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Abstract: Single-cell RNA-sequencing (scRNA-seq) technology provides an excellent platform for
measuring the expression profiles of genes in heterogeneous cell populations. Multiple tools for the
analysis of scRNA-seq data have been developed over the years. The tools require complicated com-
mands and steps to analyze the underlying data, which are not easy to follow by genome researchers
and experimental biologists. Therefore, we describe a step-by-step workflow for processing and ana-
lyzing the scRNA-seq unique molecular identifier (UMI) data from Human Lung Adenocarcinoma
cell lines. We demonstrate the basic analyses including quality check, mapping and quantification
of transcript abundance through suitable real data example to obtain UMI count data. Further, we
performed basic statistical analyses, such as zero-inflation, differential expression and clustering anal-
yses on the obtained count data. We studied the effects of excess zero-inflation present in scRNA-seq
data on the downstream analyses. Our findings indicate that the zero-inflation associated with UMI
data had no or minimal role in clustering, while it had significant effect on identifying differentially
expressed genes. We also provide an insight into the comparative analysis for differential expression
analysis tools based on zero-inflated negative binomial and negative binomial models on scRNA-seq
data. The sensitivity analysis enhanced our findings in that the negative binomial model-based tool
did not provide an accurate and efficient way to analyze the scRNA-seq data. This study provides a
set of guidelines for the users to handle and analyze real scRNA-seq data more easily.

Keywords: scRNA-seq; clustering; differential expression; comparative analysis; negative binomial;
zero-inflated negative binomial; ROC curve; AUC

1. Introduction

The single-cell RNA sequencing (scRNA-seq) technique allows researchers to perform
genome-wide gene profiling at the individual cell level [1]. This technology has led to a
new beginning in transcriptomics by observing the expression dynamics of genes at the
single-cell level, elucidating the complex biological systems, such as cancer, embryogenesis,
etc. [2]. One of the recent studies highlights the use of single-cell technology in designing
immunotherapy strategy for patients with early-stage lung cancer [3]. The single cell

Biomedinformatics 2022, 2, 43-61. https:/ /doi.org/10.3390/biomedinformatics2010003 https://www.mdpi.com/journal /biomedinformatics


https://doi.org/10.3390/biomedinformatics2010003
https://doi.org/10.3390/biomedinformatics2010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com
https://orcid.org/0000-0002-0263-7027
https://orcid.org/0000-0002-8377-353X
https://doi.org/10.3390/biomedinformatics2010003
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com/article/10.3390/biomedinformatics2010003?type=check_update&version=2

Biomedinformatics 2022, 2

44

Single cell

technology was used to create a complete immune cell atlas and track changes in the
immune response to lung cancer.

The study of scRNA-seq started with the characterization of cells from early devel-
opmental stages way back in 2009 [4]. The scRNA-seq requires the isolation and lysis of
single cells, converting their RNA into cDNA, and the amplification of cDNA to generate
high-throughput sequencing libraries. The outlines of the procedures involved in single-
cell sequencing are shown in Figure 1. There are many protocols of scRNA-seq that exist
in the literature, such as Fluidigm (C1 platform) [5], SMART-seq2 [6], CEL-seq [7], CEL-
seq2 [8], Drop-seq [9], In-Drop [10], MARS-seq [11], SMART-seq [12], etc. The protocols
vary in terms of coverage, sensitivity of mRNA capture, technical variability and costs
involved [13].
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Figure 1. Outlines of the workflow for various steps in scRNA-seq data analysis. (A) Key steps
involved in a typical single-cell RNA-seq experiment starting from the sample preparation by the
isolation and lysis of single cells up to the data analysis. (B) Data preprocessing steps beginning from
the .fastq files up to the generation of count matrix and the tools required at each stage. (C) Significant
data analysis steps with the input count data matrix undertaken in the scRNA-seq study.

Biological processes are often dynamic and bulk RNA-sequencing (RNA-seq) tech-
niques cannot capture the cellular heterogeneity and stochastic transcriptional processes [4].
Thus, the advent of scRNA-seq has brought radical changes and a new perspective to
explore the biological processes at individual cells sampled from the cell populations (i.e.,
tissue samples) [6,7]. The main difference between scRNA-seq and the bulk RNA-seq
lies mainly in the goal of the experiment in terms of what question is being addressed
and a more complex analysis workflow [14]. Bulk RNA-seq is typically used to compare
conditions and scRNA-seq is used to compare differences between cell types or identifica-
tion of cell types. In scRNA-seq, each sequencing library represents a single cell instead
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of a population of cells, compared to bulk RNA-seq [14]. In addition to the usual analy-
sis, a scRNA-seq data analysis involves handling of CBs (i.e., unique bar codes attached
to each cell) and unique molecular identifiers (UMIs; i.e., unique tags attached to each
transcript) [15].

The main objectives of scRNA-seq include the identification of all kinds of cell types
present in a tissue, estimation of the changes that occur during cell differentiation represent-
ing different stages or across time points and identification of differentially expressed (DE)
genes across cell types [15]. In addition, the scRNA-seq has unique features, such as low
library sizes of cells, stochasticity of gene expression, high-level noises, lower capturing of
mRNA molecules, high dropouts, amplification bias, multi-modality of data, zero-inflation,
etc. [16]. These make the analysis of scRNA-seq data more complicated compared to
bulk RNA-seq.

