportion of, respectively, correct and incorrect classifications out of all predictions. These
two rates satisfy the well-known relation Err = 1 − Acc. The False Negative Rate (FNR) is
the proportion of actual positive instances that are incorrectly identified as negative, while
the False Positive Rate (FPR) is the proportion of negative instances that are incorrectly
identified as positive. Besides the accuracy, the most important metric in this type of data
is the FNR. In most medical applications, the cost of a FN is usually much higher than
that of a FP, since it can correspond to failing to detect a disease, which can cause harm or
even death.

4. Experimental Evaluation

This section reports the experimental evaluation of the proposed ML pipeline, depicted
in Figure 3. The section is organized as follows:

• Section 4.1 addresses the baseline classification results without FD and FS, using the
SVM and DT classifiers (stages (1), (2), (5), and (6) of the pipeline).

• Section 4.2 refers to the use of FD techniques (stages (1), (3), (5), and (6) of the pipeline).
• Section 4.3 reports the experimental results of FS techniques (stages (1), (4), (5), and (6)

of the pipeline).
• Section 4.4 summarizes the best ML pipeline configuration found for each dataset.
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• Section 4.5 reports the experimental results towards the explainability of the classi-
fication (stage (7)). We show the subsets of features that are most often chosen for
each dataset.

4.1. Baseline Classification Results: Stages (1), (2), (5), and (6)

First, we address only the classification stage of the pipeline, by assessing the perfor-
mance of SVM and DT classifiers, providing the baseline results. We follow the LOOCV
procedure for all the evaluations reported in this paper. Since the number of instances n is
small, we achieve better estimates of the several evaluation metrics, as compared to the use
of standard 10-fold CV. In LOOCV, we have no standard deviation on the experimental
metrics, due to the data sampling procedure.

Table 3 presents the baseline results (no FD nor FS) with stage (b) of the pipeline being
the normalization of all feature values to the range 0 to 1. Table 4 shows a similar evaluation
for the DT classifier. In our experiments, we have found that using entropy as a criterion
to build the tree is better than using the Gini index; we have also found that the initial
random_state parameter set to 42 is the best choice.

Table 3. Test error rate (Err) of LOOCV for the SVM classifier with different kernels. For five datasets
that have a class label of “no cancer”, we also consider the False Negative Rate (FNR) and False
Positive Rate (FPR) metrics. For the other six datasets, we do not report the FNR and FPR metrics,
because the task is to distinguish between cancer types. The best result is in boldface [4].

Linear Kernel Poly Kernel RBF Kernel Sigmoid Kernel

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.31 0.30 0.31 0.33 0.28 0.37 0.37 0.46 0.29 0.47 1.00 0.00
CNS 0.33 0.62 0.18 0.37 0.62 0.23 0.35 1.00 0.00 0.35 1.00 0.00
Colon 0.18 0.27 0.12 0.27 0.55 0.12 0.21 0.50 0.05 0.39 0.82 0.15
Leukemia 0.01 – – 0.03 – – 0.15 – – 0.35 – –
Leukemia_3c 0.04 – – 0.06 – – 0.26 – – 0.47 – –
Leukemia_4c 0.07 – – 0.10 – – 0.32 – – 0.47 – –
Lung 0.05 0.01 0.12 0.05 0.01 0.18 0.09 0.01 0.24 0.32 0.00 1.00
Lymphoma 0.00 – – 0.00 – – 0.00 – – 0.30 – –
MLL 0.03 – – 0.06 – – 0.10 – – 0.61 – –
Ovarian 0.00 0.00 0.00 0.004 0.00 0.01 0.02 0.01 0.02 0.36 0.00 1.00
SRBCT 0.00 – – 0.01 – – 0.07 – – 0.65 – –

Average 0.09 0.24 0.15 0.12 0.29 0.18 0.18 0.40 0.12 0.43 0.56 0.43
Std. dev. 0.12 0.23 0.10 0.13 0.26 0.12 0.13 0.37 0.12 0.11 0.47 0.47

Table 4. Test error rate (Err), FNR, and FPR of LOOCV for the DT classifier using entropy as criterion and
random_state set to 42, with normalized features in the range 0 to 1. Different values for the max_depth
parameter are evaluated (the learned tree maximum allowed depth). The best result is in boldface [4].

