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Abstract: Dementia is characterized as a decline in cognitive function, including memory, language
and problem-solving abilities. In this paper, we conducted a Genome-Wide Association Study (GWAS)
using data from the electronic Medical Records and Genomics (eMERGE) network. This study has two
aims, (1) to investigate the genetic mechanism of dementia and (2) to discuss multiple p-value thresholds
used to address multiple testing issues. Using the genome-wide significant threshold (p ≤ 5 × 10−8),
we identified four SNPs. Controlling the False Positive Rate (FDR) level below 0.05 leads to one
extra SNP. Five SNPs that we found are also supported by QQ-plot comparing observed p-values
with expected p-values. All these five SNPs belong to the TOMM40 gene on chromosome 19. Other
published studies independently validate the relationship between TOMM40 and dementia. Some
published studies use a relaxed threshold (p ≤ 1 × 10−5) to discover SNPs when the statistical power
is insufficient. This relaxed threshold is more powerful but cannot properly control false positives in
multiple testing. We identified 13 SNPs using this threshold, which led to the discovery of extra genes
(such as ATP10A-DT and PTPRM). Other published studies reported these genes as related to brain
development or neuro-development, indicating these genes are potential novel genes for dementia.
Those novel potential loci and genes may help identify targets for developing new therapies. However,
we suggest using them with caution since they are discovered without proper false positive control.

Keywords: dementia; GWAS; TOMM40; electronic medical records

1. Introduction

Dementia is a term used to describe a decline in cognitive function, including memory,
language and problem-solving abilities [1]. Dementia affects millions among the ageing
population, and the probability of having a form of the condition increases with age [2].
Approximately one-third of people aged 85 or older are likely to have dementia. It is also a
leading cause of disability and death among older adults and a significant burden on public
health [3].

The cause of dementia is complex. Both genetic and environmental factors can
influence dementia [4]. Scientists believe that genetic factors account for about 60%
of the risk of developing dementia. Many genetic risk factors for dementia have been
identified in previous research, including specific genetic mutations [5,6]. Some studies
have shown an association between the risk genes and dementia, such as the APOE
gene and Alzheimer’s disease (the most common form of dementia), as demonstrated by
Strittmatter et al. [7] in 1993. Cervantes et al. [8] proposed that TOMM40, as an APOE
cluster gene, is a risk of Alzheimer’s disease. Liu et al. [9] investigated the association of
the SORL1 gene expression with Alzheimer’s disease. However, the genetic basis of most
cases of dementia is not fully comprehended, leading to ongoing research in this area.

Genome-Wide Association Study (GWAS) is a powerful tool for identifying ge-
netic variants associated with specific traits or diseases. GWAS can identify genetic
variants that are more common in populations with specific traits or diseases than in
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the general population by analyzing patterns of variation in large numbers of individ-
ual genomes [10]. Most GWAS studies test the association between disease outcome
and each individual SNP, one by one. These tests lead to numerous p-values, while
multiple testing adjustment is critical to control false positives in many tests. The two
most popular multiple-testing approaches for GWAS are the genome-wide significant
threshold (p ≤ 5 × 10−8) [11] and false discovery rate (FDR) [12]. Many GWAS studies
suffer from a lack of power issue, which has led to the development and applications of
many novel approaches. Such methods often have various limitations or require addi-
tional assumptions. For example, Xu et al. [13] proposed a pseudo-supervised machine
learning approach for discovering SNPs, which utilizes information on the SNP-SNP
relationship to achieve better power while properly controlling FDR. However, this
method cannot handle covariates, which largely limits its applications when covariates
play an essential role in affecting disease outcomes and must be adjusted in genomic
data analysis. Alternatively, some studies reported SNPs without properly controlling
false positives. Authors used subjectively decided p-value thresholds in these studies
(p ≤ 1× 10−5) [14,15]. Such an approach is useful since it enables researchers to discover
potentially interesting signals when the sample size is insufficient to achieve decent
statistical power while controlling false positives properly. However, this approach
should be used with extreme caution and its results should be properly interpreted to
highlight the fact that there is no proper FDR control.

In this study, we have two aims. Firstly, we aim to provide insights into the biological
mechanism underlying the development of dementia and help identify potential targets for
developing new therapies. Secondly, we discuss three different p-value thresholds used to
address multiple testing problems, which can help to discover SNPs when the statistical
power is insufficient. To achieve the goals, we conducted a GWAS on the data of a published
study from the electronic Medical Records and Genomics (eMERGE) network. The eMERGE
is a consortium of biobanks linked to electronic medical record data and funded by NHGRI
for genomic research in electronic medical record (EMR) systems [16]. The eMERGE actively
tracks dementia investigations and many participants have lived to advanced ages under
continuous observation, which provides data to support our study. We used the genomic
data obtained from the consent group of Disease-Specific (Dementia). In our GWAS study,
we apply and compare three discovering SNP approaches to investigate the genetic variants
associated with dementia. Based on the difference in the results of these three approaches,
we discuss their strength and weakness.