With advances in scRNA-seq, there are two key challenges, (a) noisy and excess over-
dispersed data and (b) missing values [17]. There are a lot of technical and biological
noises that leads to excess overdispersion in data. Because of the low amount of RNA
and limited efficiency in mRNA-capturing from cells, there are many zeros in the data.
These are called dropout events [18]. The efficiency of mRNA capture by oligo-dT primer
depends on the length of the poly-A tail and so, the mRNAs with short poly-A tails are
captured inefficiently [19]. Due to the low capture efficiency and dropout events, the output
data are highly inflated with zeros. Moreover, a ‘zero’ count can be a low expression of
a gene, i.e., structural zero or dropout/false zero, i.e., RNA in the cell was not detected
due to limitations of current experimental protocols [20,21]. The dropout events increase
the cell-to-cell variability and can reduce the detection of gene—gene relationships [22].
Therefore, dropout events can affect the downstream analyses.

There are many tools available in the literature to perform individual analyses of
raw FASTQ scRNA-seq data, quality control, preprocessing, mapping, zero-inflation and
other downstream analyses [2,23-25]. These tools require complicated commands. In other
words, these existing applications may not be too handy and easy to use for the users
from non-bioinformatics backgrounds. Further, there is no optimal pipeline available for a
variety of applications and analysis of scRNA-seq data. Scientists and genome researchers
need to plan experiments and adopt different analysis strategies depending on the organism
being studied and their research goals. This requires an easy to implement set of guidelines
for the analysis and their application to real raw scRNA-seq experimental data.

Therefore, we demonstrate here the steps involved in scRNA-seq data analysis includ-
ing data collection, pre-processing and quality check, mapping to reference genome and
other downstream analyses along with their application to a real raw experimental data.
The first component of scRNA-seq analysis is the generation of a gene expression data
matrix, after a thorough quality check. The second component is the major downstream
analyses of the obtained single-cell expression data. The downstream analyses include cell
clustering, zero-inflation and DE analysis. As the scRNA-seq data was zero-inflated, we
studied the effects of various proportions of zeros on various downstream analyses of the
data. Here, we also present a comparative performance assessment of two popular tools for
DE analysis, i.e., DESeq2 [26] and DEsingle [27], of scRNA-seq data. This step-wise guide
will help the experimental biologists and genome researchers in handling and performing
various analyses of raw scRNNA-seq experimental data.

2. Material and Methods
2.1. Data Description

In this study, we used a real experimental dataset from the experiment “Single-cell
profiling of 3 Human Lung Adenocarcinoma cell lines” to demonstrate the workflow of
scRNA-seq UMI data [28,29]. This dataset comes from an equal mixture of cells from the
three human Lung Adenocarcinoma cell lines, such as H2228, NCI-H1975 and HCC827.
Here, 120,000 live cells were sorted using FACS (Fluorescence-Activated Cell Sorter) to
derive an equal mixture from these three cell lines [29]. The chromium 3’ single-cell
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platform (10X Genomics) was used for processing and the Illumina NextSeq 500 sequencer
was utilized for sequencing [29]. The considered dataset is available at National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. The GEO
accession of the study is GSE111108 and the Sequence Read Archive (SRA) ID is SRP133476.
The run ID is SRR6782109 with the BioProject number PRJNA435946.

2.2. Raw Data Download

We downloaded the raw scRNA-seq files (in .fastq format [30]) from the SRA database.
The FASTQ files of a typical UMI-based dataset contain the reads, CBs and the UMI files.
This dataset has a read1 (R1) file that contains a CB and the UMIs and a read?2 (R2) file
containing the sequence reads. We used the SRA toolkit (https://trace.ncbi.nlm.nih.gov/
Traces/sra/sra.cgi?view=software, accessed on 10 December 2021) [31] to download the
raw data using the FTP (file transfer protocol) function on a local computer from the SRA
repository [32]. The Linux code used to download the data through SRA toolkit is given in
the Supplementary Document S1.

FASTQ files are compressed files with the extension *.fastq.gz and can be unzipped
using the command gunzip file.fastq.gz. They are intermediate output files generated by the
sequencer and used for further analyses, including mapping. A FASTQ file consists of four
lines: (i) sequence identifier, (ii) sequence, (iii) separator (contains only “+”) and (iv) Phred
quality score (ASCII characters for each base call in the sequence). An example of .fastq file
is shown in Supplementary Figure S1.

2.3. Data Preprocessing

The raw data files are in the FASTQ format, a text format consisting of quality scores
calculated for the sequence reads, and need to be processed to proceed with the downstream
analysis. The outline of the steps involved in the preprocessing of the data is shown in
Figure 1B. There are few tools required to process the raw data to derive a count matrix,
which is necessary for further analysis. The details of software/tools used in this study are
summarized in Table 1.

Table 1. List of the tools used in this study.

