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Abstract: Chest X-ray (CXR) is one of the most common radiological examinations for both nonemer-
gent and emergent clinical indications, but human error or lack of prioritization of patients can hinder
timely interpretation. Deep learning (DL) algorithms have proven to be useful in the assessment
of various abnormalities including tuberculosis, lung parenchymal lesions, or pneumothorax. The
deep learning–based automatic detection algorithm (DLAD) was developed to detect visual patterns
on CXR for 12 preselected findings. To evaluate the proposed system, we designed a single-site
retrospective study comparing the DL algorithm with the performance of five differently experienced
radiologists. On the assessed dataset (n = 127) collected from the municipal hospital in the Czech
Republic, DLAD achieved a sensitivity (Se) of 0.925 and specificity (Sp) of 0.644, compared to boot-
strapped radiologists’ Se of 0.661 and Sp of 0.803, respectively, with statistically significant difference.
The negative likelihood ratio (NLR) of the proposed software (0.12 (0.04–0.32)) was significantly
lower than radiologists’ assessment (0.42 (0.4–0.43), p < 0.0001). No critical findings were missed by
the software.

Keywords: artificial intelligence; computer-aided detection; deep learning; chest X-ray; patient
prioritization

1. Introduction

CXR is one of the key tools for the early detection and evaluation of respiratory disease
and other acute pulmonary findings [1–3]. The current model, which could be described
as first in, first out (FIFO), suggests that patients with more significant or urgent needs
are not prioritized for radiographic description [4]. Despite the widespread use of patient
prioritization tools (PPTs) in healthcare services [5–7], the existing literature has focused
primarily on the emergency department setting [8–10].

Proposed DLAD is a software tool that identifies and prioritizes scans with acute
findings for evaluating radiologists. The aim of this study is to verify the effectiveness
of the software before deploying to clinical workplace, to validate the initial results of
the prioritization model for patient triage based on features extracted by using DL and to
monitor the possible changes in the user workflow.

2. Background

The use of DL in radiology has been a subject of active interest and research in recent
years. Approximately 2,500,000 CXRs were performed in the Czech Republic in 2020,
making it the most commonly used radiological examination after dental X-rays [11].
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2.1. Literature Review Methodology

The aim of the initial literature review was to establish the basic premises of computer-
aided detection/diagnosis, to analyze the methodology of software evaluation, and to
define the area of interest for comparison of the DLAD software with similar medical
devices. The primary sources of initial review include the website Grand Challenge:
AI for Radiology (https://grand-challenge.org/aiforradiology/ (accessed on 22 Novem-
ber 2022)). As a secondary source, we used the free full-text archive PubMed (https:
//pubmed.ncbi.nlm.nih.gov/ (accessed on 22 November 2022)) with the keywords “artifi-
cial intelligence”, “deep learning”, “computer-aided diagnosis”, “chest X-ray”, “chest radio-
graph” and “detection”. Given the reported inaccuracy of publicly available datasets [12]
and their unsuitability for designing clinically robust models [13], we decided to exclude
studies that leveraged these data as a training or test set. The complete analysis of relevant
studies for comparison with the DLAD system is available in the Table A1.

2.2. Related Works

Previous research suggests that DL algorithms can perform as well as, or in some
cases better than, a radiologist in recognizing certain findings on a CXR [14–16]. Currently,
the most promising results of AI versus radiologist are in detecting isolated findings such
as tuberculosis [17,18] or lung parenchymal lesions [19–23]. DL models can achieve solid
results compared to a radiologist in recognizing individual pathologies, but to date only
few studies [24–27] have compared DL-based solutions to a radiologist in a setting where a
central reader determining ground truth has access to clinical information about the patient
as it would in real life.

A practical approach is to ask how AI can help the radiologist. Recent studies have
shown that complex DL models have significantly improved chest X-ray interpretation
by radiologists and have been well received by clinicians [25,28]. Another promising real-
world use case for DL in the context of CXR is triage (prioritization) of patients to reduce
report turnaround time for critical findings [29].

3. Software

DLAD (Carebot AI CXR v1.22) is a software that assists radiologists in the interpreta-
tion of CXRs in posterior–anterior (PA) or anterior–posterior (AP) projections. By utilizing
DL algorithms, the solution automatically detects abnormality based on visual patterns
for the following findings: atelectasis, consolidation, cardiomegaly, mediastinal widening,
pneumoperitoneum, pneumothorax, pulmonary edema, pulmonary lesion, bone fracture,
hilar enlargement, subcutaneous emphysema, and pleural effusion. (Standardized descrip-
tions of individual findings were determined by discussion with individual annotators
involved in the development of the DLAD software. The exact specifications are included
in the user manual provided to all collaborating radiologists.)

