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Abstract: Digital information storage capacity and biomedical technology advancements in recent
decades have stimulated the maturity and popularization of “big data” in medicine. The value of
utilizing big data as a diagnostic and prognostic tool has continued to rise given its potential to provide
accurate and insightful predictions of future health events and probable outcomes for individuals and
populations, which may aid early identification of disease and timely treatment interventions. Whilst
the implementation of big data methods for this purpose is more well-established in specialties such
as oncology, cardiology, ophthalmology, and dermatology, big data use in nephrology and specifically
chronic kidney disease (CKD) remains relatively novel at present. Nevertheless, increased efforts
in the application of big data in CKD have been observed over recent years, with aims to achieve
a more personalized approach to treatment for individuals and improved CKD screening strategies
for the general population. Considering recent developments, we provide a focused perspective on
the current state of big data and its application in CKD and nephrology, with hope that its ongoing
evolution and revolution will gradually identify more solutions to improve strategies for CKD
prevention and optimize the care of patients with CKD.
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In 1965, Gordon Moore described Moore’s law, which rightfully predicted the ex-
ponential growth of computational capacity. Subsequently, the cost of 1 MB of storage
has dropped from USD 1331 to less than USD 0.01 in the past 5 decades [1]. The drastic
improvement in digital information storage capacity over the past few decades has led
to a propagation in the size and number of available datasets. The result of these ad-
vancements is “big data”—colossal and complex data sets that are impossible to process
with traditional methods. Big data can be defined by the three Vs—volume, velocity, and
variety—initially described in 2001 by Doug Laney. Veracity and value were later added
on to form the ‘five Vs’ in describing big data. The value of big data does not simply
reside in its sheer volume, but rather from the analytical processes which can uncover and
explore hidden patterns and correlations, and provide better insight and accuracy in the
prediction of future events. Predicting potential trajectories in healthcare is imperative
as it will aid governing bodies to decide upon longstanding investments and implement
effective health policies.

Chronic Kidney Disease (CKD) is a progressive non-communicable disease that affects
>10% of the general population worldwide, with 843.6 million individuals being in CKD
stages 1–5 [2]. The Global Burden of Disease Studies show that CKD has surfaced as one of
the leading causes of worldwide mortality since 1990 [3], and that all-age mortality rate
related to CKD rose by 41.5% between 1990 and 2017. In that period, CKD also climbed in
rank among the leading causes of death, from 17th in 1990 to 12th in 2017 [4]. Based on
a study forecasting life expectancy, Kyle et al.’s model predicted that by 2040, deaths related
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to CKD diagnosis will rise to 2.2 million per year in a best-case scenario and even further
to 4 million in the worst-case scenario [5]. The cost involved in the care for CKD patients is
getting higher—many patients have other comorbidities that necessitate multidisciplinary
team care, risk of medical complications that require hospitalisation, and the potential
need for dialysis when they reach end-stage kidney disease, which drives up the cost
significantly. In the United States alone, the spending for Medicare beneficiaries with
kidney disease by 2015 was close to USD 100 billion [6]. Given the immense cost of looking
after CKD patients, it is therefore not surprising that there is a huge variation between
disability-adjusted life years (DALYs) caused by CKD, more so in countries which are in
the lower socio-demographic index quintiles [7].

In comparison to kidney disease, the use of big data in medicine has been more
well-established for conditions such as skin cancer and diabetic retinopathy, where over
hundreds of thousands of clinical images are fed into data-driven models which are then
used for the classification and detection of the aforementioned conditions based on deep
convolutional neural networks [8,9]. Another example of big data analysis being success-
fully utilized is in cardiology, with Loghmanpour et al. [10] demonstrating the superiority
of the Bayesian network—a graphical model that is ideal for predicting probable rela-
tionships between two events—against the pre-existing traditional risk prediction model
in predicting right ventricular failure following left ventricular assist device therapy. In
oncology, Jang et al. [11] have also built an extensive clinical and genomic information
system from several public databases that aim to aid clinicians in improving diagnostic
decision-making, risk assessment, and providing targeted and precise treatment. However,
a review of PubMed citations over the previous 2 decades still demonstrates that nephrol-
ogy is lagging behind other specialties in terms of big data research [12]. In an analysis by
Joshi et al. [13], radiology and cardiology were shown to be two of the specialties which
showed a drastic increase in the numbers of United States Food and Drug Administration
(FDA)-approved machine learning medical devices in the past decade, with the former
taking up to 75% of the total amount. Interestingly, there were no nephrology-related
machine learning medical devices listed on the FDA website at the time this review was
written [14].

