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Abstract: Genomic data enable the development of new biomarkers in diagnostic laboratories.
Examples include data from gene expression analyses or metagenomics. Artificial intelligence can
help to analyze these data. However, diagnostic laboratories face various technical and regulatory
challenges to harness these data. Existing software for genomic data is usually designed for research
and does not meet the requirements for use as a diagnostic tool. To address these challenges, we
recently proposed a conceptual architecture called “GenDAI”. An initial evaluation of “GenDAI” was
conducted in collaboration with a small laboratory in the form of a preliminary study. The results of
this pre-study highlight the requirement for and feasibility of the approach. The pre-study also yields
detailed technical and regulatory requirements, use cases from laboratory practice, and a prototype
called “PlateFlow” for exploring user interface concepts.

Keywords: laboratory diagnostics; requirements engineering; genomics; gene expression; metagenomics;
medical diagnostics

1. Introduction

The field of biology that focuses on the genetic material of organisms is known as
genomics. The goal of genomics is to understand the function, mechanisms, and regulation
of genes and other genomic elements. This includes, for example, understanding the com-
plex relationship between the genome, the expression of individual genes, environmental
factors, and the resulting physiological and pathophysiological states of a cell or organism
as a whole.

Once these relationships are discovered, they can be used in laboratory diagnostics to
identify pathophysiological conditions and potentially improve patient care. Two examples
are gene expression analysis and metagenomic analysis. The former is used to measure
the activity of certain genes, while the latter is used to analyze the genomes of a patient’s
microbiota (e.g., the gut microbiota). Medical laboratories must constantly evolve and
adapt to bring new insights into clinical practice. This includes generating, transforming,
combining, and evaluating data to deliver individualized diagnostic results.

Genomic applications often generate large quantities of data [1], which presents
processing and analysis challenges. For example, human genome sequencing regularly
generates hundreds of gigabytes of raw data for a single sample. It is foreseeable that the
total quantity of data will continue to increase as new technologies are developed and ex-
isting technologies are used more extensively. The type of data generated in these genomic
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applications is also quite heterogeneous and they sometimes need to be combined with
other available data in the context of personalized medicine. This combination of volume
(of data), velocity (of increase in data), and variety, identifies genomic applications as a Big
Data problem [2]. Big Data application requirements often exceed the limits of individual
machines and thus depend on architectures that are scalable across machine boundaries.

Artificial intelligence (AI) can identify patterns in such large data sets. In particular,
“deep learning” [3] has proven to be a powerful technique for detecting even complex
relationships in data. It has found application in a number of complex problems, such as
phenotype prediction and regulatory genomics [4]. Due to its increased computational
power, this technique can process large quantities of data. At the same time, deep learning
often requires less data preprocessing than other approaches. For AI to support data
analysis, several other challenges must be addressed, such as model selection, feature
engineering, model explainability, and reproducibility, which are exacerbated by high
dimensionality and a relatively small number of samples, often referred to as the “curse
of dimensionality” [5]. In laboratory diagnostics, too, the number of samples available
for AI methods is usually limited, since obtaining a larger number of samples is often
complex and expensive. AI is also applied beyond analysis [5,6]. Examples include its use
for dimensionality reduction in the visualization of high-dimensional data or clustering of
similar sequences [7].

Regardless of the application area, the explainability of AI models is a further challenge.
Powerful methods such as deep learning often represent a “black box”, where it is unclear
according to the criteria through which the model arrives at a certain decision. This is
not only a purely technical challenge, but also a regulatory challenge in which legislators
and regulators must create clear criteria according to which the use of AI in laboratory
diagnostics is permitted. Initial proposals in this regard were published, for example,
in 2020 by the Joint Research Center (JRC) of the European Commission [8]. In this report,
transparency, reliability, and data protection are named as core criteria against which AI
models must be measured.