3.1. Model Architecture

For image recognition and classification tasks, various convolutional neural network
(CNN) architectures (shown in Figure 1) have proven to be successful. The standard archi-
tecture includes several convolutional layers that segment the image into small pieces that
can be easily processed [30]. Each image is first segmented into light or dark (or specifically
coloured) areas, edges in different orientations, patterns, etc., then fused into simple shapes,
and finally merged into recognizable complex features in subsequent layers [31].

https://grand-challenge.org/aiforradiology/
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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Figure 1. The CNN architecture consists of convolutional and pooling layers and fully connected
output layer at the end to provide the final prediction.

When training conventional CNNs, data scientists initially train the model with
different hyperparameters to see which combinations perform the best. The optimal model
is frequently determined either through a straightforward validation on test data or by
more rigorous cross-validation [32,33]. Model soups, a recent discovery by [34], are formed
by averaging the weights of several fine-tuned models rather than combining each of their
separate outputs. The outcome is a single model that represents the average of various
models with diverse hyperparameter configurations [34]. Additionally, model soups boost
resilience in the same way that ensemble approaches do [35]. The proposed DLAD (Carebot
AI CXR v1.22) leverages the novel model soup approach. The in-depth architecture of the
deep neural networks used is not provided due to the commercial nature of the software.

3.2. Datasets

Anonymized CXRs from sites in Europe, Asia, and North America were used in the de-
velopment of DLAD. The use of CXR scans from multiple workplaces is intended to reflect
the variability in the quality of screening between hospitals and local population charac-
teristics [36,37]. This approach allows the DL model to adapt to new conditions [38,39].
Patients under 18 years of age were excluded from the dataset, as were images of poor
quality or incorrect projection. Collected DICOM images were annotated by a team of
22 radiologists with experience ranging from one to more than 10 years. The consensus
on the normal/abnormal label, with regard to abovementioned 12 preselected findings,
from the three annotating radiologists was required to establish ground truth. In case of
disagreement between annotating radiologists for the label normal/abnormal, the image
was not included in the training set.

3.3. Internal Test

For the initial internal test, we used 397 CXRs that were not observed during the model
training. Selected images were retrospectively assessed by three independent radiologists.
The ground truth was determined by 100% agreement. The results of the internal test are
shown in Table 1. Figure 2 shows an image involving a rib fracture that DLAD incorrectly
classified as a scan without any abnormality.

Of the selected images, 213 (53.65%) were reported as normal and 184 (46.35%) as
abnormal. DLAD software correctly interpreted 338 images (85.1%), with only one im-
age resolving in a false negative outcome (FNR = 0.0054). A higher false positive rate
(FPR = 0.2582) is an expected occurrence. Considering that DLAD software is intended to
serve as a decision support system, this outcome is considered rather desirable.

Table 1. Performance of DLAD during internal test.

n 397 CXRs (Abnormal: 184, Normal: 213)
Sensitivity 0.995
Specificity 0.742
False Positive Rate 0.258
False Negative Rate 0.005
False Discovery Rate 0.231
Balanced Accuracy 0.869
F1 Score 0.867
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Figure 2. Confusion matrix and a false negative image that DLAD incorrectly classified as a true
negative during the internal test. The CXR scan in high quality can be found in the Appendix A
(Figure A1).

4. Methodology

The purpose of our study is to provide evidence that the investigated pre-certification
medical device (shown in Figure 3) meets the requirements in accordance with its intended
use. Given this, a retrospective study was performed to evaluate the clinical effectiveness
on prospectively collected CXRs. The evaluation of DLAD performance compared to that of
radiologists in standard clinical practice was set as the primary endpoint of the study. (The
methodology and statistical evaluation was designed in collaboration with the Institute of
Biostatistics and Analysis, Ltd.)

Figure 3. User interface of DLAD software implemented in PACS (CloudPACS by OR-CZ).

4.1. Data Source

To collect the CXR data for the retrospective study, we addressed a municipal hospital
in the Czech Republic that provides healthcare services to up to 130,000 residents of a
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medium-sized city (approximately 70,000 inhabitants) and the surrounding area. Pediatric
CXR images (under 18 years of age), scans with technical problems (poor image quality,
rotation), and images in lateral projection were excluded from the analysis. In total, 127
anonymized CXR images (Table 2) were prospectively collected between August 15 and 17,
2022, and subsequently submitted to five independent radiologists of varying experience for
annotation. The selected radiologists were asked to assess whether the CXR image shows
any of the 12 abnormalities mentioned in the Software section. The assessed annotators
had no knowledge of the patient’s history or previous or follow-up examinations. This
enabled an objective comparison of the results with the DLAD software’s assessment.
The radiologists were differently experienced: #5f0 and #442 were junior radiologists with
less than five years of experience, #c8a was a radiologist with more than five years of
experience, and #630 and #24a were heads of the radiology department with more than 10
and 20 years of experience, respectively.

