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Abstract: In this study, we propose a closed-loop insulin administration framework for multiple
daily injection (MDI) treatment using a reinforcement learning (RL) agent for insulin bolus therapy.
The RL agent, based on the soft actor–critic (SAC) algorithm, dynamically adjusts insulin dosages
based on real-time glucose readings, meal intakes, and previous actions. We evaluated the proposed
strategy on ten in silico patients with type 1 diabetes undergoing MDI therapy, considering three
meal scenarios. The results show that, compared to an open-loop conventional therapy, our proposed
closed-loop control strategy significantly reduces glucose variability and increases the percentage
of time the glucose levels remained within the target range. In particular, the weekly mean glu-
cose level reduced from 145.34 ± 57.26 mg/dL to 115.18 ± 7.93 mg/dL, 143.62 ± 55.72 mg/dL to
115.28 ± 8.11 mg/dL, and 171.63 ± 49.30 mg/dL to 143.94 ± 23.81 mg/dL for Scenarios A, B and
C, respectively. Furthermore, the percent time in range (70–180 mg/dL) significantly improved
from 63.77 ± 27.90% to 91.72 ± 9.27% (p = 0.01) in Scenario A, 64.82 ± 28.06% to 92.29 ± 9.15%
(p = 0.01) in Scenario B, and 58.45 ± 27.53% to 81.45 ± 26.40% (p = 0.05) in Scenario C. The model also
demonstrated robustness against meal disturbances and insulin sensitivity disturbances, achieving
mean glucose levels within the target range and maintaining a low risk of hypoglycemia, which
were statistically significant for Scenarios B and C. The proposed model outperformed open-loop
conventional therapy in all scenarios, highlighting the potential of RL-based closed-loop insulin
administration models in improving diabetes management.

Keywords: blood glucose management; reinforcement learning; multiple daily injection therapy;
simulation for clinical application; in silico validation

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disease defined by glucoregulatory
dysfunction, resulting in hyperglycemia caused by either absolute insulin deficiency (type
1 diabetes or T1D) or relative insulin insufficiency and reduced sensitivity (type 2 diabetes
or T2D) [1]. To prevent hyperglycemia and its related consequences, individuals diagnosed
with T1D are dependent on exogenous insulin administration to control their blood glucose
(BG) levels, while T2D individuals may need insulin treatment only at some different
points during the progression of the disease [2]. However, the majority of T1D patients
fail to achieve their glycemic goals, which makes it necessary to investigate proper insulin
injection protocols in order to enhance the health and quality of life of these patients.
Furthermore, the inter-patient variability of this disease necessitates personalized insulin
administration techniques for the efficient management of glycemic control in people with
DM [3].

One common strategy is the basal–bolus method, which is widely used to maintain
BG levels within the euglycemic range of 70–180 mg/dL. In this approach, basal insulin
regulates fasting BG levels, i.e., during night or intervals between two meals, while bolus
doses compensate for the increase in BG concentration induced by meal intakes [4]. The
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basal–bolus method can be implemented through either multiple daily injection (MDIs) [5]
or continuous subcutaneous insulin infusions (CSII) using a pump [6].

It is noteworthy that most insulin-treated patients still prefer using MDI over insulin
pumps, as the latter bring burdens associated with the use of an additional medical device
attached to the body, insulin infusion set failures, and difficult access for some patients [7].

Accordingly, in this study, we focus on the development of a closed-loop insulin
delivery system implementing MDI therapy for people with T1D. From the perspective of
control theory, MDI therapy can be considered as an optimization problem in which basal
and bolus insulin doses are chosen based on glucose, which are typically acquired by CGM
sensors at a sampling rate of 5 to 15 min, in order to maintain BG levels within the target
range. In general, basal doses are determined heuristically based on the patient’s medical
data and clinical experience by the physician, while meal boluses are calculated as follows:

ubolus =
CHO
CR

+
Gc −Gd

CF
− uIOB, (1)

where ubolus denotes the amount of bolus insulin, CHO stands for the estimated carbohy-
drate content of the meal, Gc and Gd represent the actual and target blood glucose level,
respectively, uIOB is the remaining insulin on board (IOB), and CR and CF are personalized
insulin-to-carbohydrate ratio and correction factor, respectively.