Name Version Description Reference
FastQC v0.11.9 FastQ Quality Check [33]
UMLtools 1.0.0 Tools for handling .Lquue Molecular [34]
Identifiers
Human genome Grch38/hg 38 Human genome reference file [35]
GTF Release 35 Gene Transfer Format [36]
STAR 27 Spliced Transcripts Alignment to [37]
a Reference
SAM tools 1.4 SAMtools software package [38]
Subread package 2.0.1 The package used by SAMtools [39]
Stats R package 3.6.1 Package for k-means clustering [40,41]
DESeq2 1.28.1 DE analysis tool for RNA-seq [26]
DEsingle 1.8.2 DE analysis tool for scRNA-seq [27]

2.4. Quality Check of Raw Reads

The critical challenge in a scRNA-seq study is to ensure that only single and live cells
are included in the downstream analysis. The inclusion of dead cells or doublets would
bias the results of the data analysis. Low-quality libraries in scRNA-seq data can stem
from damaged or stressed cells or errors in library preparation. FastQC [33] is one of the
most commonly used quality control tools, initially developed for bulk RNA-seq and later
extended to scRNA-seq. The output from FastQC is an HTML file viewed in a browser
after analyzing a read file in FASTQ format. It gives quality statistics from sequencing data
and contains information about the input FASTQ file, type of quality score encoding, total
number of reads, read length and GC content (Supplementary Figures S2-54). For instance,
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the first plot, Per base sequence quality, gives quality score distribution over all the sequences.
The red line in the center of the box and whisker plot gives the median value, the yellow
box represents the inter-quartile range (25-75%), the upper and lower whiskers of the plot
represent the 10% and 90% percentile scores and the blue line represents the mean quality
of the read (Supplementary Figure S3).

The sequence qualities are stored in the form of a Phred score [42]. The Phred score is
an error probability belonging to each base and is calculated by

Q = —10log,, P @)

where Q is the quality score and P is the error rate. For instance, if Q = 30 is assigned to
a base, this means the chances that a base is called incorrectly is 1 in 1000 (p = 10~3; the
error rate is 0.1%). A high-quality score implies that a base call is more reliable and less
likely to be incorrect; for example, p = 1071%, Q = 100 (1 in 10 billion), which is unrealistic
and unlikely.

In most of the scRNA-Seq library preparation protocols, the first 10-15 nucleotides are
not uniformly distributed. So, the Per-base sequence content plot shows non-uniform base
composition. The following plot is the Sequence GC content that gives the distribution of
mean GC content. The Per base N content gives the percentage of bases at each position.
The Sequence length distribution plot shows the distribution of fragment sizes and has one
peak depicting the length of the read but flags a warning if multiple fragment lengths are
there in the file. The Sequence duplication plot gives the percentage of reads of any given
sequence in the file, which occurs several times in the file. The Overrepresented sequence
lists the sequence which appears more than expected in the file. For RNA-Seq data, it is
usual that few transcripts may be counted as overrepresented sequences due to the high
abundance. A sequence is considered overrepresented if it is accounted for >0.1% of the
total reads, for which a warning is raised, and a failure if it is >1%. The Adapter content
plots the fraction of reads where the sequence library adapter sequence is identified. These
quality indices are demonstrated in Figures 54-510.

2.5. Extracting the Cell Barcodes, UMIs and Reads

CBs are short nucleotide sequences, such as the UMIs that are used for the identifica-
tion of independent cells. The nucleotide sequence of CBs is known and serves as a unique
identifier for a single cell in the gel droplet. Here, the read1 contains 26 nucleotides, out of
which 16 bases correspond to the cell barcode (CB) and the other 10 bases correspond to the
UML. Each CB marks a partition from where DNA originates, although it may not contain a
cell. The CB would differentiate between cells, but the UMI distinguishes between the RNA
fragments. A total of 737,000 different sequences make a comprehensive whitelist to which
any CB belongs [43]. It ensures there are no errors if the observed barcode does not match
any barcode on the whitelist. The UMI-tools is a repository of a set of tools or functions
that handle and process UMI-based data. UMI-tools” whitelist command produces a list of
CBs that are used in the sequencing of the dataset. To achieve this, the UMI-tool command
given in Supplementary Document S1 can be used.

The readl or R1 file that contains the barcodes is specified as the input file. The
—bc-pattern is the part of the command that finds and marks the CB and UMI in the read
sequence (Supplementary Document S1). The default location of the barcodes is at 5" end.
The Cs denotes the 16 bases of the CB followed by 10 Ns representing the 10 bases of the
UML There are many variations and several options that can be used to obtain the desired
kind of output file, i.e., a .txt format.

The next step is to extract the CB and UMI from read1 and add it to the read2 name. Af-
terward, the reads that do not match one of the accepted CBs are filtered out using the filter-
cell-barcode function. The command for this is given in the Supplementary Document S1.



Biomedinformatics 2022, 2

48

2.6. Mapping to Reference Genome to Obtain Read Counts

Mapping the sequencing reads to the reference genome to obtain read counts is one
of the critical, necessary steps in scRNA-seq data analysis. For this purpose, the common
mapping tool used is STAR [44]. Though STAR is memory intensive, it is shown to have
better accuracy and efficiency. Any other aligner that can identify splice junctions can be
used as well. Multimapping reads are not allowed in this process. To begin with STAR, one
needs to create a genome index. The genome index is created by STAR using a function
by providing a reference genome in FASTA format and an annotation file in GTF format.
STAR aligns and maps the reads data to the genome index creating the mapped BAM files.
We expect >80-85% reads to align to the genome, assuming that there is no significant
contaminant in the sample. The command used to generate the BAM files is given in the
Supplementary Document S1.

2.7. Assigning Reads to Genes

The reference genome with the GTF file GRCh38 was used in this study. It has annota-
tions for 229,580 transcripts and 60,656 genes (https://www.gencodegenes.org/human/
stats.html, accessed on 10 December 2021) [45]. Two reads from the same gene may be
mapped to different locations and be counted as duplicates even though they belong to the
same gene. First, reads are aligned; then, they are assigned to genes using the featureCounts
tool from the subread package. This was achieved through running the command given in
the Supplementary Document S1. The output file created by the featureCounts function is
not sorted initially and needs to be sorted. Alignments are then indexed using the samtools
through the code Counting reads given in the Supplementary Document S1.