The rest of this paper is organized as below. Section 2 introduces the database, patient
cohort, quality control and statistical analysis. Section 3 describes the results of covariates
in the GWAS model and exploratory GWAS of dementia. Section 4 presents our discussion
and conclusions.

2. Materials and Methods
2.1. Database

The Electronic Medical Records and Genomics (eMERGE) Network (https://emerge-
network.org/, accessed on 11 December 2022) is a consortium of ten participating sites to
develop, disseminate and apply methods that combine DNA biorepositories with EMR
systems for large-scale, high-throughput genetic studies [17]. Using electronic phenotyping
methods, the consortium used DNA samples from all participating sites to explore the
genetic determinants of over forty phenotypes, including dementia. We used the data of
the consent group of Disease-Specific (Dementia).

2.2. Patient Cohort

We selected participants with five or more visits. Diseases with any of the following
conditions were defined by this study as a case group for dementia. They were senile de-
mentia, presenile dementia, senile dementia delusional (paranoid) features, senile dementia
with depressive features, senile dementia with delirium or confusion, arteriosclerotic de-
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mentia, vascular dementia with delirium, vascular dementia with delusions, dementia due
to alcohol, dementia due to drugs, Alzheimer’s disease, pick’s disease of the brain, other
frontotemporal dementia, dementia with Lewy bodies and dementia with Parkinsonism.

2.3. Quality Control

We performed a series of QC steps on genotype data provided by 1433 participants
(578 cases and 855 controls before quality control). Missing genotypes introduce bias and
reduce the analysis’s efficacy. Thus, we screened out variants with more than 20% missing
individuals and excluded individuals with more than 20% missing variants. Moreover, we
filtered the variants and individuals using a more stringent threshold (0.02; > 2%); 4,569,604
variants and 34 individuals were removed. Furthermore, SNPs are those variations with a
minor allele frequency (MAF) greater than 1% [18]. In this paper, we used 0.01 as the MAF
threshold and removed 27,994,441 variants. The variants that passed the threshold were
SNPs. We also filtered out SNPs with HWE p ≤ 1 × 10−10, which excluded 26631 SNPs.
These filters were applied separately to each of these 22 chromosomes to remove poorly
performing samples and variants/SNPs using tools implemented in PLINK [19].

After samples and marker quality control, the total genotyping rate is 0.994328. There
are 5,449,492 variants and 1399 participants (559 cases and 840 controls) pass filters and QC.

2.4. Statistical Method

SNPs were tested for association with dementia in PLINK using logistic regression
analysis that assumed an additive genetic model. We summarized the patient characteris-
tics in the disease group and the control group to select the significant variables (p < 0.05).
Meanwhile, population structure could cause confounding in GWAS, which may produce
spurious associations if we do not properly process it. We addressed this problem by in-
cluding principal components (PCs) as covariates. In our GWAS model, we simultaneously
input the significant variables and the top 10 PCs as covariates.

We selected three different discovering SNP approaches to identify the significant
SNPs: (1) Genome-wide significant threshold (p ≤ 5 × 10−8), which was a popular criteria.
(2) Benjamini–Hochberg method was applied to adjusting the false discovery rate (FDR). We
set the cut-off of FDR adjusted p-value as 0.05. (3) We use a relaxed threshold, p ≤ 1 × 10−5,
to discover more SNPs but sacrifice proper false positive control.

3. Results
3.1. Important Non-Genomics Factors Affecting Risk of Dementia

To identify important covariates to be adjusted in GWAS analysis, we investigated
the relationship between dementia disease status and some selected patient characteristics.
The characteristics of the case-control groups are shown in Table 1. The proportion of
females is 59.86% in dementia patients, which is higher than males (40.14%). However, it is
nearly the same proportion in the control group (51.22% and 48.77%). The proportion of
patients with advanced age in the case group is 78.03%, higher than those born in 1920–1929
and 1930–1939. We can see the mean value and standard error values of BMI. The mean
(±SD) BMI of the case group is 25.51 (±4.62), which is lower than that of the control group
(26.43(±4.73)). These three variables, the birth year, gender and BMI, have statistically
significant differences between the case and control groups (p ≤ 0.05). In addition to
the significant variables, we also considered smoke status, STC (serum total cholesterol),
H-PSA (highest record of prostate-specific antigen) and race variables. These four variables
were not significant.
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Table 1. Demographic and clinical characteristics of the patients (full analysis population).