There have been extensive studies in the diabetes management literature on develop-
ing insulin delivery algorithms to automate the MDI regimen using methodologies such as
PID and fuzzy logic [8,9], optimization-based approaches [10–12], and iterative learning
strategies [13–16].

With the rise in popularity of continuous glucose monitoring (CGM) sensors, a large
amount of personal health data from the daily use of diabetes-related devices has been
accumulated, which has led to a transformation in diabetes management and the devel-
opment of data-driven and artificial intelligence (AI)-based approaches in more recent
studies [17–19].

Machine learning (ML) and neural networks (NN) are subfields of AI that are widely
used to detect and learn patterns from datasets and make accurate predictions and deci-
sions [20–22]. In the field of diabetes management, several studies have employed these
methods for insulin dosage recommendations [23,24] and future blood glucose (BG) predic-
tions [25]. These models consider various patient-related physiological information, such
as heart rate (HR) [26] and electrodermal activity (EDA) [27], in addition to insulin doses
and meal intakes, to account for the factors that may affect BG variation, such as stress and
physical activity [28,29].

However, data-driven techniques are highly dependent on the quality of recorded
data. Since many datasets are collected under daily living conditions, they often contain
missing points and errors, which can negatively impact the model’s performance. To
create a generalized data-driven model that provides optimal insulin doses to maintain
normoglycemia under various conditions and for different patients, experiments need to
be designed to examine BG variation in response to a wide range of disturbances, such as
different insulin doses and carbohydrate intake at different times of the day, to simulate
free-living conditions. Such experiments may pose a significant risk to patients’ health.

To overcome these limitations, several studies have used in silico simulators to manip-
ulate the factors that affect BG dynamics and create a generalized insulin delivery model.
For instance, Ref. [30] proposed a k-nearest-neighbors (KNN)-based decision support sys-
tem to provide weekly insulin dose recommendations, including basal, correction factor
(CF), or carbohydrate ratio (CR) modification, using data obtained from a simulator estab-
lished in [31]. Additionally, Cappon et al. [32] utilized the data generated by UVa/Padova,
an FDA-approved BG simulator to train a NN that integrates with a standard bolus cal-
culator and provides optimal correction doses for different meal sizes and pre-prandial
glucose levels.
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In recent years, reinforcement learning (RL) has gained a lot of attention among ML
approaches. RL is a self-learning ML framework that enables an agent to learn how to make
decisions in a closed-loop fashion, by interacting with an environment, receiving rewards
or punishments based on its actions, and adjusting its behavior accordingly [33]. Through
this process of trial and error, the agent can learn to make optimal decisions in complex
and uncertain environments. RL has been successfully used in many applications such as
gaming [34] and robotics [35]. More comprehensive descriptions regarding RL models and
structures may be found in [33].

In recent years, RL has also been used in healthcare problems where optimal decisions
are very crucial, such as treatment recommendations [36] or automated insulin dosage
recommendation systems. In 2020, Zhu et al. [37] proposed a deep RL model for basal
insulin and glucagon delivery. Since, RL can learn the task of an optimal control, it can be
used for the insulin decision in MDI by continuously optimizing the rewards in terms of
glucose outcomes to determine the insulin dosage within a long control period (e.g., one
day or one week) [38].

However, one of the drawbacks of using RL is that it cannot handle constraints well
and generally requires a long trial-and-error process for agent training. In other words, the
actions taken by the agent, specifically in the initial steps of the training process, would
cause serious complications for the environment, which in our case is the patient’s body.
This is a critical factor that limits the application of RL in real life and clinical cases. In
recent studies, various RL approaches, such as actor–critic (AC), Q-learning, SARSA, and
Gaussian process reinforcement learning, have been examined for glucose control solely
utilizing in silico datasets.

Accordingly, to deal with this issue, prior to its implementation in clinical studies on
humans, in silico simulations assist the development of RL systems and their verification
under several virtual experimental conditions.

In this study, we propose an insulin delivery system for T1D patients that incorporates
a Soft Actor–Critic (SAC) RL model for meal bolus insulin dose suggestion and an iterative
learning controller (ILC) for long-acting insulin administration, as suggested in [5]. To
evaluate the feasibility and effectiveness of our proposed model for the simulated MDI
therapy, we used a mathematical model of the glucose–insulin metabolic system that
incorporates a pharmacokinetics (PK) module for long-acting basal insulin proposed in [5].
In the following study, we show that the integration of the SAC RL model and the ILC
controller has the potential to improve glycemic control and reduce the burden of diabetes
management for T1D patients.