There have been increased efforts in the application of big data in CKD (Table 1).
Having the ability to predict patient outcomes is essential to achieve targeted preventive
medicine. Using traditional regression models based on large cohort studies, Tangri
et al. [15] were able to formulate an equation to predict the progression of CKD patients
towards end-stage kidney disease. A machine learning algorithm was developed by
Ravizza et al. [16] to predict and quantify the risk of CKD progression using real-world
data, demonstrating similar or even better predictive accuracy compared to using clinical
trial data. Sandokii et al. [17] and Inaguma et al. [18] also replicated successful studies in
using machine learning algorithms to identify risk factors and variables in AKI and CKD
progression, respectively. A prediction model for end-stage renal disease in primary IgA
nephropathy with a 91% success rate was developed by Schena et al. [19]. By applying
deep learning techniques to a large data set of 703,872 patients, Tomasev et al. [20] were
able to generate a model which had 90.2% accuracy in predicting AKIs requiring dialysis
within 90 days.

Inaguma et al. [18] also replicated a similar machine learning algorithm to predict
the risk factors for CKD progression. The examples above would not have been possible
without pre-existing epidemiological big data. Epidemiological big datasets can come
from national registries, surveillance programmes, and electronic health records. For
example, the United States Renal Data System (USRDS) is a national surveillance system
that compiles and evaluates demographic and clinical information for patients diagnosed
with CKD [21]. Similar surveillance projects have also been replicated in Ireland and
Canada, which are useful for identifying and describing the prevalence of CKD and
improving the care for CKD patients [22,23]. The China Kidney Disease Network (CK-NET)
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is set up to integrate and analyse data from China’s national database, covering 39 million
inpatient electronic records [24].

Developments in biomedical technology over recent years have led to a decrease in
the costs of performing high throughput sequencing—also known as next-generation se-
quencing (NGS)—as well as other biomedical technologies in parallel. This has stimulated
an abundance of research efforts focusing on genome-wide association studies (GWAS) and
other omics data, such as proteomics (quantification of protein), metabolomics (quantifica-
tion of metabolites), and transcriptomics (measurement of RNA transcripts), just to name
a few. In nephrology, these multi-omics studies paved the way to building “biobanks”, such
as that of NEPTUNE (Nephrotic Syndrome STudy Network), ERCB (European Renal cDNA
Bank), EURenOmics, C-PROBE (Clinical Phenotyping and Resource Biobank), PKU-IgAN,
TRIDENT (for diabetic nephropathy), CureGN (for glomerulopathies), the National Insti-
tute of Diabetes and Digestive and Kidney Diseases (NIDDK), and the Kidney Precision
Medicine Project (KPMP) [12,25,26]. When combined with machine learning methods, they
can provide clinicians with a deeper understanding of the complexity of molecular events
and the pathogenesis of kidney diseases and thus lead to the development of a more precise
treatment strategy [12,25,26].

The use of electronic notes and images coupled with artificial intelligence technology
has been considered in nephrology research. This has resulted in the design of algorithms
that could detect risk factors and identify different stages of CKD from electronic health
records [27]. By feeding a convolutional neural network (CNN) with virtual slides of biopsy
samples obtained from the Academia and Industry Collaboration for Digital Pathology
(AIDPATH) kidney database, Pedraza et al. [28] were also able to demonstrate the en-
couraging application of artificial intelligence technology at a histopathological level, in
which the algorithm they developed was able to achieve a level of accuracy up to 99.5% in
differentiating between glomerular and non-glomerular samples. A deep learning frame-
work that could analyse and grade digitized kidney biopsies for fibrosis was generated
by using deidentified whole slide images obtained from the Kidney Precision Medicine
Project (KPMP) [29].

Table 1. Completed and ongoing research studies relating to the application of big data in chronic
kidney disease.

Research Study
(Author(s), Journal, Country of Publication, Year of

Publication if Specific Details Available)
Summary of Findings and Conclusions

Tangri et al. [15], JAMA, Canada, 2011

• Development and validation of prediction models
included 3449 patients and 4942 patients, respectively,
from 2 independent Canadian cohorts

• A model using routine lab tests can accurately predict the
risk of kidney failure in chronic kidney disease patients

Ravizza et al. [16], Nature Medicine, Switzerland, 2019

• Data from 417,912 individual electronic health records
were used for the study

• Predictive analytic algorithms taught using real world data
were shown to be equivalent, if not more accurate, than
those taught using clinical trial data

Inaguma et al. [18], PLoS One, Japan, 2020

• Machine-learning-based model included 118,584 patients
obtained from an electronic medical records system

• Increased urine tendency was found to be a risk factor for
rapid decline in kidney function
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Table 1. Cont.