In the context of laboratory diagnostics, genomic applications and AI face additional
regulatory and technical challenges. Applicable standards and regulations such as ISO
standards (including ISO 13485 [9], ISO 15189 [10], and IEC 62304 [11]) and the European
Union’s In Vitro Diagnostics Regulation (IVDR) [12] require that instruments used in
diagnostics, as well as software, be certified and meet numerous criteria.

“Health institutions”, defined in the IVDR as “. . . an organization the primary purpose
of which is the care or treatment of patients or the promotion of public health” [12], have
the privilege of using so-called “Laboratory-Developed Tests (LDTs)” [13]. For these tests,
the laboratory takes full responsibility for validation and IVDR compliance. These tests
may require the application of laboratory-developed software to convert raw data into
reportable results. Taking responsibility for conformity with IVDR requirements means
that the health institution has to establish and document that the LDT complies with
the essential safety and performance requirements as specified in Annex I of the IVDR.
Moreover, the institution has to establish and operate a Quality Management System
(QMS) [10], including a Risk Management System (RMS) [13], Post-Market Surveillance
(PMS), and Post-Marketing Performance Follow-Up (PMPF) for the respective LDTs. PMS
and PMPF are intended to make sure that new scientific findings or technical developments
are recognized, taken into account, and—when appropriate—implemented even after the
tests have been introduced. This is to ensure that the performance of diagnostic tests always
reflects the current state of the art. For software used in conjunction with LDTs, the same
requirements apply as this software was not approved by the manufacturer for diagnostic
purposes. It may thus be termed “RUO software” (Research Use Only).

However, because RUO applications have not been optimized for laboratory diagnos-
tics, they may be difficult to integrate into the laboratory workflow, reducing efficiency and
thus increasing costs. An example of this is software that is based on the concept of projects
or individual experiments rather than automating repetitive tasks. Another example is data
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transfer between the RUO software and other parts of the solution, such as the compliance
systems mentioned earlier.

Whether the required software is being developed from scratch or existing software
is being repurposed for the task, careful analysis of the requirements for such software
must be undertaken to ensure that a solution complies with all applicable regulations,
supports laboratory use cases, integrates with other relevant systems, and does all this in
an efficient manner, automating processes where possible to reduce the possibility of errors
and overall costs. Due to these numerous aspects, involving different areas such as biology,
informatics, and regulations, requirements engineering for laboratory diagnostic software
is challenging.

In summary, challenges arise from the constant advancement of science and technology,
the quantity and type of data, the use of machine learning to process these data, regulations
governing the laboratory process, and the identification and analysis of requirements for
laboratory diagnostic software. Combining genomic applications with AI and applying
them in the context of laboratory diagnostics has potential for improved diagnostics,
but only if the above challenges can be overcome (Figure 1).

Clinical

Diagnostics

Artificial

Intelligence

Genomics

Problem
Area

Figure 1. Problem area adressed in this paper, © 2021 IEEE. Reprinted, with permission, from
Krause et al. [14].

Towards this goal, we recently introduced [14] a conceptual model called “GenDAI”
(GENomic applications for laboratory Diagnostics supported by Artificial Intelligence).
This extended paper discusses the rationale behind GenDAI in more detail and provides
an initial evaluation of the model with the help of a recently conducted pre-study. The
remainder of the paper discusses existing conceptual models that were developed before
“GenDAI”. “GenDAI” is then introduced as a new conceptual model that was developed
to comprehensively cover the outlined challenges and the use cases in laboratory diag-
nostics. Finally, we discuss the pre-study, exploring detailed regulatory and technical
requirements for the future implementation of our conceptual model and providing a
preliminary evaluation of the concept and ideas behind “GenDAI”.

2. State of the Art

Bioinformatics software solutions exist to support the analysis of instrument data
generated by genomic applications. These solutions can be broadly classified into (i) generic
bioinformatics data processing solutions and (ii) application-specific solutions. Generic
solutions are developed to support all types of bioinformatics problems and are typically
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characterized by a flexible workflow approach, where individual tasks are connected as
needed to achieve the intended goal. The flexible workflow concepts can better adapt to
the constant progress in science and technology, as individual components can be replaced
without altering other components of the system. Their disadvantage is that they are more
difficult to set up and use than application-specific standard solutions since the latter can
optimize the user experience for specific, relevant use cases.