Table 2. Patient demographic data and findings prevalence.

Demographic Data n (%)

Patient sex
Female 72 (56.7%)
Male 55 (43.3%)

Patient age (yrs.)
18–30 6 (4.7%)
31–50 15 (11.8%)
51–70 50 (39.4%)
70+ 56 (44.1%)

Abnormality distribution (GT)
Normal 87 (68.5%)
Abnormal 40 (31.5%)

Prevalence of individual pathologies (GT)
Cardiomegaly 24 (18.9%)
Consolidation 18 (14.2%)
Pleural effusion 12 (9.4%)
Pulmonary lesion 9 (7.1%)
Pulmonary edema 4 (3.1%)
Atelectasis 3 (2.4%)
Fracture 2 (1.6%)
Hilar enlargement 2 (1.6%)

4.2. Ground Truth

A head of the radiology department with more than 20 years of experience and knowl-
edge of the local specifics (awareness of the utilized X-ray machines and their quality) was
appointed as a central reader to determine the ground truth. Central reader used the pa-
tient’s previous and follow-up examinations of various modalities (computed tomography,
ultrasound, magnetic resonance imaging) and, where appropriate, the collateral patient
records from other examining physicians (history, spirometry, etc.). The availability of
supporting information has an impact on reducing uncertainty [37,40,41].

4.3. Objectives

The primary objective was to evaluate the performance of the DLAD compared to
radiologists’ assessment in routine clinical practice. Our secondary objective was the com-
parison of performance of the DLAD and individual radiologists with different experience.
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4.4. Statistical Analysis

DLAD performance was quantified by means of sensitivity (Se) and specificity (Sp),
positive (PLR) and negative likelihood ratio (NLR), and positive (PPV) and negative
predictive value (NPV). Se and Sp are related to the rate of true positive and false pos-
itive cases, respectively. Their mutual relations are expressed by PLR = Se/(1−Sp) and
NLR = (1−Se)/Sp. The likelihood ratios (LRs) depend only on Se and Sp and are equivalent
to the relative risk. Higher PLR and lower NLR are desirable. Predictive values (PVs)
indicate the clinical accuracy of the diagnostic test. PV depends on Se and Sp and also
on the prevalence of the disease in the population. A paired design was applied to the
data, i.e., all images were evaluated by both DLAD and radiologist, and compared with the
status given by ground truth. Furthermore, balanced accuracy (BA = (Se + Sp)/2 and F1
score F1 = 2TP/(2TP + FP + FN) were calculated and compared.

The primary objective was to compare DLAD performance against clinical practice.
As all images were evaluated by all assessed radiologists, the clinical practice was simulated
by generating 10,000 randomly selected subsets of size n = 127 by using bootstrap, with each
image in each dataset evaluated by a randomly selected radiologist. Radiologists were
randomly assigned, all with equal probability. The statistics were calculated in these
datasets and the average performance in clinical practice was expressed and compared
with DLAD results. The average Se, Sp, and PVs were compared by using a one-sample
binomial test against the DLAD values; LRs were compared by using a one-sample t-test.

The analysis of the secondary objective (comparison of (1) DLAD against the (2)
individual radiologists) consisted of the estimation of the parameters above and their
statistical comparison by using confidence intervals (CI) and p-values. The procedure
to compare the statistics consisted of (i) solving the global hypothesis test to an α error
calculating the Wald test statistic (e.g., H0 : (Se1 = Se2 and Sp1 = Sp2) vs. H1 : (Se1 6= Se2
and/or Sp1 6= Sp2)) and if significant (ii) solving the two individual hypothesis tests
(e.g., H0 : Se1 = Se2 and H0 : Sp1 = Sp2) along with a multiple comparison method
(e.g., McNemar with continuity correction for Se and Sp, Holm method for LRs, and
weighted generalized score statistics for PVs, respectively) to an α error. Differences among
radiologists and DLAD were visualized by using forest plots. Analysis was done in R
software using the compbdt package [42]. All tests were performed as two-tailed at the 5%
significance level.

5. Results

A total of 127 images with established ground truth were evaluated: 40 (31.5%) with a
finding and 87 (68.5%) without any finding. The DLAD correctly identified 37 images as
abnormal and 56 images as normal (73.2% in total). A total of 31 (24.4%) normal images
were incorrectly classified as abnormal. The higher false positive rate was expected since
DLAD was trained to assign even suspect findings as abnormal. Another three (2.4%,
Figures A2–A4) images were incorrectly classified as without any finding, even though
they were with findings (false negative rate) (Table 3).

Table 3. DLAD vs. Ground truth.

