
Citation: Christopoulou, S.C.

Towards Automated Meta-Analysis

of Clinical Trials: An Overview.

Biomedinformatics 2023, 3, 115–140.

https://doi.org/10.3390/

biomedinformatics3010009

Academic Editor: Pentti Nieminen

Received: 31 December 2022

Revised: 24 January 2023

Accepted: 29 January 2023

Published: 1 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Towards Automated Meta-Analysis of Clinical Trials:
An Overview
Stella C. Christopoulou

Department of Business and Organization Administration, University of Peloponnese, Antikalamos,
24100 Kalamata, Greece; stellachristop@gmail.com

Abstract: Background: Nowadays, much research deals with the application of the automated meta-
analysis of clinical trials through appropriate machine learning tools to extract the results that can
then be applied in daily clinical practice. Methods: The author performed a systematic search of the
literature from 27 September 2022–22 November 2022 in PUBMED, in the first 6 pages of Google
Scholar and in the online catalog, the Systematic Review Toolbox. Moreover, a second search of
the literature was performed from 7 January 2023–20 January 2023 in the first 10 pages of Google
Scholar and in the Semantic Google Scholar. Results: 38 approaches in 39 articles met the criteria
and were included in this overview. These articles describe in detail machine learning approaches,
methods, and tools that have been or can potentially be applied to the meta-analysis of clinical
trials. Nevertheless, while the other tasks of a systematic review have significantly developed, the
automation of meta-analyses is still far from being able to significantly support and facilitate the
work of researchers, freeing them from manual, difficult and time-consuming work. Conclusions:
The evaluation of automated meta-analysis results is presented in some studies. Their approaches
show positive and promising results.
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1. Introduction

Today clinical trials are considered as an established experimental clinical tool suitable
not only for evaluating the effectiveness of interventions, but also for supporting the
conduct of an adequately designed systematic review [1]. In addition, meta-analysis is a
systematic review of a focused topic in the literature that provides a quantitative estimate
of the effect of a therapeutic intervention or exposure [2]. This effect is inferred from
outputs usually from more than one previously published clinical trial. A meta-analysis is
necessary for making correct medical decisions (such as prognosis, diagnosis, treatment,
recording side effects in taking drugs, etc.). It is the prevailing method applied in clinical
trials for generating qualitative and quantitative evidence and conclusions. Meta-analysis
and synthesis of the results of clinical trials are gaining rapid momentum in the research
to generate quantitative information [3]. Thus, clinical trials are at the forefront of clinical
decision support.

In parallel, since in the present time the volume of clinical studies is increasing ex-
ponentially, automating their processing by applying machine learning (ML) is a great
challenge and a dominant research topic.

The automation in the management of clinical studies refers to dealing with the in-
dividual processes related to the search, collection, selection, and extraction of results. In
detail these tasks are the following: Design Systematic Search, Run Systematic Search,
Deduplicate, Obtain full texts, Snowballing, Screen abstracts, Data extraction and Text Min-
ing Tool, Automated bias assessments, Automated Meta-Analysis, Summarize/Synthesis
of data (analysis), Write up, and Data Miner/Analysis of Data for General-Purpose [4].

More specifically, the meta-analysis is a systematic approach for understanding a
phenomenon by analyzing the results of many previously published experimental studies.
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Unfortunately, the conventional meta-analysis requires a great deal of human effort, is
labor-intensive, and vulnerable to human bias [2,5].

The task of the automated meta-analysis and synthesis of data is the part of their
management in which the least research has been done in terms of their mechanical
processing and automation [4].

The authors of many studies [6–11] demonstrated the feasibility and acceptance of
semi-automated and automated meta-analyses yielding promising results. The outcomes of
these studies suggest that automated meta-analysis through machine learning approaches
reduces the time required for a meta-analysis without altering the expert confidence in
methodological and scientific rigor. Moreover, these results suggest acceptance for risk
assessment and improve the quality of reporting.

In this direction, the author of this article deals with the application of automated
meta-analysis of clinical trials through appropriate machine learning tools to extract the
results that can then be applied in daily clinical practice.

In addition, deep learning methods and tools as a subcategory of ML, are also included
in this study. Deep learning based on learning data representations are part of the larger
family of machine learning algorithms that use multiple layers to progressively extract
higher-level features from the raw input [12].

The novelty of this overview is that until yet very few review articles have been
published which describe all these mentioned frameworks, techniques, and tools alongside
their applications in a complete and effective way in order to contribute to their further
development and improvement.

Thus, initially, the author searched for relevant work and described it in detail below
in Section 3.1.

More specifically, the author in this article performed an overview exploring the
applied state-of-the-art ML methods, approaches, frameworks, and tools in automating the
meta-analysis and synthesis of data extracted from clinical trials.

The main research questions were as follows:

• RQ1. What are the trends and key characteristics of studies showing automation in
the meta-analysis and synthesis of clinical trial data.

• RQ2. What are the most common technologies, methods, tools, and software used in
the meta-analysis and synthesis of data extracted from clinical trials.

• RQ3. What are the impacts that derive from the usage of the automation in the
meta-analysis in clinical trials.

• RQ4. What are the challenges, guidelines, and obstacles to be addressed and what
studies and research are proposed to achieve automation and maximum and reliable
application of clinical trial results in daily medical practices.

The rest of this study is organized as follows: Section 2 discusses other relevant studies.
Section 3 presents the materials and methods of this study. Section 4 summarizes the results.
Section 5 discusses the key issues arising from this study. Section 6 concludes the study
and presents future directions.

2. Related Work

There are many studies in the field of the management of studies and clinical trials
and the extraction of their knowledge [4,13–16] but only a limited number deal with the
automation of the meta-analysis task.

Wang et al. [12] conducted a review and assessment of 18 common deep learning
frameworks and libraries (Caffe, Caffe2, Tensorflow, Theano including Keras Lasagnes
and Blocks, MXNet, CNTK, Torch, PyTorch, Pylearn2, Scikit-learn, Matlab including Mat-
convNet Matlab deep learning and Deep learning toolbox, Chainer, Deeplearning4j) and
introduced a large number of benchmarking data.

In order to provide a basis for comparing and selecting between software tools that
support Systematic reviews, the authors of [17] performed a feature-by-feature comparison
of Systematic reviews tools.
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Finally, the Systematic Review Toolbox [9] is an online catalog of tools that support
various tasks within the systematic review and wider evidence synthesis process. The
updated version of the Systematic Review Toolbox was launched on 13 May 2022, with
235 software tools and 112 guidance documents included.

3. Materials and Methods
3.1. Study Design

In this study design the author used the overview approach [18]. An overview is a
generic term used for “any summary of the literature” [19] that attempts to survey the
literature and describe its characteristics. As such, it can be used for many different types
of literature review, with differing degrees of systematicity. Overviews can provide a broad
and often comprehensive summation of a topic area and, as such, have value for those
coming to a subject for the first time [20]. They are also important in cases where either a
subject is not yet mature and well-known enough to be treated with a thorough systematic
review or there is not the necessary time to perform it.

Additionally, the forward and backward snowball method is used [21]. It has been
proposed that in reviews of complex or heterogeneous evidence in the field of health
services research, “snowball” methods of forward (citation) and backwards (reference)
searching are powerful. This method allows researchers using the references and citations
of an article to find specific literature on an issue quickly and easily.