2. Materials and Methods

In this section, an MDI treatment framework is constructed by integrating an RL
agent into the simulator model and training the model using the real-time data of 10
in- silico T1D adults generated by the simulator. It should be noted that the patients’
individual parameters were extracted from [39,40]. The pre-trained RL agent is then used in
conjunction with a controller to construct an automated closed-loop insulin administration
model with MDI treatment. The block diagram of the proposed framework is shown in
Figure 1.
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2.1. Simulator

A metabolic model of a virtual patient able to simulate MDI treatment in people with
T1D was first proposed by Cescon et al. in [5]. By integrating the SAC RL [41] model, we
aim to create a closed-loop insulin delivery system that can dynamically adjust insulin
dosages based on real-time glucose readings. Figure 2 depicts the SAC RL agents integrated
into a metabolic model.

BioMedInformatics 2023, 3, FOR PEER REVIEW 4 
 

 

Figure 1. The block diagram of the proposed closed-loop RL-based controller for MDI therapy for 
virtual T1D patients. 

2.1. Simulator 
A metabolic model of a virtual patient able to simulate MDI treatment in people with 

T1D was first proposed by Cescon et al. in [5]. By integrating the SAC RL [41] model, we 
aim to create a closed-loop insulin delivery system that can dynamically adjust insulin 
dosages based on real-time glucose readings. Figure 2 depicts the SAC RL agents inte-
grated into a metabolic model. 

 
Figure 2. The proposed framework for MDI therapy using an SAC RL methodology. Reinforcement 
learning (RL) agent is integrated into a metabolic model to dynamically adjust insulin dosages based 
on real-time glucose readings generated by the simulator. 

The SAC RL model is a variant of the actor–critic algorithm that is designed to learn 
a stochastic policy that maximizes the expected cumulative reward. The policy is repre-
sented as a function of the current state, and it is learned through an actor–critic approach 
where the actor learns the policy and the critic learns the state-value function [41]. The 
SAC RL model uses a maximum entropy formulation to optimize the policy, which en-
courages exploration and prevents premature convergence to suboptimal policies. The 
objective function for SAC involves maximizing the expected reward and the entropy of 
the policy, and the critic network is trained to minimize the mean squared error between 
the predicted state-value function and the actual state-value function [41]. The integration 
of the SAC RL model into the metabolic model [5] involves training the RL agent using 
real-time simulated data and then using the trained model to automate insulin delivery 
inside the simulator. The RL agent learns to provide bolus insulin dosages based on real-
time glucose readings, meal intakes and previous action taken by the agents, according to 
an optimal policy π that maximizes an objective function J(π): 
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on real-time glucose readings generated by the simulator.

The SAC RL model is a variant of the actor–critic algorithm that is designed to learn a
stochastic policy that maximizes the expected cumulative reward. The policy is represented
as a function of the current state, and it is learned through an actor–critic approach where
the actor learns the policy and the critic learns the state-value function [41]. The SAC RL
model uses a maximum entropy formulation to optimize the policy, which encourages
exploration and prevents premature convergence to suboptimal policies. The objective
function for SAC involves maximizing the expected reward and the entropy of the policy,
and the critic network is trained to minimize the mean squared error between the predicted
state-value function and the actual state-value function [41]. The integration of the SAC
RL model into the metabolic model [5] involves training the RL agent using real-time
simulated data and then using the trained model to automate insulin delivery inside the
simulator. The RL agent learns to provide bolus insulin dosages based on real-time glucose
readings, meal intakes and previous action taken by the agents, according to an optimal
policy π that maximizes an objective function J(π) :

J(π) =E{τ ∼ π}

 T

∑
{t=0}

γt(r(st, at)+αH(π(at|st)))

, (2)
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where τ is a trajectory sampled from π, st is the state at time t, at is the action taken at time
t, r(st ,at) is the reward function, and H(π(at|st)) is the entropy of the policy at state st and
action at. T is the time horizon, γ is the discount factor, and α is a hyperparameter that
controls the trade-off between the expected reward and the entropy of the policy.

