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Abstract: The retinal degenerative disease retinitis pigmentosa (RP) is a genetic disease that is the
most common cause of blindness in adults. In 2016, Chow et. al. identified over 100 candidate
modifier genes for RP through the genome-wide analysis of 173 inbred strains from the Drosophila
Genetic Reference Panel (DGRP). However, this type of analysis may miss some modifiers lying in
trans to the variation. In this paper, we propose an alternative approach to identify transcripts whose
expression is significantly altered in strains demonstrating extreme phenotypes. The differences in the
eye size phenotype will, therefore, be associated directly with changes in gene expression rather than
indirectly through genetic variation that might then be linked to changes in gene expression. Gene
expression data are obtained from the DGRP2 database, where each strain is represented by up to two
replicates. The proposed algorithmic approach first chooses the strains’ replicate combination that
best represents the relationship between gene expression level and eye size. The extensive correlation
analysis identified several genes with known relationships to eye development, along with another
set of genes with unknown functions in eye development. The modifiers identified in this analysis
can be validated and characterized in biological systems.
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1. Introduction

The goal of personalized medicine is to develop better ways to treat and diagnose
disease on an individual level for the patient. This is particularly important because
genetic diseases, even those with seemingly simple inheritance patterns, can be incredibly
phenotypically heterogeneous. Much of this variability is due to differences in genetic
background between patients, but the identity of those variants and the way they influence
disease processes remain, in many cases, unknown [1,2]. A better understanding of this
modifying variation could lead to new therapeutics that target modifier gene products, or
better predictions of prognosis for patients.

One example of this can be seen in the retinal degenerative disease of retinitis pig-
mentosa (RP). RP is the most common cause of blindness in adults, at an incidence of
~1/4000 [3]. A common cause of dominantly inherited RP is the mutation of the light-
sensing G-protein-coupled receptor rhodopsin (RHO). In many cases, the mutation of the
rhodopsin protein sequence leads it to misfold and aggregate in the retinal cells, causing
cell disfunction and eventually death [3,4]. Even in individuals with identical rhodopsin
mutations, symptoms can vary dramatically in severity, ranging from night blindness to an
almost complete loss of vision [5].

In a previous study [1], a genome-wide analysis (GWA) was developed using a
well-characterized model of a collection of ~200 inbred, fully sequenced strains from the
Drosophila Genetic Reference Panel (DGRP) [6,7]. A mutant form of Drosophila rhodopsin
was overexpressed in the developing eye (Rh1G69D) and adult eye size was used as a
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quantitative proxy for the degree of degeneration. Because all environmental conditions
were held stable and the genetic disease model was identical in all lines, any variation in
phenotype could be attributed to differences in genetic background between the DGRP
lines [1]. A genome-wide association analysis identified over 100 candidate modifier genes,
including 84 with conserved human orthologues. Several of these have been validated
through separate candidate modifier studies [1,8,9].

However, due to its design, this analysis missed any modifiers that lay more than
one kilobase from a cis-acting variant in a regulatory region, as any variants farther than
this from a gene were labeled as intergenic and not associated with a candidate modifier
gene. This arbitrary cut-off reflects the fact that regulatory sequences that are distant
from a coding sequence often regulate genes other than the nearest neighbor [10]. This
is an issue for all GWA-style analyses as they will miss any modifiers that lie in trans
to the variation. In other words, any modifier genes whose expression is altered as an
indirect result of changes in the activation of downstream pathways will be missed in this
type of genomic analysis because the genetic variation is linked to a different gene [11].
An alternative approach that could flag such modifiers would be to identify transcripts
whose expression is significantly altered in strains demonstrating extreme phenotypes
(either very large or very small eyes). This approach has been used successfully to identify
causative and modifier genes in a variety of diseases and cancers [12,13], yet it has not
been widely applied in the DGRP. Rather than identifying expression quantitative trait
loci (QTLs) [14], wherein specific variants in the genome are linked to changes in gene
expression as the phenotype [11,15], our approach focuses on associating differences in the
eye size phenotype directly with expression. Such transcripts will be treated as candidate
modifier genes to be validated later. A relevant study was published by the authors in [16].