3.2. Literature Search and Study Selection

The author performed a systematic search of the literature from 27 September 2022–
22 November 2022 in PUBMED (http://www.pubmed.org, accessed on 27 December
2022), in the first 6 pages of Google Scholar and in the online catalog: Systematic Review
Toolbox (http://www.systematicreviewtools.com/, accessed on 28 December 2022) using
combinations of search strings (“automated meta-analysis” AND “trials”). Moreover, a
second search of the literature was performed from 7 January 2023–20 January 2023 in the
first 10 pages of Google Scholar and in the Semantic Google Scholar using combinations of
search strings (“automated meta-analysis” OR “automatic meta-analysis”).

The author did not find records in clinical trials.gov, or in the COCHRANE library.
In addition, forward and reverse citation searches (snowball method) were performed

for specific studies to ensure inclusion of the most relevant studies. Snowballing was
undertaken, starting from the included citations and from the references of each article.

Restrictions are related to the language (only English articles are included).
In addition, studies involving tools and techniques for image management (e.g., [22–27])

were out of the scope of this study and excluded.

3.3. Data Screening

The data were screened in a two-stage review process (Figure 1) that the author
performed, (a) initially excluding assignments based on the titles and their abstracts, and
(b) then the remaining assignments were screened based on the reading of the full text of
the article.

One researcher reviewed the articles.

http://www.pubmed.org
http://www.systematicreviewtools.com/
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Figure 1. The flow diagram of the literature search.

3.4. Data Extraction and Analyses

The following data were extracted from the included studies:

• Bibliographic elements of the included articles:

� Name of the studies’ object
� Reference
� Title
� Year
� Author(s)
� Journal

• Characteristics of the studies’ object:

� Name studies’ object
� Domain
� Type
� (Not)Free/(Not)Open
� Source Code
� Method/Language

4. Results

There were 38 approaches in 39 articles that met the criteria and were included in this
overview (Table 1).

These articles describe in detail ML approaches, methods, and tools that have been or
can potentially be applied to the meta-analysis of clinical trials.

All articles in the review range from the years 2010–2023, most of which were identified
during the years 2016–2022. (There were 3 articles in 2016, 4 in 2017, 6 in 2018, 4 in 2019, 2
in 2020, 5 in 2021, and 7 in 2022) (Table 1).

The dominant technologies used for the development and application of the automated
meta-analysis are Python and R programming languages. Some studies also used Java,
Excel, and either C++ or another version of it (i.e., C, ANSI C++, C++11). More rarely were
found CUDA, Docker environment, Lua, and LuaJIT. In addition, some studies combined
the use of several different technologies to achieve their goals (Table 2).
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Table 1. The bibliographic elements of the included studies.

Name Reference Title Year Author(s) Journal

A Logic of Meta-Analysis
approach [28] Towards a Logic of Meta-Analysis 2020 Peñaloza, R Proceedings of the

International Conference on

Amamida R Package [29]
Amanida: An R package for

meta-analysis of metabolomics
non-integral data

2022
Llambrich, Maria; Correig, Eudald;

Gumà, Josep; Brezmes, Jesús; Cumeras,
Raquel

Bioinformatics

Amazon SageMaker [30,31]

Getting Started with Amazon
SageMaker Studio: Learn to build

end-to-end machine learning projects
in the SageMaker machine learning

IDE

2022 Hsieh, M Packt Publishing Ltd.

Automated Meta-analysis of
Biomedical Texts [10]

Towards Automated Meta-analysis of
Biomedical Texts in the Field of

Cell-based Immunotherapy
2019 Devyatkin DA, Molodchenkov AI,

Lukin AV et al. Research and Methods

Caffe2 [32]
Applied Machine Learning at

Facebook: A Datacenter Infrastructure
Perspective

2018 Hazelwood, K; et al.

IEEE International
Symposium on High

Performance Computer
Architecture

Causal Learning Perspective [5] Automated Meta-Analysis: A Causal
Learning Perspective 2021 Cheng, L; Katz-Rogozhnikov, D A;

Varshney, K R; others arXiv preprint

CINeMA [33] CINeMA: An approach for assessing
confidence in the results of a network 2020

Nikolakopoulou, Adriani; Higgins,
Julian P T; Papakonstantinou,

Theodoros; Chaimani, Anna; Del
Giovane, Cinzia; Egger, Matthias;

Salanti, Georgia

PLOS Medicine

DIAeT [11] Synthesizing evidence from clinical
trials with dynamic interactive 2022

Sanchez-Graillet; Witte, Olivia; Grimm,
Christian; Grautoff, Frank; Ell, Steffen;

Cimiano, Basil; Philipp
J. Biomed. Semantics

dmetar [34] Doing Meta-Analysis with R: A
Hands-On Guide 2021 Harrer, Mathias; Cuijpers, Pim;

Furukawa, Toshi A; Ebert, David D CRC Press
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Table 1. Cont.

Name Reference Title Year Author(s) Journal

DTA MA (Diagnostic Test
Accuracy Meta-Analysis)

(MetaDTA)
[35]

Graphical enhancements to summary
receiver operating characteristic plots
to facilitate the analysis and reporting

of meta-analysis of diagnostic test
accuracy data

2021 Patel, Amit; Cooper, Nicola; Freeman,
Suzanne; Sutton, Alex Res Synth Methods

Keras [36] Introduction to keras. In Deep learning
with Python 2017 Ketkar, Nikhil Apress, Berkeley, CA

Meta-Essentials [37]
Introduction, comparison, and

validation of Meta-Essentials: A free
and simple tool for meta-analysis

2017 Suurmond, Robert; van Rhee, Henk;
Hak, Tony Res Synth Methods

metafor [38] Conducting Meta-Analyses in R with
the metafor Package 2010 Viechtbauer, Wolfgang Journal of Statistical Software

MetaInsight [39]

MetaInsight: An interactive web-based
tool for analyzing, interrogating, and
visualizing network meta-analyses

using R-shiny and netmeta

2019
Owen, Rhiannon K; Bradbury, Naomi;

Xin, Yiqiao; Cooper, Nicola; Sutton,
Alex

Res Synth Methods

metamisc [40]
A framework for meta-analysis of

prediction model studies with binary
and time-to-event outcomes

2019

Debray, Thomas Pa; Damen, Johanna
Aag; Riley, Richard D; Snell, Kym;
Reitsma, Johannes B; Hooft, Lotty;
Collins, Gary S; Moons, Karel Gm

Stat. Methods Med. Res.

MetaXL [41] Advances in the meta-analysis of
heterogeneous clinical trials I: The 2015

Doi, Suhail A R; Barendregt, Jan J;
Khan, Shahjahan; Thalib, Lukman;

Williams, Gail M
Contemp. Clin. Trials

Nested-Knowledge [17]

Web-Based Software Tools for
Systematic Literature Review in
Medicine: A Review and Feature

Analysis

2021
Cowie; Rahmatullah, Kathryn; Hardy,
Asad; Holub, Nicole; Kallmes, Karl;

Kevin
Nested Knowledge, Inc.

netmeta [42]
Network Meta-Analysis using

Frequentist Methods [R package
netmeta version 0.9-8

2022

Rücker, Gerta; Krahn, Ulrike; König,
Jochem; Efthimiou, Orestis; Davies,

Annabel; Papakonstantinou,
Theodoros; Schwarzer, Guido

CRAN package repository
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Table 1. Cont.