The count function processes the UMIs aligned with every gene in each cell to find the
number of distinct and unique UMIs mapping to each gene and generate a count data file.
The command used to generate a count data file (i.e., gene expression data matrix) is given
in the Supplementary Document S1.

3. Statistical Modeling and Data Analysis

The key steps involved in our analysis of the scRNA-seq dataset are outlined in
Figure 1C. The first step in the analysis process requires the count data generated in the
previous steps, followed by clustering and differential gene expression analysis.

3.1. Mathematical Models for ssRNA Count Data
3.1.1. Negative Binomial Model

The negative binomial (NB) model is mostly used for fitting over-dispersed count data,
such as RNA-seq data, that is, when the conditional variance exceeds the conditional mean.
It has been implemented in most of the widely used tools for downstream analysis, such as
DESeq2 [26], edgeR [46] and baySeq [47]. Let Y;; be a random variable (rv) representing the
read counts for the ith gene (I =1,2,... ,N)inthejthcell (=1,2,... , M), pij be the mean
parameter for the ith gene in the jth cell and 6;; be the inverse of the dispersion parameter
of the ith gene in the jth cell. The NB model used for scRNA-seq count data fitting can be
expressed as

0;j y
G(y +0y) O\ ([ Hij
=P[Y;=y] = Vy=0,12 ... (2
fp(y) [ ] y] G(y+1)G(9ij) Oij + mij O + mij 4 @)

where p;; > 0; 0;; > 0 are the parameters of NB distribution and G(.) is a Gamma function.
The expected value of the rv Y;; can be given in Equation (3).

2
Hij

ij

®)

If ;j — oo (No dispersion); NB(p;j,0;;) — Poisson (;;)
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3.1.2. Zero-Inflated Negative Binomial Model

ScRNA-seq count data are characterized by the presence of excess zeros due to low
input mRNA materials, low capture rates for cells, etc. Therefore, the NB model in
Equation (2) cannot give satisfactory results, as it does not account for excess zeros present
in the data. The zero-inflated negative binomial (ZINB) model attempts to account for
the extra zeros present in scRNA-seq data [27]. The ZINB model estimates two equations
simultaneously, one for the count model (i.e., NB) and one for the excess zeros (i.e., Dirac
delta function). For any 7t € [0, 1], the UMI counts in the scRNA-seq study are assumed to
follow a ZINB distribution. The PMF of the ZINB distribution can be expressed as

fZINB(y) = P[Y,] = y} = 7'[1‘]'50(]/) + (1 — ﬂij)fNB(]/)v]/ = 0, 1, 2, e (4)

where fyg(.) is the PMF of the NB distribution given in Equation (2) and Jy(.) is a Dirac’s
delta function. Here, y(.) is used to model the excess zeros in scRNA-seq data and its PMF
is equal to zero for every non-zero counts except zero-counts and can be expressed as

a(=v)={ o170 ©)

Now, the PMF of the ZINB distribution to model the UMI counts from scRNA-seq
data can be given as

0; \ i
i + (1 = 7135) (@j‘é‘*i}') wheny =0
G(v+0y) (2 )"ff( Yy >0

(1- ”if) G(y+1)G(6;) \ OijT1j Oij +ij

(6)

Now, Yj;j ~ ZINB(m;j, uij, 0;); then, the expected value and variance of Y;; can be
obtained as

E(Yy) = (1 — mij) pj and V (Yy) = (1 — 7)) pyj (1 + 7rijpi + Z”) @)
1

If i = 0; ZINB(R’,']‘, Mijs 91]) — NB(]JZ']', 91])
If 91] — 00 (NO diSPeT’SiOTl),‘ ZINB(T[IJ, Hij, 9,]) — ZIP(T[ij, ‘111])

3.2. Zero-Inflation Analysis

Zero-inflation and excess overdispersion are inherent problems in scRNNA-seq data
due to several reasons, such as technical noise, smaller input materials, low capture rates
of protocols, etc. They affect the analysis, if not appropriately addressed during the data
analysis. Further, zero-inflation stands for the proportion of zeros in the data, which is
much higher than the proportion of the non-zero values. Mathematically, let Y;; be any
random variable having distribution function F(.), Y;; ~ F(y); then, the expected value of
zeros can be written as

E(Y;; =0) = S;P(Y;; = 0) ®)

where S; = Y; Yj; (library size for jth cell) and P(Y = 0) is the probability of the scRNA-seq
read count equal to zero. If the observed number of zeros in the data is higher than the
theoretically expected value, we call the data zero-inflated. Moreover, when the observed
variance is higher than the variance of the underlying theoretical model, overdispersion
has occurred in the data. In other words, the observed variance is a function of the expected
value. It is well established that the count data from bulk RNA-seq and scRNA-seq study
are highly over-dispersed [18,20], as the variances of genes are the functions of their
expected values (Equations (3) and (7)). So, we only focus on the testing of zero-inflation
for the scRNA-seq data.
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To test the statistical significance of the zero-inflation parameter (77;;) in Equation (4) of
the ith gene in the jth cell (i.e., the proportion of zeros in the scRNA-seq data), we adopt the
following generalized likelihood ratio test (GLRT) procedure. Here, for the testing purpose,
we define the following null hypothesis:

Hy : 7'[1']'2005. H1:7'[ij750 (9)

where, Hy and Hj are the null and alternate hypotheses respectively. In other words, the
null hypothesis tells us that the ith gene is not zero-inflated; subsequently, the scRNA-
seq data structure is the same as RNA-seq data. Further, if we fail to reject Hyp, then the
RNA-seq DE tools can be used for the DE analysis of scRNA-seq data with the expectation
of satisfactory results. For simplicity, we assume that y;; = ypp = ... = Wi = His
6,‘1 :61'2: :6iM:6iand7Ti1 =T7ljp = ... =T4ipM = TT.