2.2. Reward Function

The bolus advisor that we propose aims to maximize the time within the range of
70–180 mg/dL which leads to reducing the percentage of time of the day patients experience
hypoglycemia (BG < 70 mg/dL) or hyperglycemia (BG > 180 mg/dL). For this, the reward
function takes the previous BG value and meal information generated by the simulator,
as well as an array containing actions taken in the last three hours by the agent, and
two constant values representing the desired BG range, which are 70 and 180 mg/dL.
BG readings were obtained at 1 min sample rate. However, to achieve a model that is
capable of providing insulin dosage for MDI therapy, the agent needs to take actions only
at mealtime. Accordingly, we set the sampling rate of the RL agent to 15 min and defined
the reward function such that if the agent takes action at the immediate time stamps after
mealtimes, a positive reward is introduced; otherwise, a negative reward as a punishment
is obtained if the agent takes action in any other time. The rewards are generated every
15 min, equal to the sampling rate of the RL agent, and then are summed up at the end of
each episode, which lasts one week. Algorithm 1 presents the pseudocode for the reward
function, providing further details of its implementation.

Algorithm 1 Reward Function

Initialize parameters BGt, BGbuffer, Mealbuffer, Actionbuffer, BGbounds

Inputs:
BGt: Current continuous glucose monitor (CGM) readings
BGbuffer: A buffer of CGM readings for the past 3 h.
Mealbuffer : A buffer of previous meal intakes for the past 3 h.
Actionbuffer : A buffer of previous insulin doses for the past 3 h.
BGbounds: Bounds of the BG readings, i.e., (70, 180) mg/dL

Output:
repisode: Calculated reward for each episode

BGTarget ← 125
BGt−1 = BGbuffer

1
Mealt−1 = Meal1

buffer

Actiont−1 = Actionbuffer
1

for each episode do
for each step, t = 1, . . . , N, N being the number of steps in each episode do

if Actiont−1 > 0 and Mealt−1 > 0 then
rAction

t : ← 10
else if Actiont−1 ≤ 0 and Mealt−1 ≤ 0 then

rAction
t : ← 0

else
rAction

t :←−2
end if
if BGt ≥ minBGbounds and BGt ≤ maxBGbounds then

rBG
t : ← 0.1× exp(−|BGt − BGTarget

∣∣∣)/100)
else

rBG
t ← −0.01×(BGt − BGTarget

∣∣∣)
end if
r (t)← rBG

t + rAction
t

end for

repisode =
N
∑
1

r(t)

end for
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2.3. Simulation Scenarios

To evaluate the performance of the proposed model under different conditions, three
meal scenarios were considered:

• Scenario A (nominal case). Each day, meals were at 7 a.m., 1 p.m., and 7 p.m., and the
quantity of carbohydrate consumed each meal was 50 g, 75 g, and 75 g, for breakfast,
lunch, and dinner, respectively. The rationale behind using this scenario was to
evaluate the controller’s ability to maintain stable blood glucose levels under nominal
conditions.

• Scenario B (robustness against meal disturbances). Meal timings for each meal were
normally distributed, with means 30 min and standard deviation of 3 min. Further,
the amount of carbohydrate for each meal was normally distributed with (50, 75, 75) g
and standard deviations (5, 7.5, 7.5), for breakfast, lunch, and dinner, respectively. We
used this scenario to test the controller’s robustness against meal disturbances, such as
variations in meal timing and size, which are common in real-world situations. These
variations can have a significant impact on blood glucose levels, and the controller
should be able to adapt to them to maintain stable levels.

• Scenario C (robustness against insulin sensitivity disturbances). Scenario B dictated
the meal times and amounts of carbohydrates consumed. Moreover, to assess the
robustness of the suggested algorithm against fluctuations in insulin sensitivity, insulin
resistance was induced by modifying the parameters in the metabolic model that affect
insulin’s impact on glucose uptake and endogenous glucose production by 40%. The
logic behind defining this scenario was to test the controller’s robustness against
changes in insulin sensitivity, which can occur due to various factors such as stress,
illness, or changes in physical activity. Insulin resistance can make it challenging to
maintain stable blood glucose levels, and the controller should be able to adjust the
insulin dosage appropriately.