Name Reference Title Year Author(s) Journal

OpenNN [43] Open NN: An Open Source Neural
Networks C++ Library 2022 Lopez, Roberto

International Center for
Numerical Methods in
Engineering (CIMNE)

Pymeta [44] PyMeta 2018 Hongyong, Deng PythonMeta Website

PythonMeta [45] PythonMeta 1.26 2018 Hongyong, Deng PythonMeta Website

PyTorch [46] PyTorch Not found PyTorch–Linux Foundation

scikit-learn [47] scikit-learn 2016 Python Software Foundation Python Software Foundation

ShinyMDE [48]
ShinyMDE: Shiny tool for microarray

meta-analysis for differentially
expressed gene detection

2016 Shashirekha, H. L.; Wani, Agaz
Hussain HLS and team

Spark ML [49]
Scaling Machine Learning with Spark:

Distributed ML with MLlib,
TensorFlow, and Pytorch

2023 Polak, A. O’Reilly Media

TensorFlow [50] Learning TensorFlow: A Guide to
Building Deep Learning Systems 2017 Hope, Tom; Resheff, Yehezkel S.;

Lieder, Itay O’Reilly Media

Torch [51] Torch7: A Matlab-like Environment for
Machine Learning 2019 Collobert, Ronan; Kavukcuoglu,

Koray; Farabet, Clement
Neural Information
Processing Systems

Whyis [52] Developing Scientific Knowledge
Graphs Using Whyis 2018 McCusker, J.P., Rashid, S.M., Agu, N.,

Bennett, K.P. and McGuinness, D.L. SemSci

Comprehensive gene
expression meta-analysis [53]

A comprehensive gene expression
meta-analysis identifies novel immune

signatures in rheumatoid arthritis
patients

2017 Afroz, S.; Giddaluru, J.; Vishwakarma,
S.; Naz, S.; Khan, A.A.; Khan, N. Frontiers in

NeuroSynth [54] Large-scale automated synthesis of
human functional neuroimaging data 2011 Yarkoni T, Poldrack RA, Nichols TE,

Van Essen DC, Wager TD Nat. Methods

Text-mining the neurosynth
corpus (NeuroSynth #2) [55] Text-mining the neurosynth corpus

using deep boltzmann machines 2016 Monti R, Lorenz R, Leech R,
Anagnostopoulos C, Montana G

2016 International Workshop
on Pattern Recognition in

Neuroimaging
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Table 1. Cont.

Name Reference Title Year Author(s) Journal

Social brain (NeuroSynth #3) [56]

The “social brain” is highly sensitive to
the mere presence of social
information: An automated

meta-analysis and an independent
study

2018 Tso, Ivy F; Rutherford, Saige; Fang, Yu;
Angstadt, Mike; Taylor, Stephan F PLoS One

MetaCyto [57]
MetaCyto: A Tool for Automated
Meta-analysis of Mass and Flow

Cytometry Data
2018 Hu Z, Jujjavarapu C, Hughey JJ,

Andorf S, Lee HC, Gherardini PF et al. Cell Rep.

Automated meta-analysis of
the ERP literature [58] Automated meta-analysis of the

event-related potential (ERP) literature 2022 Donoghue T, Voytek B Sci. Rep.

CancerMA [59]
CancerMA: a web-based tool for

automatic meta-analysis of public
cancer microarray data

2012 Feichtinger J, McFarlane RJ, Larcombe
LD Database

CancerEST [60]
CancerEST: a web-based tool for

automatic meta-analysis of public EST
data

2014 Feichtinger J, McFarlane RJ, Larcombe
LD Database

Research Method
Classification [61]

Research Method Classification with
Deep Transfer Learning for

Semi-Automatic Meta-Analysis of
Information Systems Papers

2021 Anisienia A, Mueller RM, Kupfer A,
Staake T

Proceedings of the Annual
Hawaii International

Conference on System
Sciences

AUTOMETA [62]
AUTOMETA: Automatic

Meta-Analysis System Employing
Natural Language Processing

2022 Mutinda FW, Yada S, Wakamiya S,
Aramaki E Stud. Health Technol. Inform.

Table 2. The characteristics of the studies’ objects.

Name Domain Type (Not)Free (Not)Open Source Code Method/Language

A Logic of Meta-Analysis
approach General purpose Approach No need Not supported Not supported

Amamida R Package Metabolomic studies Package Open source (https://github.com/mariallr/amanida,
accessed on 23 December 2022) R package

https://github.com/mariallr/amanida
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Table 2. Cont.

Name Domain Type (Not)Free (Not)Open Source Code Method/Language

Amazon SageMaker General purpose Tool Not free (https://aws.amazon.com/sagemaker/
resources/, accessed on 23 December 2022) Python

Automated Meta-analysis of
Biomedical Texts Biomedical All Not described No need

MetaMap; Fasttext model;
Eclat algorithm/Python

package

Caffe2 General purpose Framework Open Source (https://github.com/pytorch/pytorch,
accessed on 22 December 2022)

Graph representation is
shared among all backend

implementation; C++ &
Python API

Causal Learning Perspective General purpose Approach No need No need
Multiple Causal inference for

automated Meta-Analysis
(MCMA)

CINeMA General purpose Tool Open source
(https:

//github.com/esm-ispm-unibe-ch/cinema,
accessed on 25 December 2022)

Salanti approach; JavaScript,
Docker, and R package

DIAeT Evidence-based medicine
(EBM) Model/Method Open source (https://doi.org/10.5281/zenodo.5604516,

accessed on 24 December 2022) model Toulmin; Java

dmetar General purpose Package Open source

(https://github.com/MathiasHarrer/
Doing-Meta-Analysis-in-R, accessed on 25

December 2022;
https://dmetar.protectlab.org/, accessed on

25 December 2022)

R package

DTA MA (Diagnostic Test
Accuracy Meta-Analysis)

(MetaDTA)
General purpose Software Open source

(https:
//github.com/CRSU-Apps/MetaDTA;

https://crsu.shinyapps.io/dta_ma/,
accessed on 25 December 2022)

R package

Keras General purpose Software Open source
(https://keras.io/;

https://github.com/keras-team/keras,
accessed on 25 December 2022)

Python

Meta-Essentials General purpose Software Open source

(https://www.erim.eur.nl/research-
support/meta-essentials/download/,

accessed on 26 December 2022;
https://www.meta-essentials.com,

accessed on 26 December 2022)

Excel files

https://aws.amazon.com/sagemaker/resources/
https://aws.amazon.com/sagemaker/resources/
https://github.com/pytorch/pytorch
https://github.com/esm-ispm-unibe-ch/cinema
https://github.com/esm-ispm-unibe-ch/cinema
https://doi.org/10.5281/zenodo.5604516
https://github.com/MathiasHarrer/Doing-Meta-Analysis-in-R
https://github.com/MathiasHarrer/Doing-Meta-Analysis-in-R
https://dmetar.protectlab.org/
https://github.com/CRSU-Apps/MetaDTA
https://github.com/CRSU-Apps/MetaDTA
https://crsu.shinyapps.io/dta_ma/
https://keras.io/
https://github.com/keras-team/keras
https://www.erim.eur.nl/research-support/meta-essentials/download/
https://www.erim.eur.nl/research-support/meta-essentials/download/
https://www.meta-essentials.com
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Table 2. Cont.