An example of a generic workflow-based solution is the Galaxy project [15], which has
several thousand tools that can be used as tasks in a workflow. It provides a multi-user web
interface and is scalable to many concurrent compute nodes. It is available on free public
servers, but can also be installed locally. With public servers, there are limitations on the
available tools and the maximum amount of resources that can be consumed. Application-
specific solutions are inherently less flexible. In the case of metagenomics, these include,
for example, MG-RAST [16], MGnify (formerly EBI Metagenomics) [17], and QIIME 2 [18].
A popular and feature-rich solution for gene expression analysis is qBase+ [19,20].

The solutions in both categories have in common that they do not use AI to improve
user interaction, e.g., by suggesting appropriate analysis methods or visualizations. Al-
though, in some cases, machine learning algorithms are used in certain analysis steps
of these products, this is also rarely enacted [5]. To overcome these and other problems,
a conceptual architecture for the specific use case of rumen microbiome analysis was in-
troduced in [6] (Figure 2). It was designed from the beginning to enable the use of AI in
all relevant domains. It has a distributed architecture with a workflow engine and task
scheduler at its core. To incorporate AI into all aspects of the solution, it was built on the
AI2VIS4BigData reference model [21]. Recently, it has also been extended for the use case
of human metagenome analysis [5]. As the name implies, AI2VIS4BigData also targets the
challenges associated with Big Data processing. While some of the previously mentioned
tools, particularly in the context of metagenomics, support the analysis of large data sets
through parallel processing and streaming mechanisms, they do not fully address the
challenge, as the actual analysis is only one of several steps in a Big Data process.

Another challenge with biomedical software solutions is the difficulty of using most
products in laboratory diagnostics due to strict regulatory requirements. Although this
use case is explicitly mentioned in the AI2VIS4BigData conceptual architecture for metage-
nomics, the assessment is very preliminary and does not take into account the applicable
standards, such as the ISO standards mentioned above [9–11], and the recent regulation
introduced by the IVDR in the European Union [12]. For the use case of gene expression
analysis (Figure 3), a model was presented in [22] that is more focused on these regulatory
issues and the specific needs of laboratory diagnostics. It is based on the CRISP4BigData
reference model [23] (Figure 4). Unfortunately, it was not specifically designed for use
with AI and is also limited to the use case of gene expression analysis. To our knowledge,
there is no conceptual model that could serve as a template to support large-scale (in
terms of Big Data), AI-driven genomic applications specifically tailored to high-throughput
laboratory diagnostics.
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Figure 2. A conceptual architecture for AI and Big Data supporting metagenomics research [6].
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Figure 4. CRISP4BigData reference model [23].

3. Conceptual Model

We propose GenDAI (Figure 5) as a new model that combines the AI-driven nature of
the AI2VIS4BigData conceptual architecture for metagenomics with the CRISP4BigData-
based model for gene expression diagnostics. GenDAI incorporates elements from both of
these earlier models.
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Figure 5. GenDAI conceptual model, © 2021 IEEE. Reprinted, with permission [14].

The general structure of the model is based on the CRISP4BigData reference model,
with different phases for “data collection, management, and curation”, “analytics”, “inter-
action and perception”, and “insight and effectuation”. It also follows a three-layer design,
with the user interface at the top and a persistence layer at the bottom. In the middle of
Figure 5, the data flow through the system is shown as a series of generic processing steps.
These steps are mapped by CRISP4BigData and are more granular than their phases.

