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Abstract: Recent developments in research on artificial intelligence (AI) in medicine deal with the
analysis of image data such as Magnetic Resonance Imaging (MRI) scans to support the of decision-
making of medical personnel. For this purpose, machine learning (ML) algorithms are often used,
which do not explain the internal decision-making process at all. Thus, it is often difficult to validate
or interpret the results of the applied AI methods. This manuscript aims to overcome this problem by
using methods of explainable AI (XAI) to interpret the decision-making of an ML algorithm in the
use case of predicting the survival rate of patients with brain tumors based on MRI scans. Therefore,
we explore the analysis of brain images together with survival data to predict survival in gliomas
with a focus on improving the interpretability of the results. Using the Brain Tumor Segmentation
dataset BraTS 2020, we used a well-validated dataset for evaluation and relied on a convolutional
neural network structure to improve the explainability of important features by adding Shapley
overlays. The trained network models were used to evaluate SHapley Additive exPlanations (SHAP)
directly and were not optimized for accuracy. The resulting overfitting of some network structures
is therefore seen as a use case of the presented interpretation method. It is shown that the network
structure can be validated by experts using visualizations, thus making the decision-making of the
method interpretable. Our study highlights the feasibility of combining explainers with 3D voxels
and also the fact that the interpretation of prediction results significantly supports the evaluation of
results. The implementation in python is available on gitlab as “XAIforBrainImgSurv”.

Keywords: radiomics; survival prediction; glioma; interpretability; deep learning; convolutional
neural networks; explainable artificial intelligence

1. Introduction

Radiomics is a non-invasive method supporting brain cancer diagnosis [1]. The disci-
pline also stimulates growing image datasets as well as clinical studies involving such data
for developing predictive models [2–5].

Cancers from the central nervous system consist of a heterogeneous group of tumors
with very different biologies and prognoses [6]. Glioma presumably originates from glial
cells that are neural stem cells, astrocytes derived therefrom, or oligodendrocyte precursor
cells [7]. Brain cancers are regarded as the primary cause of morbidity and mortality, while
glioma comprises the majority therefrom [8]. Glioma management is based on an integrated
approach of clinical examination, brain imaging, and molecular feature analysis set by the
international standard for the classification of brain and spinal cord tumors [9].

Glioma research still lacks data describing specific features in subtypes or clinical
implications such as age groups [10]. Still, endeavors such as the RSNA-ASNR-MICCAI
Brain Tumor Segmentation (BraTS) challenge initiative deliver benchmarks and also foster
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interdisciplinary exchange. However, survival prediction of glioma patients remains a
challenging task [11,12]. Several studies and reviews show the use of medical imaging
techniques in combination with deep learning for various medical applications [13–17],
such as tumor/tissue segmentation [18,19], anatomical/cell structure detection [20] or
computed-aided diagnosis and prognosis [21]. Deep learning techniques and medical
image analysis can also help to predict the survival rate of glioma patients [22]. However,
deep learning approaches are typically hard to understand, lack interpretability and are
therefore often seen as a black-box [23]. The field of explainable artificial intelligence
(XAI) aims to open the black box of deep learning and to understand its internal decisions
better [24–26] and is reported to be an important future direction for glioma survival
analysis [27].

This study aims to explore possibilities to explain glioma survival prediction. While
making use of open data convolutional neural networks (CNN) for training, complete
3D MRI scans are combined with an explanation approach that is compatible with 3D
voxels. By including an additional pre-processing step to increase the size of the available
dataset, it is aimed to improve the performance of the trained network models. The
increasing complexity of the network model becomes apparent using complete 3D voxels
as training data, and multiple models are examined by means of performance. To examine
the applicability and validity of the trained network models, visual explanations are
created using SHapley Additive exPlanations (SHAP) [28]. With these explanations, we
aim to explore and identify influencing factors of the predicted survival rate based on the
networks’ inputs and increase the interpretability of the results. Through a comparison of
the identified influencing factors with extracted domain knowledge, the used network can
be assessed and validated without having to rely on additional validation datasets.

The main contributions of this work are (1) the investigation of the usage of full
3D MRI voxels to predict the survival rate of glioma patients and (2) the usage of XAI
visualization techniques for evaluation of the trained network model and increasing its
interpretability. Additionally, a proposal for a pre-processing step to augment 3D MRI
scans and increase the number of data samples for training is presented.

The remainder of this work is structured as follows. First, related work in the field
of survival prediction, deep learning on medical image analysis, and explainable artificial
intelligence is given. Then, the concept for pre-processing and augmenting 3D MRI scans, as
well as the used CNN structure for training, is presented. In Section 3, training results and
extracted XAI features for enhancing interpretability are presented, which are discussed in
Section 4. Section 5 concludes the paper.

1.1. Background on Methodical Approaches to Survival Prediction

Gliomas are diagnosed by several steps of medical history, physical and neurological
examination, histopathological analysis for molecular features and radiographic exami-
nation, including magnetic resonance imaging (MRI) [29]. Grading and classification are
based on histological features, which have been updated recently [6,30]. Conventional
imaging analysis involves features such as the degree and heterogeneity of contrasted
enhancement area of tumors, edema in surrounding tissues, hemorrhage, border definition,
mass effect, or varying intensities in T2-weighted MRI, among others, as indicators for
malignancy, while three-dimensional image analysis is recommended due to anisotropic
growth of glioma [31–33].