Name Domain Type (Not)Free (Not)Open Source Code Method/Language

metafor General purpose Software Open source
(https:

//www.jstatsoft.org/article/view/v036i03,
accessed on 27 December 2022)

R package

MetaInsight General purpose Web application Not Open; Freely
available

(https://crsu.shinyapps.io/metainsight,
accessed on 22 December 2022) Not described

metamisc General purpose Model/Method Open source

(https://cran.r-project.org/web/packages/
metamisc/index.html, accessed on 25

December 2022;
https://github.com/smartdata-analysis-
and-statistics/metamisc, accessed on 28

December 2022)

R package

MetaXL Evidence-based medicine
(EBM) Software Freely available (http://www.epigear.com/index_files/

metaxl.html, accessed on 27 December 2022) Excel files

Nested-Knowledge Evidence-based medicine
(EBM) Web application Not free

(https://nested-knowledge.com/nest/
qualitative/371, accessed on 26 December

2022)
Not described

netmeta General purpose Web application Open source

(https://cran.r-project.org/web/packages/
netmeta/index.html, accessed on 23

December 2022;
https://github.com/guido-s/netmeta,

accessed on 28 December 2022;
https://link.springer.com/book/10.1007/

978-3-319-21416-0, accessed on 26 December
2022; https:

//rdrr.io/cran/netmeta/src/R/netmeta.R,
accessed on 26 December 2022)

R package

OpenNN General purpose Tool Open source

(https://github.com/Artelnics/OpenNN,
accessed on 27 December 2022;

http://opennn.cimne.com/download.asp,
accessed on 28 December 2022)

ANSI C++

Pymeta Evidence-based medicine
(EBM) Tool Not Open (https://www.pymeta.com/, accessed on 28

December 2022 Python

https://www.jstatsoft.org/article/view/v036i03
https://www.jstatsoft.org/article/view/v036i03
https://crsu.shinyapps.io/metainsight
https://cran.r-project.org/web/packages/metamisc/index.html
https://cran.r-project.org/web/packages/metamisc/index.html
https://github.com/smartdata-analysis-and-statistics/metamisc
https://github.com/smartdata-analysis-and-statistics/metamisc
http://www.epigear.com/index_files/metaxl.html
http://www.epigear.com/index_files/metaxl.html
https://nested-knowledge.com/nest/qualitative/371
https://nested-knowledge.com/nest/qualitative/371
https://cran.r-project.org/web/packages/netmeta/index.html
https://cran.r-project.org/web/packages/netmeta/index.html
https://github.com/guido-s/netmeta
https://link.springer.com/book/10.1007/978-3-319-21416-0
https://link.springer.com/book/10.1007/978-3-319-21416-0
https://rdrr.io/cran/netmeta/src/R/netmeta.R
https://rdrr.io/cran/netmeta/src/R/netmeta.R
https://github.com/Artelnics/OpenNN
http://opennn.cimne.com/download.asp
https://www.pymeta.com/
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Table 2. Cont.

Name Domain Type (Not)Free (Not)Open Source Code Method/Language

PythonMeta Evidence-based medicine
(EBM) Tool Open source https://pypi.org/project/PythonMeta/,

accessed on 28 December 2022) Python

PyTorch Evidence-based medicine
(EBM) Tool Open source (https://github.com/pytorch/pytorch,

accessed on 28 December 2022) Python

scikit-learn General purpose Tool Open source
(scikit-learn/scikit-learn: scikit-learn:

machine learning in Python (github.com),
accessed on 21 December 2022)

Python

ShinyMDE genomics, molecular
genetics Tool Not Open; Freely

available
(https://hussain.shinyapps.io/App-1,

accessed on 21 December 2022) R package

Spark ML General purpose Tool Open source (https://github.com/apache/spark,
accessed on 22 December 2022) Java; Python; R

TensorFlow General purpose Tool Open source
(https:

//github.com/tensorflow/tensorflow,
accessed on 22 December 2022)

C++; Python

Torch General purpose Framework Open source (https://github.com/torch/torch7,
accessed on 22 December 2022)

C++11; Lua; LuaJIT, C;
CUDA and C++

Whyis General purpose All Open

(https://whyis.readthedocs.io/en/latest/
index.html, accessed on 22 December 2022;

https:
//github.com/tetherless-world/whyis,

accessed on 22 December 2022)

probabilistic knowledge
graphs by using Stouffer’s
Z-Method/ Python; Flask

framework; Fuseki; SPARQL;
Graph Store HTTP Protocol;

FileDepot Python library

Comprehensive gene
expression meta-analysis Biomedical Method Open No need Weighted Z-method/

survcomp R package

NeuroSynth Medical Framework Open (https://github.com/neurosynth, accessed
on 26 December 2022) naïve Bayes classification

Text-mining the neurosynth
corpus (NeuroSynth #2) Medical Method No need No need

unsupervised study/ Deep
Boltzmann machines for

text-mining

https://pypi.org/project/PythonMeta/
https://github.com/pytorch/pytorch
github.com
https://hussain.shinyapps.io/App-1
https://github.com/apache/spark
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/torch/torch7
https://whyis.readthedocs.io/en/latest/index.html
https://whyis.readthedocs.io/en/latest/index.html
https://github.com/tetherless-world/whyis
https://github.com/tetherless-world/whyis
https://github.com/neurosynth
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Table 2. Cont.

Name Domain Type (Not)Free (Not)Open Source Code Method/Language

Social brain (NeuroSynth #3) Medical Method No need
(http:

//neurosynth.org/analyses/terms/social/,
accessed on 28 December 2022)

Regions Of Interest (ROIs)
analysis

MetaCyto Biomedical Method No need
(http://bioconductor.org/packages/
release/bioc/html/MetaCyto.html,

accessed on 28 December 2022)

clustering methods with a
scanning method/R package

Automated meta-analysis of
the ERP literature Medical Tool Open

(https://erpscanr.github.io/, accessed on 28
December 2022;

https://github.com/ERPscanr/ERPscanr,
accessed on 28 December 2022)

text-mining and word
co-occurrence analyses

CancerMA Biomedical Tool Open (http://www.cancerma.org.uk, accessed on
28 December 2022) (not found)

HTML/CSS; Twitter
Bootstrapp;

Javascript/jQuery; Perl; R
package; Bioconductor

package

CancerEST Biomedical Tool Open
(http://www.cancerest.org.uk/help.html
http://www.cancerest.org.uk, accessed on

28 December 2022) (not found)

HTML/CSS; Twitter
Bootstrapp;

Javascript/jQuery; Perl; R
package; Bioconductor

package

Research Method
Classification General purpose Method No need No need Support Vector Models

AUTOMETA Medical Approach No need No need BERT-based model

http://neurosynth.org/analyses/terms/social/
http://neurosynth.org/analyses/terms/social/
http://bioconductor.org/packages/release/bioc/html/MetaCyto.html
http://bioconductor.org/packages/release/bioc/html/MetaCyto.html
https://erpscanr.github.io/
https://github.com/ERPscanr/ERPscanr
http://www.cancerma.org.uk
http://www.cancerest.org.uk/help.html
http://www.cancerest.org.uk
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The research for automation of meta-analyses in some studies is specialized to han-
dle strictly specialized issues such as the biomedical domain (5 articles), evidence-based
medicine (6 articles), genomics and molecular genetics (1 article), and medical (5 articles)
and metabolomic domain (1 article) (Table 2).