GT: Abnormal GT: Normal Total

AI: Abnormal 37 (29.1%) 31 (24.4%) 68 (53.5%)
AI: Normal 3 (2.4%) 56 (44.1%) 59 (46.5%)
Total 40 (31.5%) 87 (68.5%) 127 (100%)

Applying the DLAD software, sensitivity reached a value of 0.925 (95% CI 0.804–0.977)
and specificity 0.644 (0.539–0.737). In bootstrap-simulated clinical practice (where the im-
ages were evaluated by randomly selected radiologists with different experience), the sen-
sitivity was 0.661 (0.572–0.743), and the specificity was 0.803 (0.723–0.868). DLAD showed
a statistically higher sensitivity (p < 0.0001) and a statistically lower specificity (p = 0.0001),
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i.e., DLAD assessed more images without any finding an abnormality. The DLAD PLR (2.6
(1.9–3.5)) was statistically significantly lower (i.e., worse) than radiologists’ assessment (3.59
(3.44–3.73), p < 0.0001) and the NLR (0.12 (0.04–0.32)) was significantly lower (i.e., better)
than radiologists’ assessment (0.42 (0.4–0.43), p < 0.0001). The PPV, i.e., the probability
of a positive finding if an image is actually abnormal, was 0.544 (0.427–0.657) for DLAD
and 0.614 (0.524–0.699) for radiologist assessment. There was no statistically significant
difference in this parameter (p = 0.13). The NPV (the probability that a patient is without
any finding when the image was classified as normal) was 0.949 (0.863–0.985) for DLAD
and 0.843 (0.767–0.901) for radiologist assessment, and this difference was statistically
significant (p < 0.0001) (Table 4).

Table 4. Performance of DLAD compared to radiologists’ assessment.

Radiologists, Mean (95% CI) DLAD, Mean p-Value

Se 0.661 (0.572–0.743) 0.925 <0.0001
Sp 0.803 (0.723–0.868) 0.644 0.0001
PLR 3.583 (3.439–3.727) 2.596 <0.0001
NLR 0.417 (0.404–0.43) 0.117 <0.0001
PPV 0.614 (0.524–0.699) 0.544 0.1297
NPV 0.843 (0.767–0.901) 0.949 <0.0001
Balanced Accuracy 0.732 (0.646–0.807) 0.784 0.1606
F1 Score 0.638 (0.548–0.721) 0.685 0.2525

Significant differences were observed among the radiologists (Table 5). Both sensitivity
and specificity were significantly different in all radiologists with varying experience
compared to DLAD (global p-value < 0.0001). For three radiologists, the DLAD had a
significantly higher sensitivity and would therefore probably help to identify patients with
a finding who the radiologists determined to be without any finding (Table 5, Figure 4).
On the contrary, the specificity was significantly worse with DLAD, with the exception of
one radiologist (#442), who assessed many normal images as abnormal. However, because
DLAD software is intended to be assistive, this result was expected and the final decision is
the doctor’s responsibility. Although the PPV on average did not differ significantly from
the DLAD classification, worse values for individual radiologists (except that of radiologist
#442 with a very good assessment of abnormal images but with low specificity) were found
(Table 6, Figure 4).
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Figure 4. Forest plots for performance of DLAD and individual radiologists (A) sensitivity and
specificity, (B) likelihood ratios, (C) predictive values.

Table 5. Labeling of images by individual radiologists with respect to ground truth.

Radiologist DLAD GT: Abnormal GT: Normal Total

#5f0: Abnormal AI: Abnormal 11 0 11
AI: Normal 0 0 0

#5f0: Normal AI: Abnormal 26 31 57
AI: Normal 3 56 59

#442: Abnormal AI: Abnormal 34 23 57
AI: Normal 2 26 28

#442: Normal AI: Abnormal 3 8 11
AI: Normal 1 30 31

#c8a: Abnormal AI: Abnormal 33 11 44
AI: Normal 2 7 9

#c8a: Normal AI: Abnormal 4 20 24
AI: Normal 1 49 50

#630: Abnormal AI: Abnormal 22 1 23
AI: Normal 2 1 3

#630: Normal AI: Abnormal 15 30 45
AI: Normal 1 55 56

#24a: Abnormal AI: Abnormal 25 7 32
AI: Normal 2 8 10

#24a: Normal AI: Abnormal 12 24 36
AI: Normal 1 48 49

Total 40 87 127
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Table 6. Performance of individual radiologists compared to DLAD.