Imaging after surgery is recommended to evaluate the extent of the resection; moreover,
pathological enhancement thickness on post-surgical images could be correlated with
survival [34].

Survival prediction in glioma is an ongoing research topic, often making use of ra-
diomic and/or genomic and clinical data and applying ML methods [27]. Experiments with
mostly (but not exclusively) machine learning (ML) approaches are conducted to see which
one works best [35,36]. The BraTS 2018 dataset containing survival information has been
used to predict the survival days via a linear model and comparing it to a neural network
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and random forest [37]. The model was not directly trained on MRI scans but on features
that were extracted from them. Similar to that, the survival rate has been predicted through
an artificial neural network based on extracted features [38]. Although it is not specifically
mentioned how features are extracted (manually vs. automatically), the authors showed
that the used features were not applicable for survival prediction. An automatic extraction
approach of MRI features of glioblastoma patients to predict the survival rate has been
presented by [39]. Eight extracted image features were used in a Cox regression model and
evaluated for survival correlation. While the presented approach shows how features can
be extracted for survival prediction, it lacks a clear methodology, and no correlation results
could be shown. Additional specific examples of survival-associated features extracted
from MRI scans of glioma are given by [18,40], who identified subsets of 5 or 14 significant
features, respectively, correlating to patients’ survival by using data-mining techniques
in combination with a J48 classification tree for prediction or decision trees for feature
extraction, respectively, in combination with a random forest model for survival prediction.

Convolutional neural networks (CNNs) can be further used to extract deep MRI
features for diagnosis in terms of classification [41].

1.2. Background on MRI Regression/Classification on CNNs

The classification and regression of glioma types next to the survival prediction with
CNNs is another ongoing topic of radiomics on glioma MRI imaging. In [18], the authors
use the BraTS 2018 dataset to conduct tumor segmentation on MRI scans using an ensemble
of three different 3D CNN architectures. By combining all three networks, they managed
to segment the tumor well and achieved a good performance on tumor segmentation. The
authors in [22] classified survival predictions based on histopathological images using
three classes of survival. They compared five different classifiers based on DCNNs and
tested different patch sizes. They concluded a patch size of 256 to be optimal, offering
a good training accuracy and a good loss curve. The work in [42] explores different pre-
trained CNNs and classifiers to detect abnormalities in MRI brain images. In another
experiment, the authors of [43] applied a CNN to classify the tumor type, distinguishing
between glioma, meningioma, and pituitary using data augmentation techniques. As
the input, 2D slices for MRI scans were collected and manually labeled. To increase the
training size, the data set was additionally augmented by transforming and rotating the
images before splitting. Although they did not evaluate how the inflation of the training set
affects the results of their experiments, it can be assumed that the increase in the training set
influences the accuracy. Another application of CNNs is the classification of IDH genotypes,
as the distinction between IDH-wildtype and IDH-mutant, from dynamic susceptibility
contrast (DSC) MRI images [44]. Therefore, they recorded and pre-processed MRI images
by applying skull stripping, co-registration, bias field correction, and isotropic resampling.
They then segmented the subregion of the tumor using neural networks and classified
the two IDH genotypes using a convolutional long short-term memory (LSTM) network.
Their results showed a high training accuracy. Here again, no evaluation of the influence of
image pre-processing is conducted, but other research suggests that this approach enhances
the training results significantly [45–47].

Other specific tumor classification approaches currently proposed are hybrid models,
as CNN and neural autoregressive distribution estimation (NADE) [48], “AdaptAhead”
Optimization for MRI segmentation [49] and 3D CNNs for brain tumor segmentation [50]
or for tumor classification [51]. An extensive overview of the applications of deep learning
on MRI data, illustrating a broad field of applications that is not limited to the brain and
using different MRI images of the human body, is given in [52]. Their set of applications
includes image registration, image segmentation, resolution improvement, quantitative
parameter description, diagnosis, and prediction.

The different image modalities of fluid-attenuated inversion recovery (FLAIR), T1-,
T2-weighted, and T1 contrast-enhancing (T1ce) in MRI are based on the chosen institutional
methods and measurement parameters [53]. T1, T2 and FLAIR images result from either
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short, long, or even longer times to echo (TE) and repetition times (TR) given through the
application and receipt of varying sequences of radio frequency pulses [54]. Contrast en-
hancement agents further change signaling intensities by shortening T1 relaxation rates [55].
These modalities highlight the contrast between various tissue types differently. Tumor
mass is less bright in T2 and FLAIR, while inverse for T1ce. Edema are bright in FLAIR.
Necrosis is dark in T1 and FLAIR, and it is bright in T2 [53].