The test, as mentioned above, Hy vs. Hj, can be tested through GLRT and the test
statistic can be given as:

—2Ina = =2{1(Q; = Qjp; Vi) — 1(Q; = ; Yij)} (10)

where Q) is the maximum likelihood estimator (MLE) of the parametric space, );, for the
ith gene under the constraint of H; Q);: is the unconstrained MLE of Q; for the ith gene
and Q); is the parametric space for the ith gene, i.e.,, Q; = {;, 6;, 7;}. The test statistic
in Equation (10) is asymptotically distributed as a chi-squared distribution with 1 degree
of freedom under Hj. Since droplet-based single-cell sequencing methods can capture
approximately 1-10% of mRNA from the cells, ‘zero’” counts (for low expressed genes) or

dropout events (due to stochasticity of expression) are observed in single-cell data [9,48,49].

3.3. Clustering

Clustering techniques start with all cells present in data, which are then grouped into
sets or groups known as clusters. Clustering is performed in such a way that the cells
present within the same cluster are homogenous with respect to cells in other clusters. The
main rationale behind clustering is that cells in scRNA-seq data may be highly heteroge-
neous and we need to determine if the cells belong to same cell type or not. It also helps
in identifying new genes and the marker genes for cell types [6-10]. Further, clustering is
one of the essential tasks in exploratory data mining and is very often used in statistical
data analysis. All clustering methods have the same approach of determining the similarity
index and then grouping together similar objects into groups or clusters. In scRNA-seq data
analysis, K-means clustering is extensively used and is described in the following section.

3.4. K-means Clustering

K-means clustering is a type of unsupervised clustering method of vector quantization
that partitions data points into k pre-defined clusters [41]. Each observation of data
belongs to the cluster with the nearest mean. Each centroid of the cluster contains feature
values which define the resulting groups. K-means clustering minimizes within-cluster
variances. Each observed data point is assigned to its nearest centroid, based on the squared
Euclidean distance.

3.5. Determination of the Optimum Number of Clusters

The main challenge in the cell cluster analysis of scRNA-seq data is determining the
number of optimum cell clusters in which the cells need to be grouped [50]. This analysis
is essential to determine the optimum number of cell types. Hence, we used the statistical
approach developed by Das and Rai (2021) [51,52] for determining the optimum number of
cell clusters for scRNA-seq count data. This is briefly presented below.

Let Yjjx be the expression value of the ith gene in the jth cell of the k" cluster (k =1,

2,...,K); Yj. be the mean expression value of the jth cell in k" cluster; Y j be the mean



Biomedinformatics 2022, 2

51

expression value of the k" cluster; and Y. be the overall mean across M cells. Then, the
total sum of squares (TSS) can be expressed as

TSS = Zf:l Zﬁi (Y-J‘k - Ym)z

2
= Zle ij\ikl (Y.jk Y+ Y- Y)

2
= 2115:1 Zj]\ikl (Y-J'k - Y--k> + 211;1 Mi(Y = Y.)?
= WSS + BSS (11)

where WSS is the within-cluster sum of squares and BSS is the between-cluster sum of
squares. Now, the index can be given as

WSS

= Wss + BsS (12

Initially, the values of k are taken as 2, 3, ..., 50. For each value of k, the total cells
present in scRNA-seq data are divided into that number of cell clusters and, subsequently,
1 (Equation (12)) are computed for each k. The k value, which provides the maximum
value of r, can be chosen as the empirical number of optimum cell clusters for the observed
scRNA-seq data. This is performed through plotting the values of k against r; values and,
from the graph, the optimum value of k (optimum number of cell clusters) is determined.
Here, we used k-means clustering as it is a non-parametric method and does not depend
on the distributional nature of scRNA-seq data, as well as being flexible in selecting the k.

3.6. Differential Gene Expression Analysis

The DE analysis is necessary for identifying key gene markers for novel cell type
detection and studying the stochastic gene expression process [16]. There are a lot of tools
publicly available for DE analysis of scRNA-seq data; an excellent review for this can be
found in [16]. The DE analysis of scRNA-seq data plays a vital role in understanding the
intrinsic and extrinsic biological processes in a cell [51-53]. The scRNA-seq data is highly
heterogeneous and comprises a vast number of zero counts, which introduces challenges in
detecting DE genes, one of the main applications of scRNA-seq. In this study, we considered
two tools for performing the DE analysis of scRNA-seq data from adenocarcinoma cell lines.