Unlike the model based on AI2VIS4BigData, there is no explicit, conceptual “AI layer”.
Instead, the AI components are integrated into their respective phases, simplifying the
model in this respect. This change also helps to emphasize the data flow between phases.
Even if the specific use of AI is ultimately subject to the respective implementation, the goal
of GenDAI is to define interfaces at which AI can be used by clearly naming the individual
components and their interaction. Technically, the fundamentally modular approach of
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GenDAI supports the flexible replacement of individual components by components with
AI support as soon as they have been clinically evaluated and accepted.

Explicit references to specific genomic applications such as metagenomics or gene ex-
pression analysis have been removed from the model or generalized so that the model can
be used for other applications. The importance of regulatory requirements was enhanced
in respect to both models by including (i) the compliance officer as an explicit actor, (ii) reg-
ulatory policies as a possible data artifact, and (iii) “long-term evaluation”, as an explicit
requirement for use in laboratory diagnostics. When analysis is performed using an LDT,
part of this long-term evaluation is tracking the LDT within a Quality Management System
(QMS), Risk Management System (RMS), and continuous performance evaluation during
the entire life cycle of the test. These have been explicitly added as part of the “continuous
product and service improvement” topic within the “insight and effectuation” phase.

Looking at the different phases in detail, the first phase, “data collection, management,
and curation”, concerns all aspects related to data input. In addition to instrument or patient
data for analysis, this also includes additional data such as reference data, scientific publi-
cations, or applicable policies. These data have been linked to relevant actors and they are
considered together as part of the “business understanding” step of CRISP4BigData. This
phase also includes the “data preparation” and “data enrichment” steps of CRISP4BigData.
However, as a slight deviation from the reference model, the “data enrichment” step has
also been pulled into the “analytics” phase, as we believe that with the increasing use of AI
and deep learning, data enrichment is often closely related to and dependent on analytics
itself. The user interface for this first phase will provide ways to manage import sources,
instruments, and (imported) data.

The “analytics” phase includes components required for the actual data analysis,
as well as components that manage, organize, and schedule these analytic processes. Ex-
amples included in Figure 5 are a workflow engine to orchestrate tasks and data flow,
a scheduler to distribute work among compute nodes, and a service registry to manage
the list of available tasks and methods. These analysis methods were grouped into three
different categories. In addition to statistical methods or classical machine learning ap-
proaches, deep learning is included as a separate category to highlight its potential for
improved diagnostics. Following the “analysis” step, another important step in the phase
is “evaluation”. For laboratory diagnostics, it is crucial that the results are checked for
plausibility and interpreted. Here, we see potential for future applications of AI to help
with both of these challenges.

The third phase, “interaction and perception”, concerns the creation of result visual-
izations. These can be automatically generated reports sent from the lab to the responsible
physician, but also visualizations created on demand. For the latter, AI can help to select
appropriate visualizations and create them. “Insight and effectuation” in the context of
laboratory diagnostics is a phase that focuses on long-term results and meta-analyses rather
than single results. Examples include performance evaluation of diagnostic tests performed,
as well as risk management systems and quality management systems, which in many
cases are required by regulation.

“Persistence” can be considered as both a layer and a phase, because the data are
retained and archived after the analysis is complete. However, here, we will consider
it a layer because it interacts with all other phases to store intermediate results and can
also serve as a data source for initial data import. It should be noted that CRISP4BigData
includes a phase called “knowledge-based support”, which includes “retention and archiv-
ing” as a step, in addition to “knowledge generation and management”. We believe that
“persistence” is a better term for the heterogeneous types of data managed by the system.
However, we retain both steps in the form of data categories in the model. Within the
persistence layer are several logical data stores for different data types. The data lake stores,
e.g., raw, unprocessed data originating from an instrument. Structured data, on the other
hand, may contain, e.g., (interim) results, audit data, or configuration data. A connector
for a Laboratory Information Management System (LIMS) is also included, which serves
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as an interface to an existing system into which the solution is to be integrated. As a final
category, “knowledge-based support” contains knowledge-based data that are independent
of individual results. This includes entities such as reference data or taxonomies. They can
also be used by AI methods to extract relevant, context-specific information.