1.3. Explainable AI in MRI Imaging

Explainability, as defined by the XAI community, highlights technically decision-
relevant parts of machine representations and machine models, for example, those parts
that contributed to model accuracy in training or to a particular prediction. Importantly
in our context, this definition does not refer to a human model. For this purpose, caus-
ability was introduced [56], following the notion of usability [57]. While XAI is about
implementing transparency and traceability, causability is about measuring the quality
of explanations [58], i.e., the measurable extent to which an explanation of a statement
achieves a certain level of causal understanding for a user with effectiveness, efficiency,
and satisfaction in a given context of use. According to the DIN EN ISO 9241-11 norm [59]
describing the ergonomics in a human–system interaction, usability represents the mea-
surable extent to which a software can be used by certain users to achieve certain goals
with effectiveness, efficiency and satisfaction in a certain context of use, and causability
is the measurable extent to which an explanation achieves a certain level of causal under-
standing for a human. Thus, it relates to a human model and attempts to make the causal
relationships understandable to the domain expert in the sense of [60]. Different general
methods to approach explainable AI models are presented and discussed in a use case on
histopathology [24] and neuroimaging [61].

Currently, there is still a lack of explainability in models based on radiomics [62].
Moreover, explainability supports the evaluation process by making models understand-
able also to medical scientists, which is ultimately necessary for clinical validation and
essential for AI as the decision support in regard to transparency of machine learning
models [63]; an example is given by [64]. In [65], the authors show an application of CNN
for image classification on breast MRI images with the addition of XAI. They adapted
the AlexNet structure [66] for binary classification and applied an integrated gradients
attribution method and SmoothGrad noise reduction for visualization of relevant features,
opening the “black-box” results. Similar to that, class activation mapping (CAM) is used
not only to obtain the prediction and the certainty score of a neural network but also to
obtain the information on what regions of the input the result comes from by overlaying
the input with a heatmap, indicating the regions of interest [67]. An XAI approach called
Grad-CAM, which extends CAM by including gradient information, is presented in [68].
Another approach that is available under the open-source license is SHapley Additive ex-
Planations (SHAP) [28]. The framework provides additive feature attribution methods and
visualization of these, such as importance. The field of XAI has shown enormous potential,
and new techniques, such as Grad-CAM or SHAP, are released every year. Other currently
used techniques are LIME [69], DeepLIFT [70] and CXplain [71]. A different explanation
extraction framework that answers a set of specific and humanistic questions verbally
instead of visualizing the trained network is presented in [72].

Current state-of-the-art XAI python frameworks have been compared using a genomic
classification of glioma subtypes [73], and medical imaging analysis and deep learning
approaches in various fields have been summarized and surveyed [23,74].

2. Concept and Implementation

This section describes the process of how to create an interpretable machine learning
(ML) framework that provides additional information about the trained network. Figure 1
abstracts the architecture graphically. First, the used dataset and the pre-processing steps
are described. Then, the used ML approach, a CNN using voxels, is detailed. At the
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end of this section, the interpretation method is presented. Implementation sources for
pre-processing, training and validation are available via https://gitlab.com/matte3000/
xai-for-brain-img-surv (created 29 April 2021, last updated 31 August 2022).

CNN regression 
training: 

2D full size, 
2D scaled, 
3D full size

Validation 
with 

MICCAI-BraTS 
2020 

Leaderboard

Validation/ 
Interpretation 

with SHAP

Comparing 
original & 

pre-processed 
brain MRI 

dataset from 
BraTS 2020

Figure 1. The architectural overview.

2.1. Data Pre-Processing

For training our ML approach, the BraTS2020 dataset is used [2,75,76], which contains
survival information of high-grade glioma (HGG) and low-grade glioma (LGG) patients
and comprises four image modalities of 3D MRI scans (t1, t1ce, t2, flair). We use those data
from the original training dataset that include survival information in days. The provided
data are already pre-processed by co-registering the data to the same anatomical template,
interpolating them to the same resolution of 1 mm3 and by conducting skull-stripping.

We further augment the selected data of 235 patients from the BraTS2020 dataset by
implementing random rotation. This step is used to increase the size of the available dataset
and improve training results. The MRI scans of the patients were randomly rotated around
the longitudinal axis (roll r), transverse axis (pitch p), and vertical axis (yaw y) within the
range of −20◦ ≤ r, p, y ≤ 20◦. This was performed 10 times for every MRI scan, resulting
in a total of 235 + 2350 = 2585 data points.

Additionally, every MRI scan of all four image modalities is standardized such that

sstd[x, y, z] = sorig[x, y, z]− 1
N

W−1

∑
w=0

H−1

∑
h=0

D−1

∑
d=0

sorig[w, h, d] (1)

where x, y, z indicates the position of the current voxel in the MRI scan s, W is the width of
the voxel, H the height of the voxel, D the depth of the voxel, and N = W × H × D.

For certain CNN structures, the data are additionally scaled down to half of its size to
improve training performance and memory management, such that

sscaled[x, y, z] =
1
8

2x+1

∑
w=2x

2y+1

∑
h=2y

2z+1

∑
d=2z

sstd[w, h, d] (2)

with 0 ≤ x ≤ bW/2c, 0 ≤ y ≤ bH/2c, 0 ≤ z ≤ bD/2c. To see for which designs the
scaling was applied and how it affected the results, we refer to Section 3. Figure 2 shows an
exemplary scan after each processing step. The scans shown are centered cross-sections
of patient no. 365 of the BraTS2020 dataset with three different views: axial, sagittal, and
coronal. The histogram shows relative color changes. After rotation, no changes are visible.
The standardization shifts the image towards the center, which is visualized in the example
image as a slightly darker scan. The standard size of a 3D MRI scan in the BraTS2020
dataset is 240× 240× 155 pixels. After scaling, the number of pixels and thus the single
batch size are reduced to 120× 120× 78 pixels.