3.7. DESeq2

DESeq2 [26] is a method initially developed for DE analysis of bulk RNA-seq data
which assumes the read counts follow an NB distribution. The input for the DESeq2
package is the raw count data matrix from the RNA-Seq or scRNA-seq. The read count Y
ij for the ith gene in the jth cell is described with the NB generalized linear model by the
following expression:

Yij ~ NB (“l/l[]', zxi) (13)
Hij = $j4ij (14)
10g2 q,] = x]‘.ﬁl‘ (15)

where the mean = i;; and the gene-specific dispersion factor = «;. The fitted mean comprises
a sample-specific size factor s; and a parameter g;;, the expected count of fragments for the
jth cell. The coefficients f; give the log2 fold changes for the ith gene for each column of the
model matrix. The DESeq? first estimates the size factors that account for the differences in
the library size, then estimates the dispersion for each gene and, lastly; fits a generalized
linear model [26]. The DESeq?2 uses the Wald statistic to calculate the p-value and size effect
estimate for the log2 fold change.
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3.8. DEsingle

DEsingle [27] is an R package for DE analysis specifically for scRNA-seq data. It
implements the ZINB model, given in Equation (4) and (5), to discriminate the observed
zero values into two parts, i.e., constant zeros and zeros from the NB distribution. With the
model, DEsingle is designed to overcome the issue of the excessive zero values observed
in scRNA-seq data. To detect DE isoforms between two groups, DEsingle first calculates
the maximum likelihood estimates (MLE) of two ZINB populations’ mean parameters (j/1
and pp), then computes the constrained MLE of the two models’ parameters under the null
hypothesis (Hp : y#1 = y2) and, finally, uses the GLRT for testing Hy. The normalization
step is usually conducted before DE analysis to correct the amplification bias. We used the
median normalization method, as implemented in DEsingle and DESeq?2, to normalize the
scRNA-seq count data (Supplementary Document S2).

3.9. Performance Evaluation of DE Methods

The performance of two methods for identifying genuine DE genes is evaluated using
the area under receiver operating characteristic (AUROC) curve (i.e., true positive rate
(TPR) vs. false positive rate (FPR)). These metrics are defined as

L TP
TPR = Sensitivity = TPLEN (16)
.y FP
FPR = 1 — Specificity = TPETN (17)

We computed the performance metrics including true positives (TPs), false positives
(FPs), true negatives (TNs) and false negatives (FNs) through comparing the genes selected
through each method (i.e., DESeq2 and DEsingle) with the reference genes. It is very
difficult to obtain true reference genes for Adenocarcinoma cell lines; therefore, we selected
the reference genes from the data itself using the fold change criterion [51]. Then, we
computed these indices, i.e., TPs (Equation (16)) as the selected DE genes which are
matched with the reference genes and FPs (Equation (17)) as the genes which were found
to be significant but were not reference genes. Similarly, TNs (Equation (17)) were defined
as genes that were not reference genes and were not found to be significant and FNs
(Equation (16)) were defined as genes that were reference genes but were not found to
be significant.

4. Results and Discussion
4.1. Quality Control

The FastQC generates several reports on different quality parameters, such as sum-
mary statistics, distribution of per-base sequence quality, distribution of quality scores
per sequence, distribution of sequence content, distribution of GC content, distribution
of per-base N content, sequence length distribution, sequence duplication and distribu-
tion of over-represented sequences. Initially, we checked the quality of the raw data
through FASTQC and the results are shown in Supplementary Figures S2-511. For in-
stance, Supplementary Figure S2 gives the basic statistics of our input FASTQ file and
details regarding the file name, which is SRR6782109_2. fastq, and a type of base call file
encoded by Sanger/Illumina. It was observed that the total number of reads in this file is
109,178,700, with read length for each sequence 98, and the percentage of GC content is 48%
(Supplementary Figure S2).

The per sequence quality plot, shown in Supplementary Figure S3, exhibits the blue
line for the median quality score in the green-colored encoded portion for the plot. It is
observed that the quality scores for most of the reads are above 30, which indicates better
quality (Supplementary Figure S3). The sequence quality plot shows the distribution of
average read quality in our dataset (Supplementary Figure S4). We found that the observed
mean quality score was approximately 31 for our dataset, which indicates better quality
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of reads, as this value exceeds the threshold value (Supplementary Figure S3). In other
words, we could not trace any universally low-quality reads in our dataset; therefore, the
raw datasets could be used for further analyses. Further, similar interpretations of other
quality parameters can be made from Supplementary Figure S5-S11. Overall, the data
were compliant with the quality control standards values (Supplementary Figures S2-511);
hence, we proceeded to further process the raw data without trimming.

4.2. Extracting UMIs, Cell Barcodes and UMIs

The UMI-tools process the data downloaded in the FASTQ format after completing
quality checks to generate the count matrix through mapping to the reference genome.
Further, a whitelist.txt file, which comprises the accepted CBs that meet the default threshold,
is generated in the first step. The file contains a table with four columns: the accepted
CB, a list of other CBs within a default threshold distance, read count of the accepted
CBs and counts of the other accepted in the list. This list is used in the second part of the
step. First, the read1 file of the dataset containing the CBs and UMIs is extracted to a file
read1_extracted in.fastq format. This step adds the CBs and UMIs removed from the read1
and adds them to the names of read2. This is an important step that makes the file ready to
be used for mapping after filtering unique CBs (Supplementary Figure 512).