Overall, the three scenarios were chosen to evaluate the controller’s performance
under different conditions and to assess its robustness against various challenges that a
real-world patient with type 1 diabetes might face.

3. Results

In this study, we utilized simulation to assess the effectiveness of the proposed method-
ology on ten in silico patients with type 1 diabetes undergoing MDI therapy for the three
different scenarios previously described in Section 2. As far as long-acting insulin is con-
cerned, we used the ILC controller proposed in [5]. On the other hand, for the short-acting
insulin, the SAC RL agent was initially trained on simulated data from scenario B. Table 1
presents the specifications and hyperparameters of the developed model, which were
optimized via grid search to obtain the optimal parameter values.

Table 1. Training hyperparameter and model specifications for the SAC RL model.

Hyperparameter/Specification Value

Critic optimizer Adam
Critic learning rate 1 × 10−4

Critic gradient threshold 1
Critic L2 regularization factor 2 × 10−4

Actor optimizer Adam
Actor learning rate 1 × 10−4

Actor gradient threshold 1
Actor L2 regularization factor 1 × 10−4

Target smooth factor 1 × 10−3

Mini batch size 512
Experience buffer length 1 × 107

Number of hidden units 256
Sample time 5 min
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The pre-trained SAC RL agent was subsequently integrated into the simulator to
enable dynamic bolus insulin dosage administration. The simulation protocol spanned
14 days, starting at 7:00 on Day 0. The performance of the reinforcement learning (RL)
agent was evaluated solely on the second week, starting from Day 8.

The simulations started with initial conditions of 125 mg/dL, with no insulin present
in the plasma or subcutaneous depot, and a reference basal glucose concentration of
125 mg/dL. The RL agents’ performances were compared with open-loop therapy consist-
ing of one long-acting insulin injection per day, set at 0.25 U per kg of body weight.

Table 2 presents the numerical results of the study, where weekly minimum, maximum,
and mean glucose levels mg/dL, the percent time in range based on a blind continuous
glucose monitoring (CGM) system, and the average daily rapid-acting insulin dosage U for
each patient were computed. Population statistics such as mean and standard deviation
for the mentioned metrics were computed separately for the RL and open-loop therapy
and were arranged in different columns and rows based on the scenarios. The performance
of the RL agent was compared to the open-loop conventional therapy using paired t-tests
with a significance level of 5%. The open-loop model was used as a reference for evaluating
the performance of the RL agent.

Table 2. Glycemic outcomes for the in silico population: mean± standard deviation. Min, max, mean
of generated CGM samples; BG % time in zones of blind CGM and average total daily rapid-acting
insulin units.

Metrics Open Loop RL p-Value

Sc
en

ar
io

A

min mg/dL 84.46 ± 40.22 69.06 ± 15.67 0.13
max mg/dL 273.07 ± 131.21 179.20 ± 18.62 0.03

mean mg/dL 145.34 ± 57.26 115.18 ± 7.93 0.07
% time ∈ (70, 180) mg/dL 63.77 ± 27.90 91.72 ± 9.27 0.01

% time < 70 mg/dL 11.36 ± 24.98 5.68 ± 9.32 0.26
% time < 54 mg/dL 7.70 ± 19.31 1.10 ± 2.40 0.16

% time > 180 mg/dL 24.86 ± 27.65 2.58 ± 3.29 0.02
% time > 250 mg/dL 5.22 ± 14.51 0 0.14

Bolus U 17.92 ± 5.62 30.71 ± 31.47 0.08

Sc
en

ar
io

B

min mg/dL 83.93 ± 40.32 69.74 ± 15.89 0.15
max mg/dL 267.74 ± 126.51 181.92 ± 18.99 0.04

mean mg/dL 143.62 ± 55.72 115.28 ± 8.11 0.08
% time ∈ (70, 180) mg/dL 64.82 ± 28.06 92.29 ± 9.15 0.01

% time < 70 mg/dL 11.78 ± 26.11 5.49 ± 9.10 0.25
% time < 54 mg/dL 7.82 ± 20.02 0.88 ± 1.93 0.15

% time > 180 mg/dL 23.39 ± 26.43 2.21 ± 2.63 0.02
% time > 250 mg/dL 4.64 ± 12.60 0 0.14