2.2. CNN Structure and Preparation

The CNN structure is based on an implementation by Gupta and Jindal [77], which
uses slices of MRI scans and a tumor segmentation for survival prediction [78]. The
implementation of the CNN was performed in python using TensorFlow and Keras. To use
the whole 3D voxel for training and optimizing the performance of the network, additional

https://gitlab.com/matte3000/xai-for-brain-img-surv
https://gitlab.com/matte3000/xai-for-brain-img-surv
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changes in network size, layers, and input sizes were required. Furthermore, instead of
training the network on selected slices of different MRI sequences, the CNN is trained
only on the 3D scaled type but therefore uses the whole 3D voxel as input. The overall
network structure can be seen in Figure 3. A total of five convolutional layers with different
numbers of feature layers were used to extract meaningful features. Additionally, the age
of the patients was considered, as this has already been proven to be a good indicator for
survival prediction [35]. The output of the neural network is the days of survival from
a given patient, normalized in the range of [0, 1] with 1 = max_days, while max_days is
derived from the BraTS dataset and is the longest surviving patient. For the loss function,
the mean squared error (MSE) is used as well as the Adam optimizer.

Figure 2. The pre-processing steps are conducted to increase the data size and optimize performance.

Figure 3. Structure of the designed CNN for training 3D voxels from the MRI images as input, based
on [78]. The network consists of different layers, such as convolutional (Conv), max pooling (MP),
average pooling (AP), concatenation, and fully connected layers (FC).

To train the CNN, the pre-processed data, as discussed in Section 2.1, are split into
training and test sets (80/20). Training was conducted on three different network designs:
one training was performed using the full-sized voxel and two-dimensional convolutional
layers, using 2D feature detectors. Another CNN was trained on 2D convolutional layers
as well but used scaled scans as the input, as discussed in Section 2.1. The third CNN
structure used 3D feature detectors and the scaled MRI scan as input.

For training, the workload was outsourced to AWS, specifically to ec2 instances of the
g4dn family, which is a product group that has up to 4 GPUs (NVIDIA T4 GPUs). As for
the machine image, we chose Amazon’s deep learning AMI based on Ubuntu 18.04 because
it had a lot of the requirements already preinstalled and all issues with GPU drivers already
solved. Our augmented dataset was uploaded to a private S3 bucket so the instances could
access them via Amazon’s in-house connection. The training was performed in parallel
with the cheapest instance (g4dn.xlarge), which allowed us to simultaneously train up to
5 different networks.
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2.3. Explainability

To explain the output of the CNN, we evaluated different pre-existing libraries and
selected SHAP [28], available via https://github.com/slundberg/shap (accessed on 6 June
2021). SHAP is a XAI framework that provides, among other features, visual interpretation
for a given model on a global level [73]. Additionally, SHAP contains an optimized
explainer for deep models.

For each input feature, SHAP assigns a value of how important it was for the out-
put [28]. To calculate these importance values, it offers different calculation methods,
including two model agnostic methods that can be applied regardless of the type of trained
network and four specific model methods, one being DeepExplainer. In this work, DeepEx-
plainer is used to identify the importance values for a given input combination of 3D MRI
voxel and age value. DeepExplainer leverages the possibility to efficiently approximate
SHAP values for a deep neural network model by recursively passing DeepLIFT multi-
pliers, as described in [70], deriving an effective linearization technique from the SHAP
values. This avoids the need to heuristically choose a linearization method. By passing an
example data point as input for DeepExplainer, it determines the importance values for
every pixel in the 3D voxel, as well as for the age value. This importance value can then
be visualized accordingly by integrating them into a background image, which represents
the input. A visualization example is given in Figure 4. Furthermore, DeepExplainer also
implements enhancements over the original DeepLIFT implementation with, e.g., the usage
of the Shapely equation to linearize components [70].

In Figure 4, a slice of the MRI can be seen before and after it is overlayed with SHAP
values to explain the prediction of a patient’s survival rate. The SHAP values show the
influence of each scan voxel on the output value and indicate an increase (red color) or
decrease in survival (blue color). Thus, the predicted survival rate of the patient can be
represented as the sum of SHAP values over all voxels. Particularly interesting is that this
patient already had a partially resected tumor, and the CNN placed high importance on
the area where the tumor was removed.

Figure 4. Example image of an MRI scan without and with overlayed values from SHAP’s DeepEx-
plainer. Red colors indicate an increase, and blue colors a decrease in the network’s output value,
which is in the range [0, 1] and represents the predicted survival rate. The image shows part of a
FLAIR scan from patient no 338. Predicted survival rate: 55 days, actual survival rate: 80 days.

3. Evaluation and Results

In this section, we present results from our trained networks and compare model
performances. First, a CNN is trained on two different datasets: the original BraTS2020
dataset containing 235 data points and the pre-processed dataset, which contains a total
of 2585 data points. A comparison of these results is shown in Table 1. For a statistical
analysis on the used dataset, we refer to [75]. Then, the pre-processed dataset is used to
compare three different network models with different image sizes and feature detectors.
Two networks were trained using 2D feature detectors on a full-size scan (2D full size),
as well as on a scaled scan (2D scaled). The third network was trained using 3D feature
detectors on a scaled scan (3D scaled).