Max Depth = 2 Max Depth = 5 Max Depth = 7 Max Depth = 10

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.40 0.35 0.45 0.33 0.30 0.35 0.33 0.30 0.35 0.33 0.30 0.35
CNS 0.18 0.48 0.03 0.25 0.33 0.21 0.25 0.33 0.21 0.25 0.33 0.21
Colon 0.18 0.36 0.08 0.19 0.23 0.18 0.19 0.23 0.18 0.19 0.23 0.18
Leukemia 0.26 – – 0.26 – – 0.26 – – 0.26 – –
Leukemia_3c 0.15 – – 0.17 – – 0.17 – – 0.17 – –
Leukemia_4c 0.11 – – 0.15 – – 0.15 – – 0.15 – –
Lung 0.13 0.01 0.06 0.07 0.01 0.12 0.07 0.01 0.12 0.07 0.01 0.12
Lymphoma 0.00 – – 0.00 – – 0.00 – – 0.00 – –
MLL 0.08 – – 0.08 – – 0.08 – – 0.08 – –
Ovarian 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07
SRBCT 0.27 – – 0.17 – – 0.17 – – 0.17 – –

Average 0.16 0.24 0.14 0.15 0.18 0.19 0.15 0.18 0.19 0.15 0.18 0.19
Std. dev. 0.11 0.19 0.16 0.10 0.14 0.10 0.10 0.14 0.10 0.10 0.14 0.10
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The experimental results in Tables 3 and 4 show that DT does not achieve better results
than the SVM classifier (the DT classifier outperforms SVM only on the CNS dataset). Thus,
from these experiments and from the existing literature, a SVM with a linear kernel seems to
be an adequate classifier for this type of data. From these experiments, we have also found
that it is advantageous to normalize the data before addressing any machine learning tasks.

4.2. Feature Discretization Assessment: Stages (1), (3), (5), and (6)

In the literature on microarray data, the unsupervised EFB method has been reported
to produce good results. Thus, we have carried out some experiments using this FD
method. Table 5 reports the results of the SVM classifier on data discretized by EFB,
with different numbers of bins. The results in this table show that EFB discretization yields
a small improvement with the SVM classifier (lower standard deviation in all datasets).
Table 6 shows a summary of the results of the best configurations of EFB discretization
and SVM/DT classifiers. For each dataset, we select the best configuration found in our
experiments. Table 7 shows a similar experiment as in Table 6, but now for the DT classifier.
These results show that DT classifiers also benefit from FD, with five bits yielding the
lowest error rate.

Table 5. Test error rate (Err), FNR, and FPR of LOOCV for the SVM classifier (C = 1 and kernel = linear)
with EFB discretization. Different values for the n_bins parameter were evaluated (the number of
discretization bins). The best result is in boldface [4].

Num. Bins = 2 Num. Bins = 3 Num. Bins = 4 Num. Bins = 5 Num. Bins = 6 Num. Bins = 7

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.32 0.30 0.33 0.33 0.33 0.33 0.32 0.33 0.31 0.32 0.33 0.31 0.30 0.30 0.29 0.31 0.33 0.29
CNS 0.35 0.71 0.15 0.30 0.62 0.13 0.38 0.71 0.21 0.32 0.62 0.15 0.32 0.62 0.15 0.37 0.67 0.21
Colon 0.18 0.27 0.12 0.18 0.27 0.12 0.16 0.27 0.10 0.15 0.23 0.10 0.15 0.23 0.10 0.16 0.27 0.10
Leukemia 0.01 – – 0.01 – – 0.01 – – 0.01 – – 0.01 – – 0.01 – –
Leukemia_3c 0.03 – – 0.03 – – 0.03 – – 0.03 – – 0.04 – – 0.04 – –
Leukemia_4c 0.08 – – 0.07 – – 0.07 – – 0.07 – – 0.07 – – 0.07 – –
Lung 0.05 0.01 0.18 0.05 0.01 0.18 0.05 0.01 0.18 0.04 0.01 0.18 0.04 0.01 0.18 0.04 0.01 0.18
Lymphoma 0.00 – – 0.00 – – 0.00 – – 0.00 – – 0.00 – – 0.00 – –
MLL 0.04 – – 0.03 – – 0.03 – – 0.03 – – 0.03 – – 0.03 – –
Ovarian 0.004 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SRBCT 0.00 – – 0.00 – – 0.00 – – 0.00 – – 0.00 – – 0.00 – –

Average 0.10 0.26 0.16 0.09 0.25 0.15 0.10 0.26 0.16 0.09 0.24 0.15 0.09 0.23 0.14 0.09 0.26 0.16
Std. dev. 0.12 0.26 0.10 0.12 0.23 0.11 0.13 0.26 0.10 0.12 0.23 0.10 0.11 0.23 0.10 0.12 0.25 0.10

Table 6. Summary of the best results and corresponding configurations, for each dataset with normalized
features, obtained during the data representation stage with the EFB discretizer. The * symbol denotes an
improvement over the baseline classification results of Tables 3 and 4, without discretization [4].