In this paper, eye size data from a model of retinal degeneration in a fly and gene
expression data from adult female flies are combined and analyzed through an algorithmic
approach to identify genes whose expressions are correlated with eye size. Sections 2 and 3
provide a description of input data and the proposed algorithmic approach, respectively.
In Section 4, several candidate genes are identified that are related to eye development
and degeneration. These potential modifiers are excellent candidates for characterization
in a biological model of retinitis pigmentosa. However, the proposed approach has some
limitations that are discussed in Section 5, considering future directions as well.

2. Materials and Methods
2.1. Input Data

This research uses two sets of data to investigate the candidate modifier’s retinal
degeneration in Drosophila melanogaster. The first dataset consists of a list of the average
eye sizes for each strain from the DGRP dataset, as shown in Table 1. According to Chow
et al. [1], female flies expressing the Rh1G69D model of degeneration were at least three
days old and flash-frozen prior to imaging. At least 10 flies were measured for each
173 DGRP lines. The second dataset includes the gene expression data (Table 2) that were
collected as part of a previous independent study carried out by Huang et al. in [11].
RNA was isolated from adult females for the 184 DGRP strains and analyzed using next-
generation RNA sequencing. Expression data were obtained for 18,140 genes with two
samples for each strain. Each sample represents an independent biological replicate isolated
from identical genetic backgrounds. Due to the limited space, Tables 1 and 2 show a sample
of the data showing the line replicates and their expression values for some genes. It
is important to note that of the 184 strains, only 172 intersect with the first dataset and
therefore were utilized in this analysis.
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Table 1. Average eye size data structure (sample).

Strain Average Eye Size (Pixels)

RAL049 16,939.0

RAL057 17,144.4

RAL059 20,975.36364

RAL069 21,309.9

RAL073 21,332.4

. . . . . .
RAL223 16,790.2

Table 2. Expression-level matrix data structure (sample).

Gene Expression Level

RAL049:1 RAL049:2 RAL223:1 RAL223:2

FBgn0000014 4.093000 3.741190 3.959672 3.998653
FBgn0000015 3.396600 3.073591 2.972604 3.173324
FBgn0000017 7.805475 7.708741 8.092864 7.919513
FBgn0000018 5.022303 4.984516 5.532965 4.702643
FBgn0000022 3.586588 3.76593 3.080493 3.504877
FBgn0000024 5.882073 6.25082 5.441645 5.694643

. . . . . . . . . . . . . . .
XLOC_006439 2.846007 4.64233 2.504695 2.375449

Furthermore, it is worth noting that the gene expression levels for the two replicates
are not the same for some genes. Figure 1 depicts the gene expression patterns observed
for the 18,140 genes collected in Huang et al. [11] for the two biological replicates of strain
RAL049. The standard deviation between the two replicates was measured to be 0.7085.
This indicates that there might be some missing information if the expression profile for one
replicate is chosen over the other, or even if an average expression level of the two is used.
Therefore, in this study, we propose a method to find and select the most representative
replicate combination to perform the correlation analysis between the genes’ expression
levels and the eye size measurements. Further details will be discussed in the next section.
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2.2. The Algorithmic Approach

The first step in the analysis is to identify the strains that exhibit extreme eye sizes. We
identified two groups of stains in the first data set representing the largest eye sizes (N1)
and the smallest eye sizes (N2), respectively. As shown in Algorithm 1, one of the input
parameters specifies the top and bottom quantile thresholds for the eye size range. Those
values can be optimized such that the number of selected strains in the two groups are
balanced. After choosing strains to be analyzed, the next step is to select which replicate
of each strain will be used in the analysis. As mentioned earlier, the disparity in gene
expression levels between the two replicates of a strain may affect the accuracy of the
analysis. Therefore, we generate a list of all possible combinations of replicates and select
the one that best guides the correlation analysis. This task involves a number of steps that
are listed in Algorithm 2.