All four given MRI sequences (t1, t1ce, t2, flair) were trained on the pre-processed
dataset on different network structures (see Section 2.2) to compare their overall perfor-

https://github.com/slundberg/shap
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mance. As the sizes of the network and input scans differ, it was also necessary to adopt
other training-specific parameters, such as batch size, epoch size, and samples per iteration.
Table 2 gives an overview of the used parameters.

Table 1. Performance comparison of a trained network on t1 MRI scans with and without
pre-processed datasets.

Dataset Type
Evaluation Metrics (Test Set)

Acc. (%) MSE (d) Median SE (d) stdSE (d) SpearmanR (ρ)

original 57.1 127,576.69 38,449.52 248,209.82 0.252
pre-processed 94.0 19,370.85 2310.53 68,774.36 0.934

For the evaluation, the accuracy of the network was calculated by assigning every
output one out of three class labels, as defined in the BraTS challenge [2,75,76]. Class 0 is
assigned for a predicted survival rate of under ten months (d < 300), class 1 if the output is
within 10–15 months (300 ≤ d ≤ 450), and class 2 if the survival is longer than 15 months
(d > 450). The accuracy is then calculated as the ratio of the correctly predicted survival
class (T0, T1, T2) over all predictions, including false classifications (F0, F1, F2)

Accuracy =
T0 + T1 + T2

T0 + F0 + T1 + F1 + T2 + F2
∗ 100 (3)

Additionally, other squared error metrics such as the mean squared error (MSE),
the median squared error, and the standard deviation of the squared error (stdSE), all
given in days d, were calculated together with Spearman’s rank correlation coefficient [79]
(stated as ρ).

Table 2. Specific parameters for the three different network structures used, including input size, feature
detector (FD), batch size, epoch size, number of samples per iteration and total number of iterations.

CNN Definition Input Size
(w × h × d + age) FD Batch Size Epoch Size Samples Per Iteration Total Iterations

2D full size 240× 240× 155 + 1 2D 32 100 50 13,000
2D scaled 120× 120× 78 + 1 2D 64 400 400 23,000
3D scaled 120× 120× 78 + 1 3D 16 100 50 6000

Figure 5 shows the loss functions of different network structures during training. The
peaks indicate the overall loss on the network, while the individual valleys occur due to
the batch size and the fast convergence of the batches during training. Figure 5a shows a
non-converging loss curve, indicating that the network does not find the required features
from the input setting. To overcome this issue, the input data were scaled down to improve
the extraction of the CNN feature detectors (Figure 5b). Figure 5c shows the loss curve
on the network with a 3D feature detector. While this network design converges faster in
terms of epochs, the total training time is increased (see Table 3).

Figure 5. Example visualization of the loss functions of the different network structures for training
on t2 MRI scans. (a) 2D full size (b) 2D scaled (c) 3D scaled.
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Table 3. Overview of different CNN test results given different evaluation metrics.

CNN Type MRI Sequence Time (min)
Evaluation Metrics (Test Set)

Acc. (%) MSE (d) Median SE (d) stdSE (d) SpearmanR (ρ)

2D full size T1 537 42.0 152,284.23 61,174.52 225,719.97 0.329
2D full size T1CE 499 43.5 183,690.40 30,002.06 389,383.37 0.383
2D full size T2 523 41.3 183,086 53,753.30 322,327.76 0.260
2D full size FLAIR 518 44.7 171,695.34 29,713.50 322,903.01 0.337

2D scaled T1 297 94.0 19,370.85 2310.53 68,774.36 0.934
2D scaled T1CE 260 84.8 15,181.36 2323.54 57 120.51 0.948
2D scaled T2 252 86.2 13,362.36 1435.69 49,180.29 0.951
2D scaled FLAIR 266 87.8 12,619.52 1722.33 46,454.14 0.974

3D scaled T1 832 73.7 22,853.60 3955.39 83 608.18 0.874
3D scaled T1CE 829 79.8 35,815.96 2771.14 131,752.81 0.957
3D scaled T2 825 89.4 19,423.55 1672.75 74,759.27 0.950
3D scaled FLAIR 823 81.2 16,603.59 2620.99 60,487.03 0.942

Figures 6 and 7 present two exemplary samples with SHAP visualizations. Thereby,
we display visualizations based on FLAIR images using the “2D full size” model, which
is also the best performing of all compared networks according to validation results, as
shown in Table 4. The model shows lower accuracies under 50% when using other image
modalities than FLAIR. Input images are shown as nearly transparent grayscale. The color
indicates pixels affecting the model output. The color code (red, blue) defines a change in
the model output value, which is pushed between the minimum and maximum survival of
samples between 0 and 788 days.

For the evaluation of the test set, additional metrics on class accuracies are shown in
Table 5, which are not provided for the validation set by the MICCAI-BraTS 2020 leaderboard.
The labels in the table denote the true/false class assignments, as described in Equation (3).

Training time differs in every network structure. The network “2D scaled” is the
fastest, allowing fast training results. Furthermore, the training accuracy in 2D scaled is
rather high, ranging from 84.8% (t1ce) to 94.0% (t1).