According to the findings of this overview, the types of research most frequently en-
countered to achieve automated meta-analysis are: the development and implementation of
appropriate tools (13 studies), the development and implementation of software (5 studies),
and the development of appropriate models and methods (7 studies). More analytically this
overview basically identified four types of applications related to supporting or developing
an automated meta-analysis. These are the following:

A Framework or Tool: this category includes the development of an integrated frame-
work or the development of a specific tool to support automated meta-analysis. Most of
the studies included in this review fall into this category.

A Package or Software: this category includes the development of package software
to support automated meta-analysis.

A Model, Method, or Approach: this category includes the development of models
and/or methods in the field of automated meta-analysis.

A Web application: This category includes web-based applications that implement
automated meta-analyses and are either already implemented or may potentially be imple-
mented in the future in clinical studies as well.

Some of the applications may be included in more than one category. Moreover, some
of them can be a complete implementation and include all of the above. More analytically,
it is worth noting that 2 studies ([10,52]) fully and comprehensively deal with the topic
under discussion here by presenting an integrated modeling and application framework
(Table 2).

Below are briefly described the applications found in this overview as classified based
on the above four categories.

4.1. Framework/Tool (Includes 16 Studies)

• Amazon SageMaker [30,31]

Description: Amazon SageMaker Studio is the first integrated development environ-
ment in the cloud for machine learning and is designed to integrate the following machine
learning workflows: data preparation, feature engineering, statistical bias detection, auto-
mated machine learning, training, hosting, ML explainability, monitoring, and machine
learning operations in one environment.

Features: The features available in Amazon SageMaker Studio include the following
issues: build, train, and deploy machine learning models quickly using Amazon SageMaker;
analyze, detect, and receive alerts relating to various business problems using machine
learning algorithms and techniques; improve productivity by training and fine-tuning
machine learning models in production.

Inputs: datasets; csv files; models.
Outputs: models; Python script; data flow; data.

• Caffe2 [32]

Caffe2 is Facebook’s in-house production framework for training and deploying large-
scale machine learning models. Caffe2 is a deep learning framework that provides an
easy and straightforward way for you to experiment with deep learning and leverage
community contributions of new models and algorithms.

Features: Caffe2 focuses on several key features required by products: performance,
cross-platform support, and coverage for fundamental machine learning algorithms and
multi-layer perceptions. The design involves a modular approach, where a unified graph
representation is shared among all backend implementations.

Inputs: Python and C++ files; models.
Outputs: everything.
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• CINeMA [33]

Description: the Confidence in Network Meta-Analysis (CINeMA) approach is broadly
based on the GRADE (Grading of Recommendations Assessment, Development and Eval-
uation) framework, with several conceptual and semantic differences [5]. It covers the
following domains: (i) within-study bias, (ii) reporting bias, (iii) indirectness, (iv) impreci-
sion, (v) heterogeneity, and (vi) incoherence. The reviewer’s input is required at the study
level. Then, CINeMA assigns judgments at three levels (no concerns, some concerns, or ma-
jor concerns) to each domain. Judgments across domains can be summarized to obtain four
levels of confidence (very low, low, moderate, or high) for each relative treatment effect.

Features: the CINeMA framework has been implemented in a freely available, user-
friendly web application aiming to facilitate the evaluation of confidence in the results
from network meta-analysis. The web application applies the Salanti approach and is
programmed in JavaScript, uses Docker, and is linked with R; in particular, packages meta
and netmeta are used, and an R package to calculate the contribution of studies in network
meta-analysis treatment effects.

Inputs: csv files.
Outputs: outputs a downloadable report with a summary of the evaluations.

• OpenNN [43]

Description: OpenNN is a software library that implements neural networks, a major
area of deep learning research.

Features: OpenNN includes: a multilayer perceptron software implementation; many
examples; unit testing.

Inputs: C++ code.
Outputs: data; plots.

• Pymeta [44]

Description: Pymeta is an online meta-analysis tool, as a web-based application it is
created and supported with PythonMeta, a Python package of meta-analysis.

Features: performs: combining effect measures (OR, RR, RD for count data and MD,
SMD for continuous data); heterogeneity testing (the Q/Chi-square test); subgroup analysis;
cumulative meta-analysis; and sensitivity analysis (one or two factors).

Inputs: Python code.
Outputs: data; plots; bar-lines.

• PythonMeta [45]

Description: PythonMeta package performs the meta-analysis on an open-access
dataset from COCHRANE..

Features: meta-analysis package by and for the Python language. This module was
designed to perform some evidence-based medicine (EBM) tasks, such as: combining
effect measures (OR, RR, RD, MD, SMD), heterogeneity testing (the Q/Chi-squared test),
subgroup analysis, and plots (forest, funnel, etc.).

Inputs: dataset from COCHRANE.
Outputs: data; plots.

• PyTorch [46]

Description: PyTorch is a deep learning research platform that provides maximum
flexibility and speed.

Features: PyTorch is a library that consists of the following components: torch which
is a Tensor library with strong GPU support; torch.autograd which is a tape-based auto-
matic differentiation library; torch.jit which is a compilation stack; torch.nn which is a
neural networks library deeply integrated with autograd designed for maximum flexibil-
ity; torch.multiprocessing which is Python multiprocessing useful for data loading and
Hogwild training; torch.utils which is a DataLoader; and other utility functions.

Inputs: Python code.
Outputs: data; plots.
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• scikit-learn [47]

Description: Scikit-learn is a Python library.
Features: it includes functions that are integral to the machine learning pipeline such

as data preprocessing steps, data resampling techniques, evaluation parameters, and search
interfaces for tuning/optimizing an algorithm’s performance.

Inputs: datasets.
Outputs: data; plots.

• ShinyMDE [48]

Description: ShinyMDE supports an automated meta-analysis of gene expression data
facilitating screening and downloading the results.

The tool handles processed and raw data generated from the most widely used data
platforms. In addition, the tool provides users with an option of choosing the method of
their choice from the list for meta-analysis.

Features: ShinyMDE consists of a web interface, a standalone version to work remotely,
and a database holding GPL files. The general workflow of the ShinyMDE system visualizes
the steps of the meta-analysis, which is carried out automatically once a user submits the
data and selects the necessary parameters.

Inputs: CSV and txt files.
Outputs: data; web.

• Spark ML [49]

Description: Spark is a unified analytics engine for large-scale data processing. The
package spark.ml aims to provide a uniform set of high-level APIs that help users create
and tune practical machine learning pipelines.

Features: Spark provides high-level APIs in Scala, Java, Python, and R, and an opti-
mized engine that supports general computation graphs for data analysis. It also supports
a rich set of higher-level tools including Spark SQL for SQL and DataFrames, pandas API
on Spark for pandas workloads, MLlib for machine learning, GraphX for graph processing,
and Structured Streaming for stream processing.

Inputs: Java and Python code.
Outputs: data results; plots.

• TensorFlow [50]

Description: TensorFlow 2 is an end-to-end, open-source machine learning platform
which operates as an infrastructure layer for differentiable programming.

Features: It combines the following key abilities: efficiently executing low-level tensor
operations on the CPU, GPU, or TPU; computing the gradient of arbitrary differentiable
expressions; scaling computation to many devices; and exporting programs (“graphs”) to
external runtimes such as servers, browsers, and mobile and embedded devices.

Inputs: Python and C++ code.
Outputs: data; graphs; and plots.