Characteristic Case (N = 578) Control (N = 855) p-Value

Gender (%) 1.26 × 10−3

Female 346 (59.86) 438 (51.22)
Male 232 (40.14) 417 (48.77)
Birth year (%) <2 × 10−16

Birth in 1900–1919 451 (78.03) 486 (56.84)
Birth in 1920–1929 126 (21.80) 352 (41.16)
Birth in 1930–1939 1 (0.17) 17 (1.99)
BMI (Mean ± SD) 25.51 (±4.62) 26.43 (±4.73) 7.11 × 10−4

Smoke Status (%) 0.46
Never 72 (43.11) 223 (37.99)
Current 9 (5.39) 39 (6.64)
Past 86 (54.50) 325 (55.37)
STC (Mean ± SD) 232.41 (±42.37) 229.47 (±43.10) 0.26
H-PSA (Mean ± SD) 4.17 (±6.18) 3.63 (±4.43) 0.53
Race (%) 0.34
Black or African American 31 (5.37) 32 (3.74)
Unknown 11 (1.90) 10 (1.17)
American Indian or Alaska Native 2 (0.35) 1 (0.12)
Asian 11 (1.90) 19 (2.22)
White 523 (90.48) 793 (92.70)

BMI = Body Mass Index; H-PSA = Highest record of PSA (prostate specific antigen); STC = Serum total cholesterol.

Birth year, gender and BMI show a strong relationship with dementia, which are
visualized in Figure 1. There were no participants born in 1930–1939 in the case group of
dementia in the final filtered data and the proportion of those born in 1900–1919 was higher
than in 1920–1929. The birth year and gender variables passed Pearson’s Chi-squared test
(p = 4.50 × 10−12, p = 1.94 × 10−05) between the case and control groups. The patients
had a lower median BMI (24.9) than the control group (25.9). Meanwhile, the BMI variable
passed the Wilcoxon test (p = 2.35 × 10−4). Based on this exploratory data analysis result,
we decided to include birth year, gender and BMI, as well as the top 10 PCs as covariates in
the logistic regression of GWAS analysis.

Figure 1. Explore data analysis of three significant variables. (a) indicates the year-of-birth infor-
mation of the participants in the case and control groups of dementia. The birth years are divided
into three groups with a decade interval, 1930–1939, 1920–1929 and 1900–1919, respectively. The
legend shows the bars’ colours of case and control groups. Under the legend is the result of Pearson’s
Chi-squared test on the birth years of the two groups. (b) The gender distribution in the two groups.
The legend shows the bars’ colours of case and control groups. Under the legend is the result of
Pearson’s Chi-squared test on the gender of the two groups. Boxplots in (c) represent the BMI
information of the participants in the two groups and the p-value shown in (c) is the result of the
Wilcoxon test on the BMI of the two groups.
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3.2. GWAS of Dementia

We performed a GWAS analysis of our collected data after merging and filtering
with the non-genomic data. The ability of GWAS to identify genetic associations de-
pends on the overall quality of the data. To avoid false negative and false positive
associations, we performed quality control procedures on the data to explore true ge-
netic associations [20]. First, we filtered out the variants with missing individuals of
more than 20%, which resulted in 533,207 variants being removed. Secondly, when we
set the threshold of missing sample rate to 20%, no samples were deleted. Then, we
used a more stringent threshold filtering (2%) to filter the variants and individuals. A
total of 4,036,397 variants and 34 individuals were removed. Furthermore, 27,994,441
variants were removed due to a minor allele less than the threshold (0.01). Meanwhile,
5,476,123 variants were maintained as SNPs. Finally, 26,631 SNPs were removed due
to the Hardy–Weinberg exact test (HWE p ≤ 1 × 10−10). Therefore, after samples and
marker quality control, the total genotyping rate was 0.994328. A total of 5,449,492 SNPs
and 1399 participants passed the filters and QC. Among the remaining phenotypes, 559
were cases and 840 were controls. We performed a GWAS of dementia on the genome
data after QC to identify significant SNPs exploring novel treatments.