For validation of the network, the validation set of the BraTS2020 data is used. The
results are shown in Table 4. The results were calculated on the CBICA Image Processing
Portal (https://ipp.cbica.upenn.edu/ (accessed on 23 November 2021)), which compares
the results to the non-public validation set for the MICCAI-BraTS2020 Validation Survival
Leaderboard (https://www.cbica.upenn.edu/BraTS20/lboardValidationSurvival.html (ac-
cessed on 21 March 2022)).

Validation is based on ground truth labels by expert board-certified neuroradiologists
and was not provided to the participants of the BraTS challenge directly. As the labels
of the validation set are unknown, the metrics could not be calculated by the authors,
and the results for the validation set could not be verified. Some results seem to be very
similar or questionable (marked with *). For example, in the calculation of the overall
accuracy, the results were the same when being uploaded to the portal at the same time.
However, while the exact root cause of similarities in the accuracy of validation results,
as shown in Table 4, is unclear, the authors assume they occur due to the small size
of the provided validation data set of 29 patients. A summary of performances of the
2D full size and 3D scaled models based on FLAIR images is presented by scatter-plots
comparing prediction over ground-truth in Figure 8. Further plots on the various models
and all imaging modalities can be found in the “fig” folder of the repository on https:
//gitlab.com/matte3000/xai-for-brain-img-surv/ (created 29 April 2021, last updated
31 August 2022). The scatter-plots highlight a good correlation between predicted and
provided survival rates in the case of the 3D scaled network for all classes (b). Whereas for
the 2D full-size model performance, distinction between classes exhibits greater divergence.

https://ipp.cbica.upenn.edu/
https://www.cbica.upenn.edu/BraTS20/lboardValidationSurvival.html
https://gitlab.com/matte3000/xai-for-brain-img-surv/
https://gitlab.com/matte3000/xai-for-brain-img-surv/


Biomedinformatics 2022, 2 501

Table 4. Overview of different CNN validation results given different evaluation metrics. The results
are taken from the MICCAI-BraTS 2020 leaderboard. As the metrics were not calculated by the
authors, the results that were suspiciously similar or questionable have been marked with *.

CNN Type MRI Sequence
Evaluation Metrics (Test Set)

Acc. (%) MSE (d) Median SE (d) stdSE (d) SpearmanR (ρ)

2D full size T1 44.8% * 113,420.55 65,536.00 146,473.46 0.267
2D full size T1CE 44.8% * 127,564.79 20,449.00 197,625.03 0.324
2D full size T2 37.9% 147,032.52 69,169.00 211,555.71 0.132
2D full size FLAIR 55.2% 69,941.35 12,769.00 116,749.59 0.435

2D scaled T1 48.3% * 135,167.90 33,856.00 194,580.94 0.024 *
2D scaled T1CE 48.3% * 94,662.03 41,616.00 153,731.94 0.352
2D scaled T2 48.8% * 94,288.35 18,225.00 147,035.02 0.218
2D scaled FLAIR 31.0% 119,759.07 44,944.00 176,681.82 0.184

3D scaled T1 44.8% * 90,073.24 44,100.00 154,947.23 0.249
3D scaled T1CE 48.3% * 105,020.93 25,600.00 184,385.83 0.270
3D scaled T2 44.8% * 130,643.76 33,856.00 170,256.56 0.134
3D scaled FLAIR 31.0% 111,939.31 45,796.00 164,669.90 −0.020 *

Figure 6. Example visualization of patient 338’s (sub total resection) SHAP values from network “2D
full size”, trained with FLAIR scans from different angles (top down: axial, sagittal, coronal). The
SHAP features focus on the resected area but also show minor phantom features. Age does not have
any major influence on the predicted survival rate. Red SHAP values indicate an increase, and blue
values indicate a decrease in the network’s output value, which is in the range [0, 1] and represents
the predicted survival rate. Predicted survival rate: 55 days, actual survival rate: 80 days.
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Table 5. Additional evaluation metrics on the class accuracies of the test dataset for the three survival
rate classes. Ti describes the number of correct labels assigned to class i, Fi the number of incorrect
labels in class i. Acci describes the class accuracy of class i, while i = 0 for d < 300, i = 1 for
300 ≤ d ≤ 450), i = 2 for d > 450 (d = days).

CNN Type MRI Sequence
Evaluation Metrics (Test Set)

T0 F0 Acc0 (%) T1 F1 Acc1 (%) T2 F2 Acc2 (%)

2D full size T1 46 27 63.0 36 95 27.5 153 202 43.1
2D full size T1CE 158 205 43.5 42 87 32.5 43 24 64.2
2D full size T2 82 71 53.4 38 102 27.1 111 155 41.7
2D full size FLAIR 112 112 50.0 179 119 33.2 78 78 50.0

2D scaled T1 179 32 84.8 129 42 75.4 170 7 96.0
2D scaled T1CE 179 33 84.4 128 45 74.0 167 7 96.0
2D scaled T2 177 24 88.1 140 47 74.9 165 6 96.5
2D scaled FLAIR 192 35 84.6 130 31 80.7 169 2 98.8

3D scaled T1 156 19 89.1 79 49 61.7 177 79 69.1
3D scaled T1CE 194 51 79.2 117 62 65.4 135 0 100.0
3D scaled T2 177 12 93.7 139 32 81.3 184 15 92.5
3D scaled FLAIR 194 63 75.5 107 39 73.3 153 3 98.1