Bolus U 18.50 ± 5.81 30.66 ± 31.31 0.09

Sc
en

ar
io

C

min mg/dL 105.66 ± 27.06 97.24 ± 27.83 0.3
max mg/dL 278.04 ± 86.77 209.83 ± 26.26 0.03

mean mg/dL 171.63 ± 49.30 143.94 ± 23.81 0.1
% time ∈ (70, 180) mg/dL 58.45 ± 27.53 81.45 ± 26.40 0.05

% time < 70 mg/dL 3.53 ± 11.18 0.026 ± 0.08 0.17
% time < 54 mg/dL 1.20 ± 3.76 0 0.17

% time > 180 mg/dL 38.00 ± 29.80 18.51 ± 26.40 0.11
% time > 250 mg/dL 8.60 ± 19.10 0.24 ± 0.77 0.1

Bolus U 17.92 ± 5.62 32.08 ± 31.28 0.06

The main goal of the study was to reduce glucose variability and increase the percent-
age of time the glucose levels remained within the target range of 70–180 mg/dL for all
scenarios using the RL agent. The use of the RL agent resulted in a reduction in glycemic
variability across the population such that the population average blood glucose (BG) levels
reduced from 145.34 ± 57.26 mg/dL to 115.18 ± 7.93 mg/dL, 143.62 ± 55.72 mg/dL to
115.28 ± 8.11 mg/dL, and 171.63 ± 49.30 mg/dL to 143.94 ± 23.81 mg/dL for Scenarios A
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to C, respectively. Additionally, the study found a significant decrease in the maximum
blood glucose (BG) levels across all subjects in all three scenarios. Specifically, in Scenario
A, the maximum BG levels decreased from 273.07± 131.21 mg/dL to 179.20± 18.62 mg/dL
(p = 0.03), in Scenario B from 267.74 ± 126.51 mg/dL to 181.92 ± 18.99 mg/dL (p = 0.04),
and in Scenario C from 278.04 ± 86.77 mg/dL to 209.83 ± 26.26 mg/dL (p = 0.03).

Moreover, the average percentage of time of the day that subjects experienced hyper-
glycemia (BG > 180 mg/dL) decreased in all scenarios, with reductions from 24.86± 27.65% to
2.58 ± 3.29% in Scenario A, 23.39 ± 26.43% to 2.21 ± 2.63% in Scenario B, and 38.00 ± 29.80%
to 18.51 ± 26.40% in Scenario C. Notably, the reductions in Scenarios A and B were statisti-
cally significant (p = 0.02 for both scenarios).

In addition, the study revealed that the administration of short-acting insulin dosages
by the RL agent resulted in a statistically significant improvement in the percentage of time
glucose levels were within the target range for all scenarios. Specifically, the percentage of
time within the target range increased from 63.77 ± 27.90% to 91.72 ± 9.27% (p = 0.01) in
Scenario A, 64.82 ± 28.06% to 92.29 ± 9.15% (p = 0.01) in Scenario B, and 58.45 ± 27.53% to
81.45 ± 26.40% (p = 0.05) in Scenario C.

Figure 3 illustrates the performance of the proposed RL model compared to the open-
loop simulator for Scenarios A to C, in terms of the populated median, 25th and 75th
percentiles of the BG reading produced by the simulator in a 3-day scenario. It is observable
that in all of the scenarios, the RL agent is capable of keeping the BG levels closer in the
desired glycemic range (70, 180 mg/dL) compared to the open-loop case.
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to C, arranged from left to right, respectively. The top panel in each column presents the distribution
of blood glucose (BG) values in terms of the median, as well as the 25th and 75th percentiles, of the
BG population for 10 patients over 3 days, represented by blue and green colors for RL and open-loop
models, respectively. The middle panel depicts the simulated meals, while the bottom panel shows
the populated median bolus dose administered by the RL agent and open-loop model in yellow and
green colors, respectively.