Algorithm 1: MainProcedure.

1: Input:
2: X, Y—Bottom and top quantiles of eye sizes
3: C—Positive correlation filter threshold
4: Ess—Average eye sizes array
5: Expr—Matrix of expression levels from DGRP database
6: Output:
7: Genes with correlation values in [C, 1] or [−1, −C]
8: Begin
9: SelSizes← eye sizes in Ess less than X or greater than Y
10: SelStrains← strains having eye sizes in SelSizes
11: ReplCombs← GenerateReplicateCombinations (SelStrains)
12: BestComb, CorrVals← FindBestReplicateCombination (SelSizes, Expr, ReplCombs, C)
13: SortedGenes← Sort genes in descending order based on absolute values
14: in CorrVals
15: Print genes from SortedGenes that satisfy correlation condition C
16: return

Algorithm 2: GenerateReplicateCombinations.

1: Input:
2: StrainArr—Selected strains array
3: Output:
4: CombArr—Replicate combinations array
5: Begin
6: N← Length (StrainArr)
7: for i← 1 to 2N do
8: binary← DecimalToBinary (i)
9: for each binary digit D at position j in binary do
10: if D is 0 then
11: CombArr[i]← replicate 0 of strain j
12: else
13: CombArr[i]← replicate 1 of strain j
14: return CombArr

The process starts by representing each replicate combination with a number. This
encoding scheme is similar to the process of representing a number in the binary computer
system. Since each strain has two replicates to choose from, a binary digit is used to indicate
which replicate is selected, where 0 indicates the first replicate is selected and 1 indicates
the second one is selected. Thus, for a given a set of strains, a series of binary digits will
be generated representing all possibilities of such combinations. To illustrate this concept,
suppose that there are two strains to be analyzed, one from the largest eye size group and
another from the smallest eye size group. Because each strain has two replicates, there
are four possible replicate combinations that can be represented in binary as: “00”, “01”,
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“10”, and “11”, which are equivalent to the decimal numbers 0, 1, 2, and 3, respectively.
As we mentioned above, “00” means picking the first replicate of each strain, while “01”
means picking the first replicate of strain 1 and the second replicate of strain 2, and so on.
In general, for N number of strains, each replicate combination requires at least N binary
digits to be represented. Furthermore, there are 2N combinations of such possibilities. This
works in a similar way to the process of incrementing a digital counter from 0 to 2N−1,
where each generated number uniquely identifies a replicate combination.

Therefore, the purpose of Algorithm 2 is to iterate every number from 0 to 2N−1,
decode the number into its base-2 representation, and retrieve the choices of replicates
based on the values of their binary digits. This will form a complete set of choices from
which a replicate will be picked and passed to the next phase of analysis. After Algorithm 2
generates all possible replicate combinations, Algorithm 1 passes them to Algorithm 3
in order to find the best combination among them. That is, for each combination of
replicates, the vector of expression levels that is associated with a gene is correlated with the
average eye size vector for the extreme strains selected initially. The correlation coefficients
are computed using Pearson’s method [17]. The Pearson correlation coefficient values lie
between −1 and 1, where a value of 0 implies that there is no linear dependency between
the variables under study. A + 1, on the other hand, implies that if one variable increases,
the other variable increases and vice versa for −1.

The calculated correlation coefficient value for that combination is then checked
against the given threshold value. Each gene whose correlation value passes the threshold
condition counts as one point toward the score of that replicate combination. Replicate
combinations then accumulate points through this process and eventually the combination
possessing the highest score is selected as the best combination. Next, in Algorithm 1,
the genes of the best combination are sorted in descending order based on the absolute
values of their correlation coefficients, and then only those genes that satisfy the correlation
condition will be printed.