Configurations

Dataset Classifier Num. Bins Err FNR FPR

Breast SVM 6 0.30 * 0.30 0.29
CNS DT 5 0.18 0.33 0.10
Colon SVM 5, 6 0.15 * 0.23 0.10
Leukemia SVM, DT 2, 3, 4, 5, 6, 7 0.01 – –
Leukemia_3c SVM 2, 3, 4, 5 0.03 * – –
Leukemia_4c SVM 3, 4, 5, 6, 7 0.07 * – –
Lung SVM 5, 6, 7 0.04 * 0.01 0.18
Lymphoma SVM 2, 3, 4, 5, 6, 7 0.00 – –
MLL SVM 3, 4, 5, 6, 7 0.03 – –
Ovarian SVM 3, 4, 5, 6, 7 0.00 0.00 0.00
SRBCT SVM 2, 3, 4, 5, 6, 7 0.00 – –

Average – – 0.07 0.17 0.13
Std. dev. – – 0.09 0.14 0.10
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Table 7. Test error rate (Err), FNR, and FPR of LOOCV for the DT classifier (criterion = entropy,
max_depth = 5, and random_state = 42) with EFB discretization. Different values for the n_bins
parameter were evaluated. The best results are presented in boldface.

2 3 4 5 6 7

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.30 0.35 0.25 0.30 0.35 0.25 0.46 0.50 0.43 0.32 0.37 0.27 0.47 0.59 0.37 0.48 0.61 0.37
CNS 0.42 0.67 0.28 0.65 0.81 0.56 0.43 0.57 0.36 0.18 0.33 0.10 0.37 0.57 0.26 0.50 0.71 0.38
Colon 0.26 0.32 0.22 0.34 0.55 0.22 0.29 0.55 0.15 0.16 0.18 0.15 0.34 0.45 0.28 0.24 0.41 0.15
Leukemia 0.01 – – 0.11 – – 0.12 – – 0.19 – – 0.08 – – 0.14 – –
Leukemia_3c 0.19 – – 0.22 – – 0.12 – – 0.14 – – 0.10 – – 0.19 – –
Leukemia_4c 0.21 – – 0.28 – – 0.10 – – 0.26 – – 0.21 – – 0.17 – –
Lung 0.27 0.07 0.47 0.17 0.01 0.12 0.16 0.02 0.12 0.15 0.03 0.41 0.18 0.05 0.35 0.15 0.03 0.29
Lymphoma 0.06 – – 0.06 – – 0.11 – – 0.09 – – 0.09 – – 0.11 – –
MLL 0.19 – – 0.17 – – 0.25 – – 0.15 – – 0.08 – – 0.18 – –
Ovarian 0.06 0.07 0.03 0.02 0.01 0.03 0.04 0.04 0.03 0.03 0.01 0.05 0.02 0.01 0.04 0.03 0.01 0.07
SRBCT 0.18 – – 0.25 – – 0.22 – – 0.16 – – 0.23 – – 0.17 – –

Average 0.20 0.30 0.25 0.23 0.35 0.24 0.21 0.34 0.22 0.17 0.18 0.20 0.20 0.33 0.26 0.21 0.35 0.25
Std. dev. 0.11 0.22 0.14 0.16 0.31 0.18 0.13 0.25 0.15 0.07 0.15 0.13 0.14 0.25 0.12 0.14 0.29 0.12

Figure 4 shows the connection between the average error rate of all datasets and the
number of discretization bins, for the SVM and DT classifiers.

Figure 4. Analysis of the error rate (Err) and number of discretization bins (n_bins) for the SVM
classifier (top) and the DT classifier (bottom).
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We can observe the increasing and decreasing effect regarding the improvements on
the classifiers performance. For the SVM classifier, the optimal n_bins is 6 (lower error and
lower standard deviation) whereas for the DT classifier, the optimal value is n_bins = 5.