• Torch [51]

Description: Torch is not in active development. The functionality provided by the
C backend of Torch, which are the TH, THNN, THC, and THCUNN libraries, is actively
extended and re-written in the ATen C++11 (which is a new version of C++) library
(https://github.com/pytorch/pytorch/tree/master/aten, accessed on 30 December 2022).
ATen exposes all operators you would expect from torch7, nn, cutorch, and cunn directly
in C++11 and includes additional support for sparse tensors and distributed operations.
Thus, Torch is the main package in Torch7 where data structures for multi-dimensional
tensors and mathematical operations over these are defined. Moreover, it provides many
utilities for accessing files, serializing objects of arbitrary types, and other useful utilities.

Features: Torch includes the following libraries: Tensor Library, File I/O Interface
Library, and Useful Utilities. Moreover, Torch7 is a versatile numeric computing framework

https://github.com/pytorch/pytorch/tree/master/aten
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and machine learning library that extends Lua. Its goal is to provide a flexible environ-
ment to design and train learning machines. Flexibility is obtained via Lua, an extremely
lightweight scripting language. Torch7 can easily be interfaced to third-party software
thanks to Lua’s light interface.

Inputs: code; scripts.
Outputs: data results; plots.

• NeuroSynth [54]

Description: In this article the authors describe and validate an automated brain
mapping framework that uses text mining, meta-analysis, and machine learning techniques
to generate a large database of mappings between neural and cognitive states.

Features: in this article the authors describe and validate a framework for the brain
mapping, NeuroSynth, that takes an instrumental step towards automated large-scale
synthesis of the neuroimaging literature. NeuroSynth combines text mining, meta-analysis,
and machine learning techniques (naïve Bayes classification) to generate probabilistic
mappings between cognitive and neural states.

Inputs: data.
Outputs: data; plots.

• Automated meta-analysis of the ERP literature [58]

Description: event-related potentials (ERP) are a common signal of analysis in medicine
experiments, with a large existing literature of ERP-related work. This work uses auto-
mated literature collection and the text-mining of research articles to summarize the ERP
literature, examining patterns and associations within and between components.

Features: all code for this project is written in the Python programming language
and uses the LISC [63] Python tool to collect and analyze scientific literature. The data is
collected from Pubmed, a database of biomedical literature. From there, the authors use
text-mining and word co-occurrence analyses to derive data-driven summaries for each
ERP, as well as to compare across these profiles to summarize patterns across the literature.

Inputs: Python code.
Outputs: data; plots.

• CancerMA [59]

Description: CancerMA is an online, integrated bioinformatic pipeline for automated
identification of novel candidate cancer markers/targets. CancerMA operates by means
of meta-analyzing expression profiles of user-defined sets of biologically significant and
related genes across a manually curated database of 80 publicly available cancer microarray
datasets covering 13 cancer types. A simple-to-use web interface allows experts to initiate
new analyses as well as to view and retrieve the meta-analysis results.

Features: CancerMA consists of a web interface, a set of pipelined analyses, and two
relational databases, one holding the analysis data for each user and another one holding
the gene annotation data.

Inputs: R code and data.
Outputs: data; plots.

• CancerEST [60]

Description: CancerEST was developed as a user-friendly and intuitive tool to compute
cancer marker/target potential as well as to obtain comprehensive expression profiles and
information about the tissue specificity for genes of interest to biologists/clinicians. The
CancerEST web interface for viewing the analysis results consists of three sections: the
overview, the information, and the results section. The overview section provides basic
information about the submitted job and a brief explanation on how to interpret the results.

Features: CancerEST consists of a web interface, pipelined analyses, and three rela-
tional databases; one holding the analysis data, one holding the Unigene data, and another
one holding the gene annotation data.

Inputs: R code and data.
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Outputs: data; plots.

4.2. Package/Software (Includes 7 Studies)

• Amamida R Package [29]

Description: the Amanida R package allows a meta-analysis of metabolomics data,
combining the results of different studies addressing the same question. The Amanida
package contains a collection of functions for computing a meta-analysis in R only using
significance and effect size. It covers the lack of data provided on metabolomic studies.
Amanida also computes qualitative meta-analysis.

Features: Amanida is a meta-analysis approach using only the most reported statistical
parameters in this field: P-value and fold-change. The P-values are combined via Fisher’s
method and fold-changes by averaging, both weighted by the study size.

Inputs: supported files are csv, xls/xlsx, and txt.
Outputs: the Amanida package includes several visualization options: a volcano plot

for quantitative results, a vote plot for total regulation behaviors for each compound, and
an explore plot of the vote-counting results.

• dmetar [34]

Description: the dmetar package using the meta, metafor, netmeta, and meta-SEM
packages as a base is provided as a companion to the R package to support more functions
that improve the workflow of a meta-analysis.

Features: dmetar provides tools for various stages of the systematic review process,
e.g., visualizing the risk of bias, standard inverse variance meta-analysis, network meta-
analysis, three-level meta-analysis, and exploration of the between-study heterogeneity.

Inputs: R code.
Outputs: data results.

• DTA MA (Diagnostic Test Accuracy Meta-Analysis) (MetaDTA) [35]

Description: MetaDTA is an online interactive application for conducting the meta-
analysis of diagnostic test accuracy studies (DTA), requiring no specialist software for the
user to install, but leveraging established analysis routines (specifically the lme4 package
in R).

Features: the application allows users to upload their own data, customize SROC
plots, obtain statistics such as sensitivity and specificity, and conduct sensitivity analyses.
All plots and tables are downloadable.

The tool is interactive and uses an intuitive “point and click” interface and presents
results in visually intuitive and appealing ways. It is hoped that this tool will assist those
in conducting a DTA meta-analysis who are not statistical experts, and, in turn, increase
the relevance of published meta-analyses, and in the long term contribute to improved
healthcare decision making as a result.

Inputs: csv files.
Outputs: data results; plots.

• Keras [36]

Description: Keras is a library that provides highly powerful and abstract building
blocks to build deep learning networks. It is a deep learning API written in Python, running
on top of the machine learning platform TensorFlow. It was developed with a focus on
enabling fast experimentation.

Features: Keras supports both CPU and GPU computation and is a great tool for
quickly prototyping ideas. It reduces the developer’s cognitive load to free him up to focus
on the parts of the problem that really matter. It also adopts the principle of the progressive
disclosure of complexity. Finally, it provides industry-strength performance and scalability.

Inputs: Python code.
Outputs: data results.

• Meta-Essentials [37]
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Description: this is a free excel tool for meta-analysis that facilitates the integration
and synthesis of effect sizes from different studies.

Features: Meta-Essentials automatically calculates effect sizes from a wide range
of statistics and can be used for a wide range of meta-analysis applications, including
subgroup analysis, moderator analysis, and publication bias analysis.

Inputs: xls files.
Outputs: xls files.

• metafor [38]

Description: The metafor package is a free and open-source add-on for conducting
meta-analyses with the statistical software environment R.

Features: the package consists of a collection of functions that allow the user to
calculate various effect sizes or outcome measures, fit equal-, fixed-, random-, and mixed-
effects models to such data, carry out moderator and meta-regression analyses, and create
various types of meta-analytical plots.

Inputs: R code.
Outputs: data results; plots.

• MetaXL [41]

Description: MetaXL is an add-in for meta-analysis in Microsoft Excel for Windows.
It supports all major meta-analysis methods, plus, uniquely, the inverse variance hetero-
geneity and quality effects models. Starting with v4.0, it also implements a powerful,
yet easy-to-use way to perform network meta-analyses. Output is in table and graphical
formats.