We fit logistic regression to test the association between dementia disease status and
every individual SNP. The birth year, gender, BMI and the top 10 PCs were used as covariates
in logistic regression models. The p-value of the SNP coefficient in each logistic regression
represents whether an SNP significantly affects the risk of dementia. These logistic regression
models lead to 5,449,492 p-values for all SNPs that passed QC. The negative-log transferred
p-values are visualized in the Manhattan plot Figure 2. Using the genome-wide significant
threshold (p ≤ 5× 10−8), we identified four significant SNPs (rs11556505, p = 3.536× 10−11;
rs2075650, p = 4.394× 10−11; rs34404554, p = 8.368× 10−11; rs71352238, p = 1.229× 10−11).
Those four SNPs were represented as green dots in Figure 2. The number of the discovered
SNPs was improved when we used another popular decision rule, FDR, which we identified
one more SNP, rs34095326 (FDR = 4.860 × 10−3 < 0.05). This SNP was represented using a
red dot as in Figure 2. All these five SNPs are located on chromosome 19 and belong to the
same gene, TOMM40. The relationship between TOMM40 and dementia is reported in other
studies, such as [21], which serve as independent evidence of our findings.

Figure 2. Scatterplot of chromosomal position (x-axis) against − log10(p) (y-axis). It shows genome-
wide associations from the significant loci with dementia. The red line indicates the genome-wide
significant threshold (p ≤ 5× 10−8) and the blue line indicates the genome-wide suggestive threshold
(p ≤ 1 × 10−5). We highlighted the SNPs with p ≤ 1 × 10−5 in blue points, red points and green
points. The green points represent those SNPs that passed the genome-wide significant threshold
(p ≤ 5 × 10−8), the red point is the SNP that passed the FDR threshold (p ≤ 0.05) and the other blue
points are general SNPs with p ≤ 1 × 10−5.
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In our study, we found that the p-values largely adhered to the expected p-values
until the deviation of the five SNPs at the right-hand side tail, as shown in Figure 3. The
expected p-values are calculated by assuming no SNPs are associated with the risk of
dementia. Hence, these five SNPs’ deviation indicates a strong signal of associations and a
low probability of false positive results. We confirmed that the five points at the tail above
the diagonal are identical to the five SNPs identified by the FDR threshold. This provides
independent support to find five significant SNPs (i.e., FDR rule) instead of four SNPs (i.e.,
the genome-wide significant threshold rule). Given our evidence, we conclude five SNPs
are significantly associated with dementia with properly controlled false positives.

Figure 3. Quantile–quantile plot of the data. It shows observed log10(p) (y-axis) and expected
log10(p) (x-axis) distribution in the GWAS of dementia. The red line represents y = x. If the two
distributions are similar, the points are roughly distributed on this line. Five SNPs on TOMM40
correspond to the five points above the diagonal.

This study is not very well powered, given its sample size and the number of tests
to be conducted. So, we decided to explore more potential signal (non-significant) SNPs
or genes, sacrificing proper false positive control. Using another threshold p ≤ 1 × 10−5

(used by other published studies [14,15]) as the decision rule, we identify13 SNPs. These
SNPs are located on 5 genes, including TOMM40, ATP10A-DT, PTPRM, MED21 and two
undefined genes (details can be found in Table 2). We represent the extra SNPs identified
using threshold p ≤ 1 × 10−5 using blue dots in Figure 2.

Table 2. Detailed information of significant SNPs with p ≤ 1 × 10−05(sorted by p-value from smallest
to largest). We marked the genes associated with dementia using (*) and a series of novel genes
related to brain development or neurodevelopment using (-).

SNPID CHR p-Value FDR BP GENE

1 rs11556505 19 3.536×10−11 1.852 × 10−06 45396144 TOMM40 *
2 rs2075650 19 4.394 × 10−11 1.852 × 10−06 45,395,619 TOMM40 *
3 rs34404554 19 8.368 × 10−11 2.352 × 10−06 45,395,909 TOMM40 *
4 rs71352238 19 1.229 × 10−10 2.590 × 10−06 45,394,336 TOMM40 *
5 rs34095326 19 2.882 × 10−07 4.860 × 10−03 45,395,844 TOMM40 *
6 rs72689267 15 2.899 × 10−06 4.182 × 10−01 26,117,761 ATP10A-DT -

7 rs668168 18 6.111 × 10−06 5.216 × 10−01 8,392,719 PTPRM -

8 rs144822097 12 7.455 × 10−06 9.956 × 10−01 27,183,821 MED21
9 rs670305 18 8.009 × 10−06 5.216 × 10−01 8,392,750 PTPRM -