Algorithm 3: FindBestReplicateCombination.

1: Input:
2: SelSizes—Average eye sizes of selected strains
3: Expr—Expression levels matrix from DGRP database
4: ReplCombs—Replicate combinations
5: C—Correlation filter condition
6: Output:
7: MaxReplComb—Best replicate combination
8: CorrVals—All correlation results of the best replicate combination
9: Begin
10: for each replicate combination Rci in ReplCombs do
11: Score[i]← 0
12: for each gene j do
13: selExprs← expression levels of gene Gj selected by the replicates in Rci

14: temp← correlation of selExprs and selSizes
15: if temp < −C OR temp > C then
16: Score[i]← Score[i] + 1
17: MaxReplComb← Replicate combination associated with Max (Score)
18: selMaxExprs← all genes’ expression levels of gene Gj associated with MaxReplComb
19: for each gene Gj in selMaxExprs
20: CorrVals[j]← correlation of selSize and selMaxExprs[j]
21: return MaxReplComb and CorrVals

For example, let us consider two strains with eye sizes A and B corresponding to four
replicates: namely, A0, A1, B0 and B1. Assume that, for a specific gene, the expression
levels for each replicate are C0, C1, D0, and D1, respectively. Since correlation analysis
is carried out on all replicate combinations: “00”, “01”, “10”, and “11”. In this case, “00”
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indicates C0 and D0 are correlated with A and B, “10” indicates C1 and D0 are correlated
with A and B, and so forth. Each replicate combination is then awarded 1 point if the
absolute value of its correlation coefficient is above the set threshold. This is repeated for
all the genes in the expression dataset. Finally, the replicate combination with the top score
is considered the best combination and hence is passed to the final step in the analysis.

3. Results and Discussion

As we mentioned above, this study uses two sets of data: the average eye sizes of
173 DGRP strains [1], and a subset of the gene expression data from Huang et al. [11] with
18140 genes representing 184 DGRP female strains. Notably, 172 strains were shared between
the two datasets and used in this analysis. In this experiment, we defined the extreme eye
sizes by setting quantile values at 20.9% and 87.2%. These bounds were set to ensure only a
few strains with the most extreme phenotypes were analyzed and that an equivalent number
of strains would be found in each group. This resulted in eight strains designated as the small
eye size group (eye sizes represent the bottom 20% of all strains) and eight strains designated
as the large eye size group (eye sizes represent the top 12% of all strains). The set of selected
strains is listed in Table 3 and is visually highlighted in Figure 2 using the color blue. With
each strain having two replicates from the gene expression dataset, this means that there will
be 216 or 65,536 different combinations to consider. The algorithm was implemented using
the R language and executed on a computer with a Fourth generation Intel CPU 1.7 GHz
and 8GB RAM. The total running time was measured as approximately 70 min.

Table 3. Replicates selected for each strain in the best replicate combination.

Strain Average Eye Size
(Pixels) Selected Replicate

RAL049 16,939 1
RAL223 16,790.2 1
RAL256 14,254.6 1
RAL386 16,826.8 1
RAL721 16,112.9 2
RAL761 16,569.8 1
RAL819 14,442.9 1
RAL879 15,970.3 1
RAL129 25,694.5 2
RAL229 26,955.1 2
RAL239 27,349.1 2
RAL340 26,083.1 1
RAL374 26,036.1 1
RAL385 26,327.9 1
RAL589 26,491.2 1
RAL808 26,457.8 1

Out of the 216 replicate combinations generated, the identified best replicate combi-
nations are indicated in the third column of Table 3. The strain numbers in Table 3 are
indices applying to both datasets. By setting the correlation threshold at 0.6, this replicate
combination yields 919 genes whose correlation coefficient values are either above 0.6 or
below −0.6 (Table S1). We presume that, in most cases, the increased expression of the gene
will correlate with the increased activity of the protein encoded by that gene, although we
acknowledge that this may not always be the case and will need to be assessed in future
studies. We treat these genes as candidate modifiers, as the expression of these genes
appears to differentiate between positive and negative outcomes. Among the 919 genes
passing the filtering conditions, we will focus our analysis on the top ten candidate genes.
The genes were sorted based on their absolute correlation values.
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Figure 2. Average eye sizes of all strains.