ID Se (95% CI) Sp (95% CI) Global p-Value Se p-Value Sp p-Value

DLAD 0.925 (0.804–0.977) 0.644 (0.539–0.737)
#5f0 0.275 (0.16–0.427) 1 (0.959–1.000) <0.0001 <0.0001 <0.0001
#442 0.9 (0.772–0.963) 0.437 (0.337–0.541) 0.0043 0.8407 <0.0001
#c8a 0.875 (0.741–0.948) 0.793 (0.697–0.866) 0.0244 0.4978 <0.0001
#630 0.6 (0.447–0.737) 0.977 (0.921–0.995) <0.0001 <0.0001 <0.0001
#24a 0.675 (0.521–0.8) 0.828 (0.736–0.894) 0.0002 <0.0001 <0.0001

ID PLR (95% CI) NLR (95% CI) Global p-value PLR p-value NLR p-value

DLAD 2.596 (1.9–3.473) 0.117 (0.04–0.318)
#5f0 NA 0.725 (0.571–0.852) NA NA NA
#442 1.598 (1.258–1.943) 0.229 (0.084–0.56) 0.0092 0.0027 0.3045
#c8a 4.229 (2.758–6.436) 0.158 (0.071–0.337) 0.0394 0.034 0.6359
#630 26.1 (8.016–90.681) 0.409 (0.274–0.577) 0.0002 0.0014 0.0364
#24a 3.915 (2.37–6.62) 0.393 (0.241–0.596) 0.0069 0.1534 0.0449

ID PPV (95% CI) NPV (95% CI) Global p-value PPV p-value NPV p-value

DLAD 0.544 (0.427–0.657) 0.949 (0.863–0.985)
#5f0 1 (0.751–1.000) 0.75 (0.665–0.821) <0.0001 0.0015 0.0001
#442 0.424 (0.324–0.529) 0.905 (0.782–0.965) 0.0086 0.0024 0.2973
#c8a 0.66 (0.527–0.774) 0.932 (0.853–0.972) 0.029 0.0316 0.6344
#630 0.923 (0.763–0.983) 0.842 (0.759–0.901) <0.0001 <0.0001 0.0246
#24a 0.643 (0.493–0.771) 0.847 (0.757–0.909) 0.0004 0.1476 0.0327

ID BA (95% CI) F1 (95% CI) BA p-value F1 p-value

DLAD 0.784 (0.713–0.856) 0.685 (0.604–0.766)
#5f0 0.638 (0.554–0.721) 0.431 (0.345–0.518) 0.0098 <0.0001
#442 0.668 (0.587–0.75) 0.576 (0.49–0.662) 0.0382 0.0714
#c8a 0.834 (0.769–0.899) 0.753 (0.678–0.828) 0.3134 0.2314
#630 0.789 (0.717–0.86) 0.727 (0.65–0.805) 0.9354 0.4615
#24a 0.751 (0.676–0.826) 0.659 (0.576–0.741) 0.5328 0.6511

All radiologists could benefit from the proposed DLAD. All of them assessed some
images as normal although they were abnormal and DLAD classified them as abnormal.
For individual radiologists, it was 3, 4, 12, 15, and even 26 images, which would be
prioritized and the doctor would check the image again, carefully and/or consult with a
more experienced colleague (Table 5).

6. Discussion

To be able to evaluate the potential benefits of DLAD in prioritizing and assessing
patient scans, we compared the CAD with five differently experienced radiologists, and ad-
ditionally simulated standard clinical practice by generating 10,000 randomly selected
subsets of size n = 127 by using a bootstrap, with each image in the dataset being as-
sessed by a randomly selected radiologist. In our test, the proposed DLAD system was
able to achieve promising sensitivity and reasonable specificity compared to the analyzed
commercial and academic applications. The performance achieved (particularly the high
sensitivity compared to the evaluating radiologists as well as to similar solutions mentioned
below) indicates that the DL algorithm learned to detect individual visual patterns on CXR,
including on a distribution of data that was not observed beforehand.