Research Study
(Author(s), Journal, Country of Publication, Year of

Publication if Specific Details Available)
Summary of Findings and Conclusions

Pedraza et al. [28], Medical Image Understanding and Analysis,
2017

• Digital/virtual slides were obtained from the AIDPATH
(Academia and Industry Collaboration for Digital
Pathology) kidney database—a compilation of kidney
tissue cohorts from institutions and labs around Europe

• Accuracy of convolutional neural networks was observed
at 99.95% in differentiating glomerular and
non-glomerular samples

Shang et al. [27], NPJ Digital Medicine, United States, 2021

• An algorithm with a 95% positive predictive value in
identifying CKD cases in Electronic Health Records (EHR)

• The algorithm was validated in EHR from more than
5 institutions and over 1.3 million patients from the
Columbia Clinical Data Warehouse

NEPTUNE (Nephrotic Syndrome STudy Network)
United States, study due for completion in 2024

• Established to collect long-term observational data with
corresponding biological specimens from 1200 patients
with nephrotic syndrome across 44 separate institutions in
North America

ERCB (European Renal cDNA Bank) database study
Germany, ongoing

• A consortium of more than 2600 anonymized kidney
biopsies with matching genomic analysis developed from
the collaboration of multiple kidney research centres
across Europe

EURenOmics database
Germany, 2012–2017

Multiple Publications
Refer to https://eurenomics.eu/publications/index.html,

accessed on 1 February 2023.

• A consortium built with data from more than
15,000 patients to study the pathogenesis of rare
nephropathies and to explore new treatment therapies

C-PROBE (Clinical Phenotyping and Resource Biobank)
United States, study due for completion in 2025

• Prospective observational study aiming to collect clinical
phenotyping of up to 1600 kidney disease patients,
laboratory, and histopathology samples

TRIDENT (Transformative Research in diabetic nephropathy)
United States, study due for completion in 2023

• Prospective observational study aiming to collect
laboratory and histopathology samples combined with
high-throughput genomic analysis for patients with
diabetic nephropathy

CureGN database study
United States and Europe, ongoing

• A multi-centre international consortium of both children
and adults with glomerular disease aiming to identify and
understand epidemiology, genetics, biomarkers, and
patient-related outcomes

Ultimately, potential applications of big data and big data analysis in nephrology
are promising, but various limitations and challenges remain. It would make sense that
with more information, we would be able to identify previously unrecognized patterns,
though this may also provide misleading concepts between causality and correlation. A lot
of primary kidney diseases are rare diseases, and the lack of data can sometimes limit
the development of accurate prediction models. A relatively smaller funding budget for
nephrology research in general compared to other medical specialties has been observed
historically, with less clinical trials being conducted in nephrology compared to specialties
such as cardiology [30,31]. This may be a hindering factor for the application of big data
and big data analysis in nephrology, given a considerable number of clinical trials exclude

https://eurenomics.eu/publications/index.html
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patients with CKD as well [32]. It is encouraging that greater efforts have been made by
international nephrology societies (e.g., the International Society of Nephrology Advancing
Clinical Trials Group) to address these issues over recent years, with initiatives to garner
increased industry funding, government support, and patient participation. Another key
issue with big data, not only limited to nephrology, is that of ‘veracity’—which is the
reliability of the collected data—as large retrospective cohort data can suffer from biases,
and the data from clinical trials is sometimes not representative of what occurs within
the real world [33]. In the current climate where patient privacy is considered invaluable
for patients, families, and the clinical team, restrictions and regulations surrounding the
collection of health data from wearables, implantable devices, and smartphones remains
an issue that needs to be overcome. Protecting patient confidentiality is of the utmost
importance and not to be disregarded.

In summary, it appears that the utility of big data in CKD and nephrology research,
and integration in clinical practice, is undergoing an evolutionary phase, albeit at a slower
pace when compared to other conditions and specialties. The revolutionary aspect of
this should take place at an operator level where the users of big data—data scientists,
statisticians, health informatics experts, and clinicians—need to gain the skills and direction
to effectively translate the findings from big data analysis into clinical practice. At a global
health level, we will also need to continuously brainstorm strategies on how best to combine
information from big data acquired across various demographics, and search for optimal
pathways in utilizing information from big data analysis to prevent CKD and improve
CKD outcomes for individuals and populations.
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