In summary, the three core ideas that make up GenDAI are “artificial intelligence”
to support end-users in all steps and aspects of the application, “laboratory diagnostics”
as a core target market with distinct challenges, and a focus on “genomics” with all
its applications.

4. Evaluation and Requirement Engineering

As an initial evaluation of the conceptual model as a valid basis for future implemen-
tations, a pre-study was conducted. The pre-study determined the detailed technical and
legal requirements of the planned solution. For this, we partnered with a small medical
laboratory of ImmBioMed GmbH & Co. KG in Heidelberg, Germany, which provided
insights into detailed use cases and processes. The laboratory was selected because it offers
various tests for genomic parameters, and the company ImmBioMed also offers consulting
services for other laboratories and thus has great experience in the field of laboratory
processes. However, as this is only a single laboratory, this evaluation can necessarily
only be preliminary. As a practical application for evaluation, we used gene expression
analysis of cytokine-dependent genes, which can be an important diagnostic indicator for
inflammatory or antiviral defense reactions [24].

Requirements were gathered using a structured approach based on the research frame-
work of Nunamaker et al. [25]. Methods utilized in the approach included a literature
review, transcribed interviews, on-site visits, use case modeling, market analysis, and cog-
nitive walkthroughs. A particular focus of the pre-study was the execution of already
developed tests as opposed to the development of new tests. In this area, the use cases
mapped in Figure 6 were examined in more detail. These use cases can be assigned to the
four user stereotypes, “Lab Biologist”, “Data Analyst”, “Clinical Pathologist”, and “QM and
Compliance Officer”. The evaluation was conducted by matching the identified challenges
in the current process and requirements for future solutions with the “GenDAI” model,
to determine if and how the model addresses this challenge or requirement. Hence, it is a
qualitative approach. Quantification, e.g., in the form of a target benchmark, did not seem
appropriate at this time due to the complexity of the various requirements and the early
stage of the evaluation. A prototype called “PlateFlow” was used to evaluate user interface
concepts with a cognitive walkthrough.

The preliminary study revealed that there are several points in the current laboratory
workflow where processes could be more automated. For example, data have to be trans-
ferred manually between different systems several times. Due to different data formats
and lack of import/export interfaces, this transfer is sometimes conducted by manual entry.
Such manual transfer requires special attention and measures, such as a 4-eyes principle to
avoid or detect incorrect entries. These, and similar manual steps, cost time and increase
throughput times. This confirms the need for GenDAI’s holistic approach, where the entire
process is mapped and integrated. Table 1 shows an overview of the use cases and an
assessment of the automation potential (low/medium/high) in the laboratory studied.

Table 1. Estimated potential for automatization of use cases.

Use Case Potential Limitations
Low Med. High

U1. Prepare Test x
U1.1. Program Cycler x Cycler Capabilities
U2. Execute Test x x
U2.1. Document Test Protocol x User Input
U2.2. Quality Control x
U2.3. Store Results x
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Table 1. Cont.

Use Case Potential Limitations
Low Med. High

U3. Retrieve Results x
U3.1. Quality Control x
U4. Determine Gene Expression Level x
U4.1. Calculate (∆)∆Cq x
U4.2. Apply Formulas x
U4.3. Store Analysis Results x
U5. Prepare Findings Report x x
U5.1. Summarize Results x
U5.2. Summarize interpretation x Plausibility Checks
U6. Run Metaanalysis x
U6.1. Inter-Run QC x Not Formalized
U7. Create Findings Report x x
U7.1. Verify Report x Legal Responsibility
U7.2. Submit Report x
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<<include>>

<<include>>
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Figure 6. Use cases analyzed in laboratory.
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The interviews also confirmed the notion that laboratories are in an ongoing process
of improving existing tests and developing new tests. In addition, there are evolving
requirements from the regulatory area. These changes can also have an impact on the
IT-supported processes, which is why the software and systems used need to be flexible or
adaptable enough to meet changing requirements. In GenDAI, this need is underscored
by the use of individual interchangeable and extensible components and by a flexible
overarching workflow.