Features: MetaXL employs almost the same meta-analysis methods that can be ac-
cessed in general statistical packages and in dedicated meta-analysis software.

Inputs: Excel files.
Outputs: Excel files.

4.3. Model/Method/Approach (Includes 10 Studies)

• A Logic of the Meta-Analysis approach [28]

Description: in this position paper, the authors propose, the first as far as is known, an
approach for automated reasoning in meta-analyses.

Features: thus, they considered the first steps towards a logic for performing auto-
mated meta-analysis based on a finite class of confidence intervals and subset relationships
as background knowledge.

Inputs: A machine learning problem.
Outputs: The solution of the problem.

• Causal Learning Perspective [5]

Description: this work demonstrates the efficacy of using causal models to process
the outputs of natural language processing (NLP)-based data extraction and achieve the
goal of meta-analysis. In this article the authors initially extract information from scien-
tific publications written in natural language. Sequently, from a novel causal learning
perspective, they then propose to frame automated meta-analysis—based on the input of
the first step—as a multiple causal inference problem where the summary effect is obtained
through intervention.

Features: the authors of this article worked toward automating meta-analysis with a
focus on controlling for risks of bias. Thus, they proposed the Multiple Causal inference
for automated Meta-Analysis (MCMA). MCMA employs existing NLP systems for the
extraction of risks of bias and therapeutic association, which are then used to estimate
the summary therapeutic association across several Randomized Clinical Trials (RCTs).
More analytically, from this perspective, the authors suggest to frame automated meta-
analysis—based on the input of the first step—as a multiple causal inference problem
where the summary effect is obtained through intervention. Built upon existent efforts for
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automating the primary steps of the meta-analysis, the proposed approach achieves the
goal of automated meta-analysis and largely reduces the human effort involved.

Inputs: free text and data.
Outputs: data; plots.

• DIAeT [11]

Description: DIAeT (Dynamic Interactive Argumentation Trees) is a method of syn-
thesizing the evidence available in clinical trials in an ad-hoc and on-demand manner that
automatically organizes such evidence into a hierarchical argument that recommends a
treatment as superior to another based on a series of key dimensions corresponding to the
clinical points of interest.

Features: the DIAeT method is an argumentation-based method that contributes to
supporting the synthesis of clinical trial evidence. A limitation of the method is that it relies
on a manually populated knowledge base. This problem can be addressed by applying
natural language processing methods to extract relevant information from publications.
The method has been implemented as a web tool.

Inputs: SPARQL queries.
Outputs: results on the web.

• metamisc [40]

Description: the metamisc package includes the meta-analysis of diagnostic and
prognostic modeling studies. In addition, it summarizes estimations of prognostic factors,
diagnostic test accuracy, and prediction model performance. Finally, it validates, updates,
and combines published prediction models. It also develops new prediction models with
data from multiple studies.

Features: This R package deals with the incomplete availability of study-specific
results (performance estimates and their precision), and produces summary estimates of
the c-statistic and the observed: the expected ratio and the calibration slope. Furthermore,
it tackles the implementation of frequentist and Bayesian meta-analysis methods and
proposes novel empirically based prior distributions to improve the estimation of between-
study heterogeneity in small samples.

Inputs: R code.
Outputs: data results.

• Comprehensive gene expression meta-analysis [53]

Description: this approach plans a comprehensive gene expression meta-analysis
that labels novel immune signatures in patients with rheumatoid arthritis. This pattern
suggests meta-analysis to recognize novel gene signatures that take care of providing
mechanistic visions into disease initiation, progression, and the development of better
therapeutic attacks.

Features: the aim of the meta-analysis method was firstly to extract the intersected
genes, then to exclude genes with inconsistent expression, and finally to test them for
significance. The weighted Z-method was used to combine the individual q-values of
each gene [64] and was implemented using an R package (https://github.com/bhklab/
survcomp, accessed on 28 December 2022), [65].

The meta-analysis algorithm was implemented using R.
Inputs: R code.
Outputs: data.

• Text-mining the neurosynth corpus (NeuroSynth #2) [55]

Description: in this work the authors demonstrate that an unsupervised study of
the NeuroSynth text corpus using Deep Boltzmann Machines (DBMs) can be effectively
employed to learn the distribution of the text corpus. The results of this study show some
of the clusters obtained when k-means clustering is applied to word embeddings obtained
from the DBM model. The clusters display clear semantic context.

https://github.com/bhklab/survcomp
https://github.com/bhklab/survcomp
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Features: a two-layer DBM was employed consisting of a visible layer of multinomial
visible units followed by two binary hidden layers. During pre-training and model selection,
DBMs were trained. Briefly, annealed importance sampling was employed to estimate the
partition function for each DBM. Thus, the proposed DBM model can be used to obtain
both word as well as document embeddings in a high-dimensional vector space.

Inputs: data.
Outputs: data; plots.

• Social brain (NeuroSynth #3) [56]

Description: how the human brain processes social information is an increasingly
researched topic in psychology and neuroscience, advancing our understanding of basic hu-
man cognition and psychopathologies. In this study, the authors investigated whether these
brain regions are evoked by the mere presence of social information using an automated
meta-analysis and confirmatory data from an independent study. Results of 1000 pub-
lished fMRI studies containing the keyword of “social” were subject to an automated
meta-analysis. The social/non-social contrast in the independent study showed a strong
resemblance to the NeuroSynth map. The Region Of Interest (ROI) analyses revealed that a
social effect was credible in most of the NeuroSynth regions in the independent dataset.

Features: the first part of the analyses of this study aimed to identify the brain regions
that have shown significant activation in published fMRI studies with a prominent social
element in the literature. Using the keyword “social” yielded 1000 published fMRI studies
to include in an automated meta-analysis on neurosynth.org. The authors used the reverse
inference map of the results of the automated meta-analysis, which represent z-scores
corresponding to the likelihood that the term “social” is used in a study given the presence
of the reported activation. The significant brain regions showing up in the reverse inference
map represent those that are more likely to be reported in “social” studies than in “non-
social” studies.

Inputs: data.
Outputs: data; plots.

• MetaCyto [57]

Description: the authors of this article developed MetaCyto for the automated meta-
analysis of flow cytometry and mass spectrometry (CyTOF) data.

Features: by combining clustering methods with a scanning method, MetaCyto can
identify commonly labeled subsets of cells, thereby enabling meta-analysis. Thus, the
application of MetaCyto to a set of cytometric studies allowed for the identification of cell
populations that show differences in abundance between demographic groups.

Inputs: R package.
Outputs: data; plots.

• Research Method Classification [61]

Description: this research work presents a prototype that applies deep transfer learning
to predict the research methods in scientific publications, which facilitates an automatic
discovery of crucial research information from large numbers of publications. The current
state-of-the-art for classification of research methods uses Support Vector Models (SVMs).

This article provides the following research contributions: (a) developing an artifact
that uses deep transfer learning and outperforms the state-of-the-art of research method
classification, (b) using full papers and classifying them into predefined research methods,
and (c) demonstrating the performance based on an extensive Information Systems corpus.

Features: the proposed approach outperforms state-of-the-art research method classifi-
cation that deploys the Support Vector Model (SVM). The proposed deep transfer learning
models can lead to a better recognition of research methods than shallower word em-
bedding approaches such as word2vec or GloVe. The results illustrate the potential of
establishing semi-automated methods for meta-analysis.