4.3. Feature Selection Assessment: Stages (1), (4), (5), and (6)

We now address the use of FS on the normalized features (without FD). For our exper-
iments, we consider the Laplacian Score (LS), Spectral, Fisher Ratio (FiR), and Relevance-
Redundancy Feature Selection (RRFS) [23]. Table 8 shows the experimental results for
the SVM classifier, while Table 10 shows the results of the DT classifier. RRFS works in
unsupervised mode using the MM relevance metric and in supervised mode with FiR
as metric.

Table 8. Test error rate (Err), FNR, and FPR of LOOCV for the SVM classifier (C = 1 and kernel = linear)
with LS, SPEC, FiR, and RRFS (with MM and FiR relevance and maximum similarity ms = 0.7),
with normalized features. The best result is in boldface [4].

Unsupervised Supervised

LS SPEC RRFS (MM) FiR RRFS (FiR)

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.33 0.35 0.31 0.32 0.30 0.33 0.31 0.28 0.33 0.31 0.28 0.33 0.31 0.28 0.33
CNS 0.35 0.52 0.26 0.33 0.62 0.18 0.27 0.48 0.15 0.30 0.57 0.15 0.33 0.67 0.15
Colon 0.16 0.27 0.10 0.19 0.32 0.12 0.21 0.36 0.12 0.19 0.32 0.12 0.18 0.27 0.12
Leukemia 0.01 – – 0.01 – – 0.01 – – 0.01 – – 0.01 – –
Leukemia_3c 0.04 – – 0.06 – – 0.04 – – 0.04 – – 0.03 – –
Leukemia_4c 0.08 – – 0.10 – – 0.07 – – 0.07 – – 0.07 – –
Lung 0.05 0.01 0.12 0.05 0.01 0.12 0.05 0.01 0.12 0.04 0.01 0.12 0.05 0.01 0.18
Lymphoma 0.00 – – 0.00 – – 0.03 – – 0.00 – – 0.02 – –
MLL 0.04 – – 0.06 – – 0.03 – – 0.03 – – 0.04 – –
Ovarian 0.00 0.00 0.00 0.00 0.00 0.00 0.004 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
SRBCT 0.02 – – 0.00 – – 0.00 – – 0.00 – – 0.00 – –

Average 0.10 0.23 0.16 0.10 0.25 0.15 0.09 0.23 0.15 0.09 0.24 0.14 0.09 0.25 0.16
Std. dev. 0.12 0.20 0.11 0.12 0.23 0.11 0.11 0.19 0.10 0.11 0.21 0.11 0.12 0.24 0.11

The RRFS method attains the best classification error results, while also achieving
considerable dimensionality reduction. For instance, in the Ovarian dataset, we obtain
a reduction to 4% of the original dimensionality: the number of selected features is 606
out of the original 15,154 features. A similar result is obtained for the Lymphoma dataset,
in which we keep only 2% of the original features.

Figure 5 shows the graphical representation of the error rate (for the SVM and DT
classifiers) and the corresponding percentage of the selected features (m′), for the FS
methods considered in this work. We report the average error rates and the average
number of selected features, from Tables 8 and 10.

Table 9. Test error rate (Err), FNR, and FPR of LOO for the DT classifier (criterion = entropy,
max_depth = 5, and random_state = 42) with LS, SPEC, FiR, and RRFS (with MM and FiR relevance
and ms = 0.7). The best results are presented in boldface.

Unsupervised Supervised

LS SPEC RRFS (MM) FiR RRFS (FiR)

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.43 0.50 0.37 0.29 0.30 0.27 0.41 0.50 0.33 0.37 0.33 0.41 0.26 0.33 0.20
CNS 0.38 0.67 0.23 0.22 0.38 0.13 0.28 0.43 0.21 0.32 0.38 0.28 0.32 0.38 0.28
Colon 0.32 0.50 0.22 0.34 0.55 0.22 0.19 0.32 0.12 0.26 0.27 0.25 0.21 0.27 0.18
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Table 10. Test error rate (Err), FNR, and FPR of LOO for the DT classifier (criterion = entropy,
max_depth = 5, and random_state = 42) with LS, SPEC, FiR, and RRFS (with MM and FiR relevance
and ms = 0.7). The best results are presented in boldface.