Figure 7. Example visualization of patient 004’s (gross total resection) SHAP values from network
“2D full size”, trained with FLAIR scans from different angles (top down: axial, sagittal, coronal). Red
SHAP values indicate an increase, and blue values indicate a decrease in the network’s output value,
which is in the range [0, 1] and represents the predicted survival rate. Here, the focus on the tumor
region can be seen nicely, indicating that many features for predicting the survival rate come from
this region. Age seems to have a major impact on the patient’s survival prediction. Predicted survival
rate: 621 days, actual survival rate: 788 days.
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(a) (b)
Figure 8. Scatter-plots comparing prediction vs. ground-truth of (a) 2D full size and (b) 3D scaled
networks trained on FLAIR images, individual class performances for class 0 corresponds to d < 300,
class 1 for 300 ≤ d ≤ 450), class 2 for d > 450 (d = days).

4. Discussion

In this paper, we discuss model performances of various networks and suggest XAI as
an add-on to support the evaluation process.

Generally, depending on the application and method of radiomics data, as well as
the type or amount of data used, there are varying error rates in reporting. Furthermore,
depending on the task/application, the error type differs. While, for example, a dice
coefficient might be the desired metric to gauge the similarity of two samples in the case of
an image segmentation task, the class accuracy will be more informative for classification
tasks. For regression tasks, on the other hand, squared errors are a common metric.
Tolerable errors for the different applications differ substantially and change frequently
in the field of radiomics. For the task of survival prediction, we refer to the MICCAI-
BraTS Leaderboard (https://www.cbica.upenn.edu/BraTS20/lboardValidationSurvival.
html (accessed on 21 March 2022)), which lists the results for predicting the survival rate by
multiple teams during the multimodal brain tumor segmentation challenge.

In 2D full size (Table 3), the training accuracy and SpearmanR are rather low, and the
other metrics are rather high, indicating that the features were not detected correctly and
that the network did not converge. The results compared to other network structures and
the loss function from Figure 5 might indicate that this network does not perform as well as
the others. This is in line with the comparison of predicted versus real values presented in
Figure 8. An adaption of the network (e.g., feature detectors) might be considered to solve
this issue. However, as the focus of this work is not on the optimization of the network
structure but on the support of interpretability of the network using SHAP features, no
optimization is conducted.

Data for the BraTS challenge are harmonized by the providers in order to be compara-
ble. The selection of the class distributions on the training and test dataset was conducted
as suggested by the data providers, who derived thresholds after statistical consideration
of the survival distributions across the complete dataset based on equal quantiles from the
median overall survival to avoid potential bias toward one of the survival classes [76].

Additional metrics and the class accuracy of all network types (see Table 5) show a
good accuracy distribution of all three classes. Only the trained network models “2D full
size” show a drop in accuracy over the classes. For example, “2D full size” of type T1 has a
class accuracy of 27.5% in class 1, which is lower than class 0 (63.0%) and class 2 (43.1%),
which is similarly true for “2D full size” of type T2 and T1CE to a slightly lesser extent.
Models based on scaled input exhibit more even accuracies among classes.

https://www.cbica.upenn.edu/BraTS20/lboardValidationSurvival.html
https://www.cbica.upenn.edu/BraTS20/lboardValidationSurvival.html
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On the other hand, when comparing the validation results of the best fitting networks
with the training results, the accuracies differ a lot, indicating an overfitted network. This
indicates that the network does not train the features to predict the survival rate as well
as expected, given the training results. As mentioned above, we did not optimize the
network structure but used this as a baseline for the interpretation support using Shapley
overlays. Still, when evaluating the network performances on the validation set (Table 4),
the network “2D full size” trained on flair images resulted in the best score and also
indicated good performance when compared to the tied winners of the BraTS2020 survival
challenge [80,81].

These results show the necessity of additional data sets for network validation. How-
ever, since only a limited number of datasets are available in the followed domain, every
additional dataset that can be used for training is of great importance. To be able to evaluate
a network despite the lack of validation data, we use SHAP features, which allow for the
interpretation of the trained network.

For this, we use the results from Table 4 as a consulting factor when evaluating the
networks using SHAP features. Without the validation sets, one might conclude that
the “2D scaled” network structure yields the best results and discard the “2D full size”
network. However, when using XAI to extract interpretations of the trained network,
similar conclusions can be drawn when a validation set is available. Using SHAP to
visualize the decision on the trained CNN regression, one can compare and verify the
performance by evaluating the visualizations of a few labeled patient data sets.

For example, Figure 6 shows the visualization of a subtotal resection (STR) data point
(patient 338) on the “2D full size” network structure, trained on flair scans. Blue colors
indicate a reduction in the patient’s life expectancy, while red colors indicate an increase
in the survival rate. The predicted survival rate was 55 days, whereas the actual survival
was 80 days. One can observe that the SHAP features used to estimate the survival of
the patient focus on the region where the tumor was partially resected. In other regions,
various small flocks are highlighted, which indicate noise of the trained CNN that seems to
have only a minor influence on the result. The influence of age is negligible in the patient’s
survival prediction. Another example using a gross total resection (GTR) data sample from
patient 004 on the “2D full size” network, trained on flair scans, can be seen in Figure 7.
The predicted survival rate was 621 days vs. 788 actual days. Here again, the influence of
the tumor environment on the survival prediction can be seen clearly, as the SHAP features
focus mainly on the tumor resection. In this sample, however, the survival prediction is
highly influenced by the patient’s age.