4.3. Mapping

We mapped the reads in fastq files to the human reference genome with the STAR
aligner [44]. Out of the 81802319 total input reads, 81.77% of the reads were found to
be mapped uniquely to the human reference genome with an average mapped length of
96.73bp. No reads mapped to multiple loci and 7.25% of reads remained unmapped. This
indicates that a significant portion of the read sequences was mapped to the reference
genome. The mapped files are in the SAM/BAM format. Moreover, the SAM format is
human-readable version, while the BAM file format stores mapped reads in a standard
memory efficient and compressed format. These files begin with a header section that
includes details on the sample preparation, sequencing run and mapping details, quality,
etc., followed by the tab-separated alignment section.

4.4. Quantification

After the mapping was complete, reads were assigned to the genes using the feature-
Counts function of the UMI-tools. It attaches a new tag and outputs a BAM file containing
the identity of the gene that the read maps to. The counts function uses this file to output
the error-corrected UMIs mapping to each gene. The output file contains a table with three
columns: the gene_id, the CB and the count of UMIs. The count data generated for our
dataset had 972 distinct and unique UMI counts contributing to the 972 cells detected
and 42,406 transcripts. This count matrix was used for downstream data analysis. The
read count data matrix gives a finite number of reads mapped to the reference genome.
A glimpse of the output file for the Adenocarcinoma single-cell experiment is shown in
Supplementary Figure S13.

4.5. Determining the Distribution of Zeros in Data

After the count data matrix was generated, we determined the percentage of zeroes
in the dataset, since we were aware that there was a higher proportion of zeros present in
the scRNA-seq datasets, i.e., most of the reads marked as zeros. In other words, counting
the zeroes gives an idea of the presence of dropout events present in scRNA-seq data. The
percentages of zeros present in each of 42,406 transcripts, as well as the fitting of the models
to the data, are shown in Figure 2. Out of 42,406 transcripts, almost 35,000 had zeros over
all the cells (Figure 2C). There were only fewer genes with fewer zeros across some cells
(Figure 2C). Figure 2D shows the relation between observed zero proportions and estimated
zero-inflation from the ZINB model. It was found that the observed zero proportions were
more significant than the estimated zero-inflation parameter for each transcript. This is
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due to the fact that the observed zero proportions in scRNA-seq data were a mixture of the
dropout zeros (i.e., zero-inflation parameter) estimated through the Dirac’s delta function
and true zeros from the estimated NB model. Further, results from the statistical test of
zero-inflation are shown in Figure 2F. It was found that the zero-inflation p-values for
most of the genes were statistically significant (Figure 2F). This observation validated that
scRNA-seq data was indeed zero-inflated due to the presence of dropout events or other
experimental artifacts.
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Figure 2. Data structure model, distributions and estimated parameters. (A) Different cumulative
distribution function (CDF) fitted to the single adenocarcinoma cells RNA-seq data. The x-axis
corresponds to the cumulative densities and the y-axis represents the read counts. The red color
corresponds to the observed CDF, the pink color to NB and the blue color to ZINB. (B) Fitting of count
data models to the given adenocarcinoma single cells RNA-seq data. In this plot, the x-axis represents
the scRNA-seq read counts and the y-axis represents the densities. The red color corresponds to the
observed density, the pink color to NB density and the blue color to ZINB density. (C) Distribution of
zeroes. The x-axis is the number of genes and the y-axis shows the percentage of zeroes. (D) Plotting
of observed zero proportions vs. estimated zero-inflation. The x-axis represents the estimated
zero-inflation and the y-axis represents the observed zero proportion. Here, the plot shows that the
observed zero proportions are greater than the estimated zero-inflation. (E) Relation between mean
and dispersion. The log(mean) is shown on the y-axis vs. log(dispersion) on the x-axis. (F) The
plot shows zero-inflation in data. The y-axis corresponds to the p-value and the x-axis represents
the genes.
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4.6. Distribution of Cell Sequencing Depths

With an increase in the heterogeneity of a biological sample, a larger sample size is
needed to identify and define the cell population. Determining the sequencing depth at
which the majority of human transcripts are expressed in a cell and which has sufficient
coverage. This has always been a debatable topic. One study showed that estimated ex-
pression levels from one million reads per cell might be adequate [49], while another study
stated that a shallow sequencing depth of only 20,000 reads per cell was also sufficient [50].
Therefore, it is pertinent to study the distribution library sizes of cells in scRNA-seq data.
The distribution of cell library sizes over the cells and their ranks are shown in Figure 3.
The graph indicates that, out of the 972 cells, about 60% of them had a library size greater
than the mean library size of 6000 (Figure 3A). Further, there existed a sigmoid-type relation
among the library sizes and ranks of the cells, as depicted by the s-shaped curve (Figure 3B).
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Figure 3. Distribution of cell sizes for Adenocarcinoma scRNA-seq data. (A) Distribution of library
sizes across the total number of cells. (B) Plot for cell ranks vs. cell sizes—distribution of cell library
sizes over the cell ranks. Here, the y-axis represents the cells” rank and the x-axis represents the
sequencing depth.

4.7. Clustering Analysis

The most popular downstream analysis for scRNA-seq data is clustering, which is
usually practiced to identify the cell types that exist among the cell population. However,
this study remains subjective in deciding the optimum number of cell clusters that the cells
present in scRNA-seq data can be divided. Here, we discussed an algorithm to determine
the optimum number of cell clusters. We set the values of k as 2, 3, 4, ... 50 and computed
the clustering index for each k. The distribution of clustering indices over different cell
cluster numbers is shown in Figure 4. Here, for lower k, we observed a higher clustering
index value and this value gradually decreased with the increase in cell cluster numbers.
We observed the point of inflection for this plot at k = 10 (Figure 4A). The inflection point
is the point where the curve changes its direction and becomes parallel to the x-axis. In
other words, the 972 cells present in the Adenocarcinoma scRNA-seq data were optimally
clustered into 10 cell clusters (Figure 4A). Further, the optimal number of clusters depends
on the total number of cells and the clustering index value.