Unsupervised Supervised

LS SPEC RRFS (MM) FiR RRFS (FiR)

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Leukemia 0.14 – – 0.21 – – 0.21 – – 0.25 – – 0.15 – –
Leukemia_3c 0.07 – – 0.14 – – 0.14 – – 0.17 – – 0.15 – –
Leukemia_4c 0.12 – – 0.25 – – 0.14 – – 0.11 – – 0.22 – –
Lung 0.15 0.03 0.41 0.16 0.01 0.18 0.09 0.01 0.12 0.09 0.01 0.18 0.08 0.01 0.18
Lymphoma 0.23 – – 0.18 – – 0.08 – – 0.08 – – 0.12 – –
MLL 0.26 – – 0.26 – – 0.14 – – 0.07 – – 0.15 – –
Ovarian 0.04 0.02 0.08 0.04 0.04 0.05 0.02 0.02 0.02 0.03 0.02 0.04 0.02 0.01 0.04
SRBCT 0.23 – – 0.20 – – 0.17 – – 0.23 – – 0.17 – –

Average 0.22 0.34 0.26 0.21 0.26 0.17 0.17 0.26 0.16 0.18 0.20 0.23 0.17 0.20 0.18
Std. dev. 0.12 0.27 0.12 0.08 0.21 0.08 0.10 0.20 0.10 0.11 0.16 0.12 0.08 0.16 0.08

Figure 5. Average error rate (Err) and average percentage of selected features (m′) for LS, SPEC, FiR,
and RRFS (with MM and FiR; ms = 0.7).
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4.4. The Complete Pipeline: Best Configuration for Each Dataset

We now study the joint effect of all the pipeline stages depicted in Figure 3. Table 11
presents the best configurations for each stage and each dataset. Table 12 summarizes the
best results obtained in this work for each dataset.

Table 11. Best pipeline configuration found for each dataset [4].

Pipeline Configuration

Dataset Discretization Selection Classification

Breast EFB (n_bins = 6) RRFS (with FiR; ms = 0.7) SVM (C = 1; kernel = linear)
CNS EFB (n_bins = 5) SPEC DT (criterion = entropy, max_depth = 6, and random_state = 42)
Colon MDLP LS DT (criterion = entropy, max_depth = None, and random_state = 5)
Leukemia EFB (n_bins = 2) LS SVM (C = 1; kernel = linear)
Leukemia_3c EFB (n_bins = 2) RRFS (with FiR; ms = 0.7) SVM (C = 1; kernel = linear)
Leukemia_4c EFB (n_bins = 3) RRFS (with FiR; ms = 0.7) SVM (C = 1; kernel = linear)
Lung EFB (n_bins = 5) FiR SVM (C = 1; kernel = linear)
Lymphoma EFB (n_bins = 2) LS SVM (C = 1; kernel = linear)
MLL EFB (n_bins = 3) RRFS (with MM; ms = 0.7) SVM (C = 1; kernel = linear)
Ovarian EFB (n_bins = 3) RRFS (with FiR; ms = 0.7) SVM (C = 1; kernel = linear)
SRBCT EFB (n_bins = 2) SPEC SVM (C = 1; kernel = linear)

Table 12. Summary of the best combination of techniques and their respective results for each
dataset. Techniques: EFB (n_bins), RRFS (relevance metric, ms), SVM (C, kernel), and DT (criterion,
max_depth, random_state).

Configurations Results

Dataset Discretization Selection Classification Err FNR FPR m′

Breast EFB (6) – SVM (1, linear) 0.30 0.30 0.29 –
CNS EFB (5) – DT (entropy, 5, 42) 0.18 0.33 0.10 –
Colon – – DT (entropy, None, 5) 0.13 0.23 0.08 –
Leukemia – LS SVM (1, linear) 0.01 – – 0.13
Leukemia_3c – RRFS (FiR, 0.7) SVM (1, linear) 0.03 – – 0.18
Leukemia_4c – RRFS (FiR, 0.7) SVM (1, linear) 0.07 – – 0.17
Lung – FiR SVM (1, linear) 0.04 0.01 0.12 0.67
Lymphoma – LS SVM (1, linear) 0.00 – – 0.22
MLL – RRFS (MM, 0.7) SVM (1, linear) 0.03 – – 0.23
Ovarian – RRFS (FiR, 0.7) SVM (1, linear) 0.00 0.00 0.00 0.04
SRBCT – SPEC SVM (1, linear) 0.00 – – 0.49

The conclusions of these experimental results can be summarized as follows. Based on
the combination of techniques that yielded the best results, we observe that applying both
FD and FS techniques did not improve the results in any dataset. For the Breast and CNS
datasets, applying FS did not improve the results, but applying FD techniques did (the
best result was achieved by applying the FD technique only). In addition, for the Colon
dataset in particular, the best results were achieved by applying the baseline classifier to
the original features (without FD or FS). For the remaining datasets, applying FS improved
the results. In some cases, it improved the Err/FNR/FPR metrics, in other cases it was able
to produce the same results with fewer features. In either case, the reduction of the number
of features improved the explainability of the results and the time to compute them.