Multiple pathologies with similar sample size (n = 370) were addressed in [43], which
applied commercial software (Arterys Chest & MSK AI) to detect fractures (n = 4), nod-
ules (n = 24), opacities (n = 105), pleural effusion (n = 89), and pneumothorax (n = 22).
The ground truth was defined by a three-fourths (3/4) consensus of the readers. On this
sample, the software achieved overall sensitivity/specificity 0.988/0.438, for fractures
0.667/0.9499, nodules 0.64/0.842, opacities 0.9615/0.4804, pleural effusion 0.921/0.872, and
pneumothorax 1.0/0.758. Another commercially available solution (Lunit INSIGHT CXR)
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was investigated in [44], wherein three major thoracic abnormalities (nodule/mass (n = 80),
consolidation (n = 31), and pneumothorax (n = 35)) were investigated on a similarly sized
test set (n = 244). In addition, as in our case, the study compared the assessment of CAD
systems and annotators: radiologists, nonradiologists, and clinicians. The software areas
under the ROC curve (AUCs) for nodule/mass, consolidation, and pneumothorax were
0.988, 1.000, and 0.999, respectively. For the image classification, the overall area under
the ROC curve (AUC) of the pooled physicians was 0.868 without CAD and 0.911 with
CAD. Ref. [45] focused on comparison of the DL algorithm (Qure.ai qXR) with radiological
assessment, wherein the performance was analyzed in four pathologies (pulmonary opaci-
ties (n = 336), pleural effusion (n = 136), hilar prominence (n = 134), and enlarged cardiac
silhouette (n = 122)) on a smaller dataset (n = 874). The AUC for the DL algorithm and test
radiologists ranged between 0.837 and 0.929 and between 0.693 and 0.923, respectively. The
DL algorithm had the lowest AUC (0.758) for assessing changes in pulmonary opacities
over follow-up CXR. The evaluation of the same solution (Qure.ai qXR) for the detection
of multiple pathologies (blunted costophrenic angle, cardiomegaly, cavity, consolidation,
fibrosis, hilar enlargement, nodule, opacity, and pleural effusion) was addressed in [46],
which evaluated the proposed DL algorithm on two different datasets: a large-scale dataset
(n = 100,000) whose ground truth was based on existing radiological reports, and a smaller
one (n = 2000) that was evaluated by three radiologist majority vote. On the smaller dataset,
the proposed system demonstrated an AUC of 0.92 (CI 0.91–0.94) for detection of abnormal
scans, and AUC of 0.96 (0.94–0.98), 0.96 (0.94–0.98), 0.95 (0.87–1), 0.95 (0.92–0.98), 0.93
(0.90–0.96), 0.89 (0.83–0.94), 0.91 (0.87–0.96), 0.94 (0.93–0.96), 0.98 (0.97–1) for the detection
of blunted costophrenic angle, cardiomegaly, cavity, consolidation, fibrosis, hilar enlarge-
ment, nodule, opacity, and pleural effusion. The AUCs were similar on the larger dataset
except for detecting normal results where the AUC was 0.86 (0.85–0.86). Classification
between normal and abnormal CXRs to reduce the time and cost associated with reporting
normal studies was addressed in [47] by using Qure.ai qXR commercial solution. For the
retrospectively collected dataset (n = 430, 285 abnormal, 145 normal), a radiologist with
eight years of experience, with access to existing reports, established the ground truth.
The DL algorithm achieved sensitivity 0.9719 (0.945–0.9878) and specificity 0.683 (0.6–0–758)
with 46 FPs and 8 FNs. Outside of commercial applications, it is interesting to mention [29],
which applied the DL algorithm to a large-scale test set (n = 15,887) with the goal of triaging
normal CXRs. The ground truth was determined by NLP extraction from the original
radiology reports. Normal CXRs were detected by the proposed system with a sensitivity
of 0.71, specificity of 0.95, PPV of 0.73, and NPV of 0.94.

7. Limitations

Unlike multiple commercially available solutions that have been trained to recognize
individual findings, the proposed DLAD (Carebot AI CXR v1.22) was trained to identify
abnormal scans. We took this step to facilitate the clinical use of the algorithm in different
sites, regardless of the local prevalence of the disease. One of the limitations of this study
(and the studies mentioned above) is the lack of a more comprehensive way of assessing
the correctness of the pathologies’ localization. Although the measurement of sensitivity
and specificity deviations allows us to investigate primarily the presence of pathology,
the emphasis in clinical practice is on the correct localization of findings and follow-up
clinical workflow. We plan to address this issue in a future study.

The purpose of the present research was the preclinical evaluation of a DLAD currently
undergoing regulatory procedure according to the EU MDR 2017/745. This study does not
aim to present new DL approaches or architectures but investigates the first deployment of
DLAD in the healthcare system of the Czech Republic. As stated in the Literature Review
Methodology, the proposed DLAD did not leverage or was not compared with models
that utilize publicly available data. DLADs based on publicly available datasets, such as
ChestXray14, CheXpert, or COVIDx CXR-2, may serve to present the novel methodology,
but they are by no means safe or robust for use in actual clinical practice [12,13]. These
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datasets contain inaccurate ground truth, poor-quality images, inappropriate file formats,
and even initial problem descriptions. This problem is widely known and is one of the
reasons why independent preclinical and clinical evaluation of medical software exists in
the first place.

8. Conclusions

CAD systems can improve radiologists’ workflow by prioritizing the worklist accord-
ing to anticipated imaging findings and increasing overall diagnostic sensitivity with no
acute findings being missed. The proposed DLAD software showed statistically signifi-
cantly better sensitivity, negative likelihood ratio, and negative predictive value, and on the
contrary, lower specificity and positive likelihood ratio. When we focused on individual
radiologists with different specializations and lengths of practice, varying results were
found. However, no trend was found according to the radiologist’s experience, and it is
therefore not possible to clearly decide which radiologists benefit the most from the pro-
posed software. In general, the benefit of DLAD was indirectly demonstrated. Although it
assesses more false positive images due to its threshold settings, it would alert to a finding
in a CXR that a doctor evaluated as normal. This proves the contribution of the model
in real practice as a support tool for identifying abnormal findings. However, a primary
evaluation by a doctor is absolutely essential.
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Appendix A

Figure A1. False Negative image incorrectly classified by DLAD software during internal software
validation. The software failed to detect a rib fracture.
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Figure A2. False Negative image #1 incorrectly classified by DLAD software during the retrospective
study. The software failed to detect a lesion in lung parenchyma. Assessed radiologists #5f0 and #24a
also incorrectly classified this image as Normal.