The existence of a visualization of the output of a network supports the evaluation
of the model design and the quality of the output with the help of expert knowledge. For
example, as explained in the examples above, the focus of the SHAP features on relevant
locations indicates that the network can recognize the tumor region well. In addition, flocks
that are directly unrelated to the tumor are also highlighted. This can now be detected
using visual support and does not require additional extraction of information through
more data.

For further analysis of the quality of the SHAP features, a comparison with the
provided segmentation of the BraTS2020 dataset was conducted. Therefore, the SHAP
result was visualized together with the raw MRI scan as well as the segmentation data,
as shown in Figure 9. The annotations of the tumor segmentation comprise the necrotic
and non-enhancing tumor core (dark grey), the GD-enhancing tumor (white), and the
peritumoral edema (light grey), as presented by [76]. When comparing the learned features
of the network to the raw FLAIR MRI scan of patient 004, a clear focus on the tumor’s
resection area can be seen, which influences the survival rate in both directions with a focus
on positive features, indicating a longer survival rate. Additionally, the peritumoral edema
(light grey) provides the most information on the survival rate, while the necrotic core
(dark grey) has only little influence. When compared to an example slice of patient 338 (see
Figure 10), who had a significantly shorter survival rate, a similar focus on the peritumoral
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edema can be seen—this time, however, with a more negative impact. Additionally, a
negative influence on the survival rate can be seen on the edges between the necrotic core
(dark grey) and the GD-enhancing tumor (white). While the negative influence of the
necrotic core correlates with medical findings to negatively influence a patient’s survival
rate, the impact of the peritumoral edema cannot be identified as it seems to have a
significant positive and negative impact on the survival rate.

Figure 9. Example analysis of the SHAP features. (a) The reference FLAIR image of patient 004,
(b) the SHAP values and impact on the predicted survival rate from network “2D full size”, (c) the
reference tumor segmentation, as provided in the BraTS2020 dataset [76]. Predicted survival rate:
621 days, actual survival rate: 788 days.

Figure 10. Example slice for the analysis of SHAP features. (a) The reference FLAIR image of patient
338, (b) the SHAP values and impact on the predicted survival rate from network “2D full size”,
(c) the reference tumor segmentation as provided in the BraTS2020 dataset [76]. Predicted survival
rate: 55 days, actual survival rate: 80 days.

While research usually focuses on the validation using additional metrics and data,
our results suggest that XAI can support the decision based on already used data sets and
provide additional information for a domain expert to evaluate the network. Having a visu-
alization of SHAP features thus helps to evaluate the overall quality of the trained network
and supports the decision-making process regarding its applicability to survival prediction.

While the proposed approach improves the efficient use of data and the evaluation of
a network, it also requires knowledge of the training domain to assess the XAI approach. In
the domain of survival prediction on MRI scans, information on the patient’s glioma (e.g.,
size, resections status, location) has to be provided for the verification of SHAP features.

There are common observations familiar to neuroradiologists described in VASARI
(Visually AcceSAble Rembrandt Images) as well as other radiomics features [82]. An
interesting future research task would be to correlate SHAP overlays with a subset of
these features.

Radiomics is said to improve diagnosis rather than replace radiologists [5]. Future
work may involve further causability studies: explaining a patient’s prediction can be of
particular interest for comparison with a diagnosis by an experienced radiologist and could
be further studied for novel feature detection.
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5. Conclusions

In this study, we presented an application of visual explanations to interpret network
models that were trained to predict the survival rate of glioma patients.

We compared three different networks based on full size or scaled input, resulting in
accuracies between 31 and 55.2%, with a mean individual class accuracy of around 71%. The
model “2D full size” trained on flair images yields the highest accuracy of all tested models
presenting good performance compared to winners of the BraTS2020 survival challenge.

The analysis shows that SHAP features can support the interpretation of training
results and shows that even if high accuracy is achieved, the network might still be trained
poorly. This, in turn, helps to evaluate a network model and to optimize it, if necessary,
to improve predictions. Additionally, the pre-processing of the dataset allows for bigger
training sets, which can help to improve the performance of the network.

The main limitation of the proposed model is defined by the lack of additional data
sets, in particular for network validation. This manuscript is intended to focus on the use
of explainability for interpreting the results of radiomic models for survival prediction in
glioma at the expense of network optimization.

In cases where only limited training data are available, SHAP can play an important
role in conjunction with pre-processing steps to evaluate trained network models. Future
studies may use this knowledge to improve the CNN structure and results to optimize
network performance.

For future research tasks, limitations of the BraTS2020 dataset for the task of survival
prediction may be further explored, such as the unequal distribution of the different
grades as well as HGG/LGG differences [83]. For this case, other datasets exist but are
yet to be harmonized [4]. Follow-up work will include model refinement by integrating
heterogeneous data from multiple sources. Better-performing networks can be further used
to investigate SHAP interpretations based on different image modalities.
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