Figure 3 shows the top ten candidate genes along with their correlation values. Some
of these genes can be directly linked to eye development and degeneration. The increased
expression of Pink is associated with reduced eye size (correlation of –0.8). This is particu-
larly interesting because the human ortholog of Pink is associated with the eye degeneration
syndrome human Hermansky–Pudlak syndrome 5 (HPS5) [18]. The most negative corre-
lation value (−0.85) associates the increased expression of MRG15 with reduced eye size.
While MRG15 does not have a known role in eye development, previous studies indicate
that it interacts with the absent, small, and homeotic discs 1 (ash1) trithorax protein group.
This complex, in turn, regulates eye development in Drosophila [19–21]. This suggests
that MRG15 may have an indirect effect on eye degeneration and is a strong candidate
for further validation and characterization in the Drosophila model and other biological
systems. Finally, CG2004, an uncharacterized gene, was reported as a candidate modifier
in the original screen paper associated with decreased eye size [1].
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Effects on eye size phenotype in Drosophila can also come from two signaling path-
ways: wnt and TOR. Wnt signaling is associated with both pro-apoptopic and anti-
apoptopic processes in retinitis pigmentosa [9]. The candidate genes of wntless (wls),
whose product is involved in Wnt protein secretion, and pygopus (pygo), a nuclear tran-
scription factor, are both involved in Wnt signaling [22,23]. The expression of both of
these genes is associated with reduced eye size (correlation values of <−0.7). The Wnt
pathway may, therefore, be a major contributor to the degenerative eye phenotype. To
see how strong this influence may be, we examined the other 909 genes for possible
roles in Wnt signaling using gene ontogeny analysis with the DAVID functional anno-
tation tool (Supplementary Table S1) [24]. Eleven additional genes are involved in Wnt
signaling, with the expression of all but one (fz2) negatively correlated with eye size
(Supplementary Table S2). The TOR pathway is able to inhibit autophagy, which is one
way a normal cell disposes of misfolded proteins. The increased expression of Raptor,
a gene known to work with TOR complex 1 (TORC1), is associated with small eye size
(correlation value < −0.7) [25]. To see how strong this influence may be, we examined the
other 909 genes for possible roles in TOR signaling using gene ontogeny analysis with the
DAVID functional annotation tool (Supplementary Table S1) [26]. Seven additional genes
are involved in Wnt signaling, with the expression of all but one (fz2 once again) negatively
correlated with eye size (Supplementary Table S3). Although there has been no direct
evidence for the involvement of these two pathways in this retinitis pigmentosa model,
there may be other genes in these pathways that influence the degenerative phenotype.

Other genes that also have high and consistent correlation values are Tbc1 domain
family member 15/17 (Tbc1d15-17), Bent (bt), Mediator subunit 19 (Med19), and Vajk1.
Tbc1d15-17, whose expression is correlated with reduced eye size (correlation value <−0.8),
encodes a protein that activates Rab GTPases. Some of these, such as Rab11 and Rab1, are
reported to be involved in the trafficking of rhodopsins to rhabdomeres [27]. Inability to
transport rhodopsins is one pathogenic mechanism in retinitis pigmentosa. The increased
expression of Med19 is also associated with reduced eye size, but a role for it in eye
development has not been identified. However, Med19 has been associated with cancer cell
proliferation, implying a negative effect on cellular function when overexpressed [28]. On
the other side of the spectrum, the increased expression of bt is associated with increased eye
size. It encodes a calmodulin-dependent protein kinase and is linked to eye development
by calmodulin, which is essential for this function [27]. Finally, the increased expression
of the chitin-binding protein Vajk1 is also associated with increased eye size, despite no
previous evidence in the literature for its association with eye development [29]. These
candidate modifier genes provide possible avenues of future research.