Figure A3. False Negative image #2 incorrectly classified by DLAD software during the retrospective
study. The software failed to detect a lesion in lung parenchyma. Assessed radiologists #5f0, #442
and #c8a also incorrectly classified this image as Normal.
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Figure A4. False Negative image #3 incorrectly classified by DLAD software during the retrospective
study. The software failed to detect a rib fracture. Assessed radiologists #5f0 and #630 also incorrectly
classified this image as Normal. Assessed radiologist #442 classified the image correctly as Abnormal
but failed to locate a rib fracture.
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Table A1. Analysis of existing solutions and publications on CXR computer-aided detection.

Study Target Population Number of Patients, Scans Used Software Ground Truth Statistical Results

[17] suspected TB 317 patients qXR (Qure.ai) microbiological
confirmation, 1 radiologist

qXR Se 0.71, Sp 0.80, radiologist Se 0.56 and Sp 0.80, AUC
for confirmed TB 0.81, detection of pleural effusion and
“cavity” type. For TB in qXR AUC 0.94 and 0.84, others
0.75–0.94, radiologist Se 0.56, Sp 0.80, low AUC 0.75 for
hilar lymphadenopathy and 0.76 consolidation, largest for
cardiomegaly 0.94

[15] suspected TB 1032 patients 12 different solutions
including qXR and Lunit 2 doctors focused on TB

Expert Se 0.955, Sp 0.422. With setting this Se, qXR and
Lunit had Sp 0.487 and 0.387, DeepTek SP 0.463, Delft
imaging 0.453, JF Healthcare 0.41, Oxipit 0.408, InferVision
0.265, Artelus 0.231, Dr CADx 0.121, SemanticMD 0.101,
EPCON 0.093, COTO 0.063. AUROC for qXR and Delft
Imaging 0.82, PR AUC 0.41 and 0.39, DeepTek Genki
AUROC 0.78, Lunit 0.82, JF Healthcare similar.

[48] drug-resistant TB 311 patients, 346 images qXR (Qure.ai)
with initial identification by
a radiologist, with possible
comparison in CT

Correlation of radiologist and qXR in hilar
lymphadenopathy, pleural effusion cavity, and atelectasis,
but not in nodules. Se/Sp hilar lymphadenopathy
0.621/0.741, cavity 0.75/0.821, atelectasis 0.194/0.727,
pleural effusion 0.6/0.949, nodule 0.597/0.742.

[18]
undergoing medical
screening during military
service (asymptomatic)

19,686 patients, 20,135
images Lunit INSIGHT CXR

microbiological
confirmation, identification
by a radiologist

AUC Lunit for pulmonary TB 0.999, for other
abnormalities 0.967, Se for high Se for nodule 1.0, for high
Sp 1.0, radiologist 0.8, and other abnormalities Se 0.921,
0.679, 0.821, Sp nodules 0.959, 0.997 and 0.997, others
0.960, 0.997 , 0.998.

[20] suspected lung cancer 1512 images red dot (behold.ai) biopsy

Of the urgent ones given by the red dot radiologist, he
evaluated 15% as non-urgent and 85% as urgent, the
non-urgent red dot ones were determined as non-urgent,
he just evaluated more of them as urgent

[23] suspected lung cancer 400 images red dot (behold.ai) 3 radiologists

Average radiologist Se 0.78, Sp 0.96, behold.ai Se 0.80, Sp
0.93, overall improvement of 3.67–13.33% confidence
percentage, radiologist agreement improved to 94%, and
missed tumors reduced by 60%.

[21] high risk (smokers) with
lung screening 5485 patients Lunit INSIGHT CXR

certified radiologist, GT if
cancer for confirmed within
one year

Lunit AUC 0.93 for chest radiographs, 0.99 for digital and
0.86 for CT, Se 0.862 and Sp 0.85, cancer detection Se 0.76,
radiological 0.80.
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Table A1. Cont.

Study Target Population Number of Patients, Scans Used Software Ground Truth Statistical Results

[22] various databases 378 patients, 434 images Lunit INSIGHT CXR 2 radiology residents and 2
chest radiologists

Se 0.883, Sp 0.8618, Lunit AUC abnormalities 0.872,
nodules Se 0.891.

[49] various databases 3790 patients, 3887 images red dot (behold.ai) 2 radiologists, 3rd arbitrator
Normal with an accuracy of 0.977, 84.6% of them were
identified by radiologists as borderline. 13.5% missed
abnormality by radiologists.