The market analysis revealed that most of the tools were outdated or did not offer
all the analysis and processing functions needed. Moreover, none of the tools examined
were specifically designed to meet the needs of medical laboratories. For example, the tools
did not meet the necessary regulatory requirements, did not cover the complete workflow,
and their user interface was also designed more for scientific research or the development of
new tests, rather than the efficient processing of tests already developed. This also confirms
the need for a new solution specifically designed for laboratory processes. Table 2 shows an
overview of the different software tools for gene expression analysis that were evaluated,
including their basic functionalities and last update date. Table 2 is a summary of the results
given in Krause et al. [26], which were, in turn, based on the results of Pabinger et al. [27].
A “+” symbolizes the presence of a feature, a “+” the absence. Features whose existence
could not be reliably determined have been marked as “nd” (not determined).

Table 2. qPCR software evaluation. Summarized from Krause et al. [26], Pabinger et al. [27].
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Factor-qPCR − − − − − + − − − − − − + 2020
GenEx + − + − − + + + + + + + + 2019
geNorm − − + − − − − − − − − − − 2018
LinRegPCR + − − + − − + − + − − + + 2021
LRE Analysis − − − − − − + − − − − − + 2012
LRE Analyzer − − − − − − + − − − − + + 2014
MAKERGAUL − − − + − − + − − − − − + 2013
PCR-Miner + − − + − − − − − − − − + 2011
PIPE-T − − − − − + + + + + + + − 2019
pyQPCR + − − − + + − + − + − + + 2012
Q-Gene + − − − − + − + − − − + − 2002
qBase + − + − + + − + + − + + + 2007
qbase+ + − + − + + + + + − + + + 2017
qCalculator + − − − − + − + − + − + − 2004
QPCR + − − + + + − + − + + + + 2013
qPCR-DAMS − − − − − + + + − + − − + 2006
RealTime StatMiner − − + − + + − + + + + + + 2014
REST − − − − + + − + − − + + + 2009
SARS − nd nd − − + − + nd − + − + 2011
SoFAR + + − + − − − − − − − + − 2003
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In order to validate possible operating concepts for a solution, the PlateFlow proof-of-
concept prototype was developed as part of the pre-study, which allows relevant analyses
to be performed from the raw data and the results to be summarized in a report. Figure 7
shows one of the screens of PlateFlow. PlateFlow was evaluated through a cognitive walk-
through, which resulted in positive feedback regarding the scope of functions. In addition,
the need to further evaluate usability in future development was highlighted.

Figure 7. “PlateFlow” prototype user interface.

5. Conclusions and Future Work

The use of AI-assisted genomic applications has the potential to improve laboratory
diagnostics. However, regulatory and other challenges currently hinder greater innova-
tion in this area. There is a need for a software platform for genomic applications in
laboratory diagnostics that leverages AI whilst providing the necessary foundation for
regulatory compliance.

Here, we have presented GenDAI as one possible solution. It combines the knowledge
of previous architectural models developed for specific genomic applications in different
focus areas. Unlike these previous models, GenDAI is independent of specific genomic ap-
plications. Unlike the AI2VIS4BigData-based model, it considers the specific requirements
of laboratory diagnostics to a much greater extent. Unlike the CRISP4BigData-based model,
the integration of AI is also an essential feature of the model. GenDAI thus represents an
improvement over both models.

A pre-study in cooperation with a small laboratory enabled a first practical evaluation
of the concepts. Part of the preliminary study included the creation of use cases, evaluation
of existing software components, requirement engineering, and development of the Plate-
Flow prototype. The remaining challenges include further practical validation of the model
for additional use cases and in other laboratories, a technical architecture, implementation
of missing components, and, ultimately, certification of the solution for clinical diagnostics.
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