We have also found that DT does not achieve better results than the SVM classifier
(DT performs better than SVM only on the CNS and Colon datasets). In addition, the EFB
discretization also proved to be a better choice when compared to the MDLP technique.
As for the FS techniques explored in this work, the RRFS method is in general the best
choice, taking into account the classification error and the size of the subsets of features.
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4.5. Explainability: Most Relevant Genes–Stage (7)

We further explore the use of the ML pipeline, aiming to identify the most decisive
features for each dataset, since we have an acceptable error rate as reported in the previous
sections. The rationale of this approach is the following:

• Use of the LOOCV procedure, which draws n data folds for training/testing;
• On a dataset with n instances, each feature can be chosen up to n times;
• The importance of a feature to accurately classify a dataset, on all data folds, and to

explain the classification results is proportional to the number of times that feature
is chosen;

• After the LOOCV procedure, we count the number of times each feature was chosen
and we display the corresponding counters in decreasing order.

Figure 6 shows the top-20 feature indices that are chosen more often by the procedure
mentioned above, for the Lymphoma, Ovarian, Leukemia, and SRBCT datasets, respectively.

Figure 6. The top-20 of the number of times each feature is chosen/selected on the FS step on the
LOOCV procedure for the Lymphoma (n = 66, d = 4026), Ovarian (n = 253, d = 15,154), Leukemia
(n = 72, d = 7129), and SRBCT (n = 83, d = 2308) datasets.

For the Lymphoma and Ovarian datasets, only one feature is chosen n times. On the
Lymphoma dataset, feature 1402 is chosen 66 times and on the Ovarian dataset, feature 1679
is chosen 253 times, which means that these features are always present in the classification
decision. The feature indices shown on the xx-axis of these plots correspond to the most
relevant features (genes) for cancer detection, which potentially contain clinically relevant
information requiring further inspection by experts. As we move along the horizontal axis,
we observe a decrease in the relative relevance of the features in the classification task.

Figure 7 displays the number of times each feature is chosen, for the Leukemia,
Leukemia_3c, Leukemia_4c, and SRBCT datasets. These plots show that some features
are chosen n times. However, on the Leukemia dataset, with n = 72, we observe that no
feature is chosen more than 28 times.
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Figure 7. The number of times each feature is chosen/selected for the Leukemia (n = 72, d = 7129),
Leukemia_3c (n = 72, d = 7129), Leukemia_4c (n = 72, d = 7129), and SRBCT datasets (n = 83, d = 2308).

5. Conclusions

The problem of cancer detection from DNA microarray data is a challenging machine
learning problem, given the high-dimensionality of the data and the small number of in-
stances usually available. However, over the years, some techniques have been successfully
applied to this problem. Moreover, besides accurate data classification, the identification of
the most relevant genes for the classification task is also an important goal, which clearly
has important clinical information.

In this work, we have proposed an approach based on a machine learning pipeline,
using a sequence of feature discretization and feature selection techniques, which is able to
identify small subsets of relevant genes for the subsequent classifier. We consider standard
machine learning procedures, achieving large degrees of dimensionality reduction on
several public-domain datasets and identifying, for each dataset, the best combination
of discretization, selection, classification techniques. Resorting to the leave-one-out cross
validation procedure, we rank the features in decreasing order of importance for the
classification task. Moreover, the comparison with the baseline classification error and false
negative rates assures that we find the combination of techniques that performs better than
the baseline. Our code and datasets are publicly available.

In future work, we will explore more supervised feature discretization and feature
selection techniques. We will also fine-tune the maximum similarity parameter of the
RRFS algorithm to further reduce the size of the subsets, allowing medical experts to focus
on fewer features. Another research direction will be focused on the key limitation of
this study, which is that the discretization and selection techniques work independently.
Thus, we aim to devise a joint hybrid discretization and selection algorithm, suited for
microarray data.
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