[45]
multiple radiological
abnormalities (14), from the
database of Wang et al. 2017

724 patients, 874 images qXR (Qure.ai) 4 radiologists + 2 as GT AUC qXR 0.837–0.929, radiologist 0.693 and 0.923

[44] multiple radiographic
abnormalities (3) 244 images Lunit INSIGHT CXR clinicians (3 groups-GP,

radio, non-radio)

AUC 0.993, Se 97.26, Sp 92.86, reliability 0.9549, AUC for
nodules, consolidation, pneumothorax 0.988, 1 and 0.999.
AUC of radiologists, non-radiologists and clinicians
without Lunit 0.931, 0.915 and 0.769. With the help of
Lunit AUC increased to 0.959, 0.944 and 0.894.

[46] multiple radiographic
abnormalities (9)

100,000 images from 89,354
patients + 2000 images qXR (Qure.ai)

comparison with the
agreement of 3 radiologists
on the 2000 and reports of
different on 100,000 scans

AUC for smaller dataset 0.92, different for individual
abnormalities, similar for large, individual abnormalities
AUC 0.98–0.89

[50] various databases + TB 1444 patients ResNet-based DLAD training set 2 radiologists,
GT PCR, culture

in the second session, with the use of DLAD, all values
increased, but significantly for non-radiologists: AUROC
doctor only non-radiologists 0.746, with p-value 0.023,
AUROC 0.664 with p-value 0.0088, Se 0.723, Sp 0.67, TDR
0.582. Certified radiologists AUROC 0.946, p = 0.0082,
AUROC 0.9, p = 0.0003, Se 0.906, Sp 0.948, TDR 0.797,
chest radiologists AUROC 0.971 p = 0.0218, AUROC 0.925,
p = 0.0001, Se 0.952, Sp 0.930, TD 0.870. With DLAD
non-radiologists 0.850, AUROC 0.781 with p-value 0.0236,
|Se 0.848, SP 0.800, TDR 0.724, certified radiologists
AUROC 0.961, p = 0.0606, AUROC 0.924, p = 0.0353, Se
0.930, Sp 0.954, TDR 0.849. Chest radiologists AUROC
0.977 p = 0.1623, AUROC 0.942, p = 0.0036, Se 0.964, Sp
0.936, TD 0.897.
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Table A1. Cont.

Study Target Population Number of Patients, Scans Used Software Ground Truth Statistical Results

[19] various hospital datasets for
nodule detection

600 images for internal and
693 for external validation ResNet-based DLAD 5 radiologists

Internal validation: AUROC 0.96, External validation:
AUROCs 0.92, 0.99, 0.94, and 0.96, and JAFROC FOMs
were 0.870, 0.924, 0.831, and 0.880 for Seoul National
University Hospital, Boramae Hospital, National Cancer
Center, and University of California San Francisco
Medical Center. Nodule-detection false-positive rate of
DLAD 0.02–0.34 in external datasets, for radiograph
classification performance were Se 0.79, 0.911, 0.712 and
0.88, Sp 0.95, 0.98, 1.0 and 0.93, and for nodules Se 0.699,
0.82, 0.696 and 0.75.

[51]
population from Oulu
Hospital, Finland, detection
of multiple findings

9579 images ChestLink 2 certified radiologists +
original radiologists report

As a result, 9 false negative cases evaluated by ChestLink.
Oxipit Se 0.998%, Sp 0.364.

[43] 5 pathologies 370 images Arterys Chest AI 4 radiologists

Overall Se/Sp 0.988/0.4384. Se/Sp for fractures
0.667/0.9499, nodules 0.64/0.8417, opacities
0.9615/0.4804, pleural effusion 0.9213/0.8716,
pneumothorax 1.0/0.7576.

[52] retrospective diagnosis of
COVID 279 images Lunit INSIGHT CXR CT or 3 radiologists. Lunit AUROC/Se/Sp 0.921, 0.956, 0.887. Radiologist

AUROC/Se/Sp0.941, 0.912, 0.969.

[47] identification of
normal/abnormal 430 images DLAD

experienced radiologist +
reference of an existing
report

Se 0.9719, Sp 0.6828, 46 FP, 8 FN (3 clinically insignificant,
5 clinically significant).

[14] 72 findings 1998 images VGG16, ResNet-50 triple consensus dataset AI AUC 0.772 on test, 0.807 on train, Se 0.716, PPV 0.730,
Sp 0.980. Radiologist Se 0.720, PPV 0.682, Sp 0.973.

[29] multiple abnormalities 15,887 images DLAD

2 radiologists with 3 years of
experience, in case of
disagreement another
radiologist with 10 years of
experience

DLAD normal radiograph Se 0.71, Sp 0.95, for critical
radiograph Se 0.65, Sp 0.94.
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