In order to further evaluate the analytical approach adopted in this study, the results
are compared with the study conducted by Chow et al. [1]. As previously mentioned, a
genome-wide association analysis was performed to identify genomic variants that were
correlated with the eye degeneration phenotype. To validate their results, the authors
reduced the expression of each of the top 14 candidates by driving RNAi in the developing
eye. They then used changes in eye size and degeneration to determine if the candidate
gene did in fact modify the phenotype [1]. As shown in Table 4, the first and the second
columns show part of Chow’s study listing the top identified candidate genes and the
measured impact of reduced candidate gene expression on eye size, respectively. The
third column shows the correlation coefficients as calculated in this study for each of the
candidate genes. Finally, the last column indicates whether this specific gene was identified
as a candidate modifier by both methods.
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Table 4. Comparison with Chow’s study [1].

Candidate Gene Eye Size after Knockdown
(Chow et al., 2016)

Correlation
Coefficient

Agreement
between Results

CG2004 Smaller −0.679601 No
Cdk5 Qualitatively improved −0.407520 Yes
CG15666 Larger 0.142389 No
CG31468 Larger 0.171970 No
CG1785 No change −0.243544 No
Adgf-D Larger 0.503081 No
fred Smaller 0.122126 Yes
prosap Smaller −0.270981 No
CG16885 Smaller 0.292262 Yes
Hexo2 NA 0.000444 NA
hppy Qualitatively worse −0.092014 Arguably yes
lola Smaller No data in input NA
Pde1c No change −0.186151 No
CG43795 No change 0.376693 No

The results show some agreement between the two studies for three candidate genes:
Cdk5, fred and CG16885. The listed correlation values indicate that a negative correlation
coefficient for Cdk5 corresponds to larger eye sizes upon the reduced expression of that
gene in Chow et al. [1]. The positive correlation values for fred and CG16885 correspond
with a reduction in eye size upon the reduced expression of these genes in Chow et al. [1].
We also observe similarity in our results with hppy. While none of these genes meet our
original correlation cut-off (−0.6/+0.6), the trend in the same direction is a promising result,
nonetheless. Chow’s method showed a qualitative reduction in eye appearance, which
corresponds to the very small negative correlation value [1]. It is important to note that
this research uses different datasets and a different approach than the original study. It
would not be unexpected that these approaches would identify different subsets of modifier
genes. Because, in this study, transcriptional changes are monitored as opposed to genomic
changes, we are more likely to capture candidate modifiers whose expression is linked to
the phenotype in trans. In other words, the changes in the expression of these genes are
due to genomic variation in regulators of gene expression, such as transcription factors.
Alternatively, the genomic variation responsible for the changes in expression may indeed
be found in a regulatory element for that gene, but that element may only be distantly
linked to the gene of interest. In both cases, the gene would not have been identified in the
original genomic variation study.

The results were also compared with the previous study [16]. Only two genes from the
top candidates, as determined by the Pearson correlation coefficient, were shared between
the two analyses: Ipk2 (−0.6165) and CG10657 (+0.7042). Ipk2 encodes an inositol kinase
involved in the synthesis of the sugar inositol phosphate, but its link to retinitis pigmentosa
is unclear [30]. CG10657, on the other hand, is orthologous to human RLBP1 that is
mutated in Newfoundland rod–cone dystrophy and Bothnia retinal dystrophy [31,32]. The
discrepancy in these two lists comes from independent study design. In Amstutz et al.,
more strains were included in the analysis and a lower absolute correlation coefficient cut-
off was used [16]. Significance of the correlation was also factored into the analysis. Because
of the use of samples with moderate phenotype and lower correlation, it is expected that
the identified genes may be different.