10 rs7178765 15 8.222 × 10−06 5.929 × 10−01 26,121,173 ATP10A-DT -

11 rs4785108 16 9.097 × 10−06 4.489 × 10−01 60,446,014 LOC101927605
12 rs9888985 16 9.795 × 10−06 4.489 × 10−01 60,427,440 LOC101927605
13 rs10458022 6 9.910 × 10−06 9.999 × 10−01 58,308,335 LOC101927293

CHR = chromosome; BP = base–pair position; * it has been confirmed that this gene is associated with dementia;
- it has been confirmed that this gene is related to brain development or neurodevelopmental disorders.
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Among the genes identified using a relaxed p-value threshold, two genes were con-
firmed related to brain development and neurodevelopment. In a genetic study involving
intellectual disability, autism and psychosis, ATP10A was identified as a gene that may
affect neurodevelopmental disorders [22]. Therefore, we investigated these genes to explore
their association with dementia. We found that PTPRM was a crucial gene involved in the
formation of synapses regulated by zinc ions, which was related to the transmission of
information in the brain [23]. The details of those genes are shown in Table 3.

Note that we need to highlight that the new SNPs or genes discovered with relaxed
threshold 10−5 should be used with extreme caution since false positives are not properly
controlled. We highly suggest using validation studies to confirm such relationships before
using these SNPs and genes for critical decisions.

Table 3. The function of the novel significant genes. ATP10A-DT and PTPRM are related to brain devel-
opment and neurodevelopment. The third column shows the reference that supports the gene function.

Gene Function Reference

1 MED21 an enzyme in humans [24]
2 ATP10A-DT it can affect neurodevelopmental disorders [22]

3 PTPRM it involved in the formation of synapses regulated by zinc ions,
which is related to the transmission of information in the brain. [23]

4. Discussions and Conclusions

We explored the biological mechanism underlying the development of dementia by
conducting a GWAS of dementia and discussed three different p-value thresholds used to
address multiple testing problems.

We investigated the relationship between dementia and patients’ characteristics and
revealed three significant factors, birth year, gender and BMI, which are confirmed in the
literature. For example, recent studies have suggested that ageing and gender are risk
factors for dementia [25,26] and our study provides further validation of the hypothesis.
The relationship between BMI and dementia is controversial in the literature. Our analysis
found a lower BMI increases the probability of dementia in a cohort of patients with a
normal BMI range (mean 25.51 and standard deviation 4.62). This result does not align
with our intuition but is supported by other studies (e.g., [27]). Furthermore, we obtained
the top 10 PCs to address the confound due to population structure. We input the three
significant variables and the top 10 PCs into the GWAS model as covariates.

We applied and compared three discovering SNP approaches to investigate the genetic
variants associated with dementia. Based on the difference in the results of these three
approaches, we discuss their strength and weakness. In our analysis, we found that the
genome-wide significant threshold p ≤ 5 × 10−8 is the least powerful approach, which
discovered four SNPs on the TOMM40 gene located in Chromosome 19. The FDR adjustment
approach is more powerful while keeping false positives of the study under control, which
can discover one more significant SNP in the same gene. Using the threshold of p ≤ 1× 10−5,
we can obtain 13 SNPs on a few uncharacterized locations on chromosome 2 and on several
other genes. Among these genes, only MED21 is not discussed in related literature, which
might be a false hit or a novel discovery. All other genes were reported to be associated with
brain development or neuro-development, supported by the literature [22,23]. We believe
these neuro-development genes are likely to be real dementia-related genes since neurological
and neuropsychiatric matters are the primary causes of dementia [28].

Based on the different results of three different discovering SNP approaches in this
study, we suggest using FDR adjustment if the false positives need to be properly controlled.
However, GWAS studies often suffer from the issue of lack of power caused by the curse of
dimensionality [29]. Investigators often cannot afford to study enough samples to address
the multiple-testing issues when a huge number of tests need to be conducted in GWAS. In
this situation, using a relaxed threshold, such as 10−5, could help us find more potential
signals. However, this approach needs to be used with extreme caution because it cannot
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properly control false positives in the study. When reporting these SNPs, authors should
highlight the fact of no proper false positive control. We strongly suggest conducting
validation studies to validate the SNPs discovered with a relaxed threshold if these SNPs
are used to make important decisions.

In summary, we investigated three decision rules to discover significant SNPs for
GWAS analysis and discussed their strengths and weaknesses. Our analysis results con-
firmed the significant associations of variants in TOMM40 with dementia. We discovered
potential novel dementia SNPs, which were reported to be associated with brain develop-
ment or neuro-development and novel SNPs with no related literature discussion. These
findings reveal the genetic mechanism of dementia and may provide opportunities for
identifying novel dementia treatment.
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