Inputs: free text and data.
Outputs: data.
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• AUTOMETA [62]

Description: the proposed system for automating meta-analysis employs existing
natural language processing methods for identifying Participants, Intervention, Control,
and Outcome (PICO) elements. This system can perform advanced meta-analyses by
parsing numeric outcomes to identify the number of patients having certain outcomes. In
this study, the authors used the BERT-based approach which is a general-purpose language
model trained on a large dataset and uses an attention mechanism that learns contextual
relations between words in a text.

Features: the proposed system consists of four major components: crawling PubMed
articles, NLP module, creating structured data, and aggregation and visualization. First,
a user queries the PubMed database and related articles are returned. Abstracts are
then extracted from the articles and passed to the NLP module for preprocessing and
extraction of PICO elements. The extracted data are then converted into a structured form.
It also parses numeric texts to identify the number of patients having certain outcomes.
Identification of the number of patients having certain outcomes is important for statistical
analysis to determine the effectiveness of an intervention.

Inputs: free text and data.
Outputs: data.

4.4. Web Application and Integrated Systems (Includes 5 Studies)

• Automated meta-analysis of biomedical texts [10]

Description: in this research article the authors present the results of the automated
analysis of the data extracted from abstracts of scientific articles available in PubMed. These
results demonstrate the associations between types of tumors and the most used methods
for their cell-based immunotherapy.

Features: the proposed method automates the meta-analysis by standardizing the
process in a series of steps. In summary, the following are mentioned: (a) crawling abstracts
from Pubmed via the Scrapy based web-crawler, (b) rich linguistic features extraction
by using the ISANLP framework which is a Python library to obtain the morphology,
syntax parsing, and semantic role labeling features [66], (c) combining tumor and cell
dictionaries and morphology-based rules to extract entity candidates from the abstracts,
d) using syntactic relations and constructing all their possible combinations and applying
models (e.g., UMLS Metathesaurus, MetaMap [67] Fasttext model [68]) to map the terms,
(e) using syntactic relations and semantic roles to reveal the links between entities and their
roles in the sentence, (f) applying a pre-trained sequence-labeling machine learning model
to filter uninformative entity candidates, and g) computing co-occurrence statistics and
mining associative rules for the extracted entities [69,70] to obtain stable combinations of
tumors, therapy, and cell types. We used the Eclat algorithm [71] because of its scalability.

Inputs: biomedical texts; abstracts of scientific articles available in PubMed; Python code.
Outputs: data; plots.

• MetaInsight [39]

Description: MetaInsight is a new tool that is freely available and that conducts
network meta-analysis (NMA) via the web.

Features: MetaInsight is a web-based tool allowing users with only standard internet
browser software to be able to conduct NMAs using an intuitive “point and click” interface
and present the results using visual plots.

Inputs: .csv files.
Outputs: data results; plots.

• Nested-Knowledge [72]

Description: Nested Knowledge offers a comprehensive software platform for system-
atic literature review and meta-analysis.
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Features: the software is composed of two parts which work in tandem. Search, screen,
tag, and extract data with AutoLit, and visualize, analyze, publish, and share insights
with Synthesis.

Inputs: RIS files.
Outputs: data results; plots; RIS or nBIB files.

• netmeta [42]

Description: an R package for frequentist meta-analysis, this has a comprehensive set
of functions providing a lot of methods for network meta-analysis.

Features: this package supports a comprehensive set of functions providing frequen-
tist methods for network meta-analysis such as: the frequentist network meta-analysis;
the net heat plot and design-based decomposition of Cochran’s Q; the measurements of
characterizing the flow of evidence between two treatments; the ranking of treatments
based on the frequentist analogue of SUCRA; the partial order of treatment rankings and
the Hasse diagram; and the contribution matrix, etc.

Inputs: R code.
Outputs: data results.

• Whyis [52]

Description: Whyis is the first framework for creating custom provenance-driven
knowledge graphs. Whyis knowledge graphs are based on nanopublications, which
simplify and standardize the production of structured, provenance-supported knowledge
in knowledge graphs.

To create probabilistic knowledge graphs, Whyis [52] implements a method of auto-
mated meta-analysis. The authors refined the methods used in [73] by using Stouffer’s
Z-Method [64].

Features: Whyis is written in Python using the Flask framework. The RDF database
used by default is Fuseki. Whyis uses the SPARQL Query, Update, and Graph Store HTTP
Protocol. Storage is provided using the FileDepot Python library to provide the file-based
persistence of nanopublications and uploaded files. Whyis also relies on Celery which is a
task queuing system that can be scaled by adding more task workers on remote machines.
Thus, knowledge graph developers create their knowledge graphs by generating a Python
module that contains the configuration, templates, and code adapted to their purposes.

Inputs: Python code and script modules.
Outputs: Views; data; plots.

5. Discussion
5.1. Purpose of This Study

The aim of this article is to discover the most modern and complete tools used to
automate the conduct of meta-analyses of clinical trials. In this way, it will contribute, on
the one hand, to the identification and promotion of the most suitable candidates, and on
the other hand, to the development of research in this field.

5.2. Benefits Arising from Automated Meta-Analysis

The evaluation of automated meta-analysis results is presented in some
studies [5,9–11,29,37]. Their approaches show positive and promising results in the feasi-
bility, acceptance, reliability, and time consumption. More analytically, the most important
benefits are the ability to process large data sets in shorter times without altering expert
confidence in the methodological and scientific rigor [6].

5.3. Comparison of Systems and Tools Currently Available

Built upon existent efforts for automating the basic steps of meta-analysis, the pro-
posed approaches achieve the goal of automated meta-analysis and largely reduce the
human effort involved [5].
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However, although important steps have been taken to date, currently there is no
application that can fully replace the human effort in conducting a systematic review to
draw conclusions from clinical trials. Thus, while the other tasks of a systematic review
have significantly developed, the automation of meta-analyses is still far from being able
to significantly support and facilitate the work of researchers, freeing them from manual,
difficult, and time-consuming work.

At the same time, it is worth noting that most of the tools are either open source or
some are freely available (Table 2). Therefore, the strengthening of research in this field
should be important in the immediate future.

The benefits of automating meta-analysis are expected to be particularly important
in all areas of evidence-based medicine and especially in cutting edge areas of medical
research such as gene therapy and cancer treatment.

5.4. Limitations of This Study

In addition, this overview has some methodological limitations. Initially the author
had difficulty in identifying suitable articles. This limitation was partially addressed using
snowballing methods. Secondly, the author included articles written only in English.

6. Conclusions and Future Directions

ML is the fastest growing field in computer science, and Health Informatics is amongst
the greatest application challenges, providing significant benefits in improved medical
prognosis, diagnosis, and pharmaceutical development [74].

Meta-analysis is a systematic approach for understanding a wonder by resolving
the results of many previously published exploratory studies. It is used mainly to ex-
tract knowledge and decisions about the summary effect of situations, interventions, and
treatments in medicine. Unfortunately, meta-analysis involves excellent human exertion,
rendering a process that is extremely inefficient and vulnerable to human bias. To overcome
these issues, many researchers are studying and proposing architectures, methods, and
tools to automate meta-analysis [5]. The researchers’ main goal is to provide a system
for automating the meta-analysis process as much as possible to reduce the time taken in
conducting a meta-analysis [62].

Moreover, the development and application of ML in the meta-analysis of clinical
trials is a promising approach to implement more effective daily clinical practices.

However, extensive future studies are needed to validate the performance of ML tools
in their application domain.
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