4. Limitations and Future Extensions

Despite promising results, this study is limited by the temporal nature and the differ-
ences in genetic disease models utilized. Gene expression varies over time [33]. Because
RNA was isolated at a single time point during adulthood, we only have a snapshot of gene
expression at that point in time. While the phenotypes for the disease model are expressed
during adulthood, the disease mechanisms are activated during larval development. The
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conclusions we can draw from this comparison are limited. In addition, gene expression
was measured in wild-type DGRP strains, instead of in the presence of the degenerative
RP model [1]. A better comparison could be made using RNA isolated from larval eye
precursor cells in strains that are expressing the disease model. This work is already under-
way as part of a collaborative effort including the authors. Considering these limitations, it
is extremely important to validate these candidates through individual characterization.
Future studies will focus on this biological validation by examining the impact that the loss
of function of each candidate has, in turn, on the phenotype exhibited by the disease model,
in this case, eye degeneration and reduced eye area. Those passing the validation will be
characterized in greater detail for their role in regulating the degenerative process, and pos-
sibly as candidates for therapeutic targeting or prognostic markers. Such characterization
has proven extremely fruitful in previous studies [1,34–37].

From a computational point of view, there are several directions that further efforts
could explore. One area relates to how the replicates are selected. The current approach
is intensive in computing power. The computation increases on the order of the power of
two as the total number of selected replicates increases. In our tests, a total of 16 strains
leads to 216 replicate combinations. However, one should also be mindful that, as the strain
count scales, the correlation range to filter meaningful genes may end up with fewer genes
because of the noise in the gene expression dataset. In our tests, given the same selected
window of correlation values, it has been observed that 7000 genes are returned for two
strains from each group of eye size, while only approximately 1000 genes are returned for
eight strains from each group. This tradeoff between increased data inclusion and increased
data noise must be considered during quantile cut-off selection. Related to this, it could
be interesting in the future to extend this method to deal with three or more replicates
rather than just two. In this case, the number of possible combinations will increase from
2N to mN, where N refers to the number of selected stains and m represents the number
of replicates. In addition, each combination will be represented by m digits instead of 2.
This increase in replicate combinations will definitely require more computational time and
power to complete the analysis, but should be possible when considering high-performance
computing options which can provide more efficient solutions to the task of choosing the
most accurate combination.

Another direction that one could explore is to eliminate the lines that have an unac-
ceptable amount of noise between their replicates before diving into the main correlation
computation. This approach has the advantage of avoiding expensive replicate selection
because one can take a random replicate from a line without impacting the stability of the
outcomes. However, the challenge with this approach is to define the condition needed to
eliminate the lines that violate the noise threshold. Since this study does not explore this
area, it could be the focus of future research.

5. Conclusions

Based on two datasets representing gene expression levels for individual DGRP strains
and average eye sizes, a correlation study has been conducted to find out which genes
are related to changes in eye size [1,11]. The correlation results reveal new genes and
pathways that are likely to be associated with eye degeneration, and candidate genes for
future experiments. Although a thorough understanding of these genes has not yet been
reached, some of them—such as CG2004 and Pink—have been confirmed as modifiers of
eye development and degenerative disease in previous studies. Others show promising
potential with their indirect associations with the targeted phenotypes.

Given that each strain has two replicates to choose from, the approach used in this
study employs a binary representation to encode replicate combinations for strains, picks
the best replicate combination, and performs a correlation calculation to measure the
relationship between each gene’s expression level and the eye size measurements. Due to its
combinatorial nature, this approach faces challenges when the number of strains increases.
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This is one area that future efforts could improve, which could reveal better insights into
the genotype–phenotype relationship.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedinformatics2040040/s1, Table S1: Candidate genes and
correlations, Table S2: Candidate genes involved in Wnt signaling, Table S3: Candidate genes
involved in TOR.
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