4. Discussion

In this study, a closed-loop insulin delivery system for MDI treatment of type 1 dia-
betes patients is proposed. The system uses a RL agent integrated into a metabolic model
to dynamically adjust insulin dosages based on real-time glucose readings. The RL agent is
trained using real-time simulated data and pre-trained for bolus insulin dosage administra-
tion. The performance of the RL agent is evaluated under three different scenarios with ten
in silico patients with type 1 diabetes. The scenarios considered were nominal, robustness
against meal disturbances, and robustness against insulin sensitivity disturbances.
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The results obtained from the simulations show that the proposed RL agent outper-
formed the open-loop model in terms of reducing glucose variability and increasing the
percentage of time the glucose levels remained within the target range. The proposed
method demonstrated robustness against meal disturbances and fluctuations in insulin
sensitivity, suggesting its potential for real-world applications. The results of the study
demonstrate the potential of the proposed model to improve glucose control in patients
with type 1 diabetes undergoing MDI therapy. The use of an automated closed-loop insulin
administration model with MDI treatment, which integrates the SAC RL agent into the
UVA/Padova simulator model, led to better glucose control in all three scenarios compared
to open-loop therapy. Notably, the RL agent achieved statistically significant improvements
in glucose control in scenarios B and C, which were designed to test the robustness of the
proposed model against meal and insulin sensitivity disturbances. These findings suggest
that the SAC RL model is capable of adapting to changing conditions and optimizing
insulin dosages accordingly, making it a promising approach for improving glucose control
in real-world settings.

It is worth noting that while simulation studies can provide valuable insights into the
potential effectiveness of closed-loop insulin delivery systems, further research is needed
to validate these findings in clinical settings. Future studies could involve testing the
proposed model in clinical trials, where patients with type 1 diabetes could use the closed-
loop system for an extended period of time and provide feedback on its usability and
effectiveness. Additionally, it will be important to assess the safety and reliability of the
system and identify any potential risks or limitations that may need to be addressed before
widespread implementation. Overall, the proposed model represents a promising step
towards improving glucose control and reducing the burden of diabetes management for
patients undergoing MDI therapy.

5. Conclusions

In conclusion, we have presented a novel methodology that integrates a RL agent into
a simulator model to automate insulin delivery in patients with type 1 diabetes undergoing
MDI therapy. The proposed approach was evaluated using three different meal scenarios
and was found to be effective in reducing glucose variability and increasing the percentage
of time the glucose levels remained within the target range. The results demonstrated that
the automated closed-loop insulin administration model with MDI treatment based on SAC
RL agent is superior to open-loop therapy consisting of one long-acting insulin injection
per day. This study provides a promising avenue for the development of automated insulin
delivery systems that can dynamically adjust insulin dosages based on real-time glucose
readings. Future research could focus on testing the proposed approach in clinical settings
and exploring the use of other RL algorithms and control strategies to further improve the
performance of the system. Ultimately, the goal is to provide patients with type 1 diabetes
with a safe and effective way to manage their condition and improve their quality of life.

Incorporating the effect of other glycemic disturbances, such as physical activity (PA)
and stress state (SS), to mention a few, is the focus of our current investigations. In order
to do so, we are developing physiological models describing the effect of PA and SS to
glucose metabolism, and once they are ready, we will proceed with the evaluation of a
RL-based controller. We would like to stress that the main aim of this paper was to show
the feasibility of utilizing RL-based methodologies in diabetes management. Future work
will be devoted to the application of RL to more realistic scenarios.

The use of RL models in diabetes management has shown promising results in im-
proving glycemic control in patients with T1DM. However, there are still some challenges
that need to be addressed before these models can be widely adopted in clinical practice.
One of the challenges is the need for a large amount of high-quality data to train the models.
This requires collaboration between healthcare providers and data scientists to ensure that
the data used to train the models is accurate, reliable, and representative of the patient
population. Another challenge is the need for personalized RL models that can adapt to
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the unique needs and preferences of each patient. This requires the development of more
sophisticated algorithms that can learn from individual patient data and adjust treatment
recommendations accordingly.

Despite these challenges, the application of RL models in diabetes management has
the potential to significantly improve patient outcomes and reduce healthcare costs. By
providing personalized treatment recommendations, these models can help patients achieve
better glycemic control while minimizing the risk of hypoglycemia and other complications.
They can also reduce the burden on healthcare providers by automating routine tasks
and allowing them to focus on more complex aspects of diabetes care. As the technology
continues to evolve and more data become available, RL models are likely to become an
increasingly important tool in the management of diabetes and other chronic diseases.
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