4.8. Study the Effect of Zero’s Reduction on the Determination of Optimum Cell Clusters

Single-cell experiments are often performed on mixtures of multiple cell types with
increased heterogeneity [53]. All genes can be analyzed, but we may add noise by including
all genes that are not expressed at an adequate level to provide a meaningful result [54].
This may hinder the analysis. We can filter genes based on the average gene expression
level and select genes that are unusually variable across cells.
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Figure 4. Effects of zero reductions on the determination of an optimum number of cell clusters. The
figures are shown for (A) no reduction, (B) 80% reduction, (C) 50% reduction and (D) 30% reduction.
The y-axis represents the values of clustering indices and the x-axis represents the values of optimum
cell clusters. The blue line indicates the value of the optimum number of cell clusters in which the
cells in the data can be clustered. For (A), we observe the optimal number of clusters is approximately
10 for the 972 cells with all genes included. (B) 80% reduction (80% reduction of zeros with 2415
reduced genes): the number of cell clusters was found to be 10.. (C) 50% reduction (50% reduction of
zeros with 879 reduced genes): the number of cell clusters was found to be 10. (D) 30% reduction
(30% reduction of zeros and with 454 genes): the number of cell clusters was found to be 10.

4.9. Case 1: No Reduction

We sought to test the effect of the missing values or the zeroes on the optimal number
of cell clusters. For this analysis, the dataset was reduced at various levels depending
on the percentage of zeroes in the dataset. We used the complete dataset with all genes
included and no reduction of any sort for this case, to determine the optimum cell clusters.
The results for this entire data case are shown in Figure 4A. Here, the different number
of cell clusters was plotted against their corresponding computed cluster indices. It was
observed that the curve flattened at the point x = 10, which means the point of inflection
for this curve was 10. So, we can say that, for the no-reduction case, the cells present in
the data were optimally divided into 10 cell clusters. These observed cell clusters could
be mapped to different cell types. In other words, with all 42,406 genes included in the
scRNA-seq data, the 972 cells were clustered into 10 cell clusters.

4.10. Case 2: Reduction in the Number of Genes when many Cells have Zero Counts

In the second case, we reduced the number of genes based on the number of zeroes
present, to find an optimal number of cell clusters. It was achieved by data reduction,
whereby a certain percentage of genes whose expressions were ‘0’ in a specific percentage
of cells were deleted. To be more precise, in this setting, we deleted the genes which had
zero expressions in 80% cells and tried to determine the optimum number of cell clusters.
This reduction process retained count expression data for 2415 genes over 972 cells. These
data were used to determine the optimum number of cell clusters. The results are shown
in Figure 4B. For this case, we found that the curve flattened at point 10 (i.e., point of
inflection), which means the 972 cells were clustered into 10 cell clusters. In other words,
the optimum number of cell clusters was 10 for 80% gene reduction. Here, we can say that
gene reduction had no effect on the optimum number of cell clusters determination. This
claim was further validated with other reduction scenarios and the results are shown in
Table 2. Similarly, we reduced the number of genes based on 60%, 50% and 30% reduction
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to study the effect of gene reduction on clustering and optimal cell clusters. For a 60%
reduction (i.e., number of genes reduced to 1201), the optimum cell cluster number was
10 (Table 2, Figure 4B). Similarly, for the 60% reduction case (number of genes = 1201),
50% reduction case (number of genes = 879) and 30% reduction (number of genes reduced
to 454), the number of optimum cell clusters number was observed to be 10 (Table 2,
Figure 4C,D, Supplementary Figure S14). From the above observations, it can be inferred
that gene reduction did not affect the clustering of genes and the optimal number of clusters
remained the same for all reductions. This implies that the zero counts in the data did not
affect the optimal number of cell cluster determination.

Table 2. Lists the optimal number of clusters and the number of genes in each reduction.

Case Type Percentage Reduction No. of Optimal Clusters No. of Genes
Case 1 No reduction 10 42,406
Case 2 80% 10 2415
Case 2 60% 10 1201
Case 2 50% 10 879
Case 2 30% 10 454

4.11. Differential Expression Analysis

At the preliminary stage, we removed the cells whose library size was less than 1800
and further removed the genes which had non-zero expressions in <5 cells. Through this
process, we selected the complete dataset having expression counts of 42,406 genes over
972 cells for further analyses. Prior to DE testing, we used the NB and ZINB models to
study their suitability for fitting scRNA-seq data. The results are shown in Figure 2. The
results indicate that, for fitting over-dispersed and zero-inflated datasets such as scRNNA-
seq, the ZINB model provided better results than the NB model (Figure 2A,B). This implies
better suitability of the ZINB model for modeling the scRNA-seq count data, as well as
better estimates of the parameters than the NB model. The reason may be attributed
to the fact that the NB model accommodates excess zeros by underestimating the mean
and overestimating the dispersion parameters [16,51]. This phenomenon jeopardizes the
statistical power of NB-based RNA-seq DE tools on discovering DE genes in the presence
of zero-inflation when applied to scRNA-seq data [16].

DE testing is a well-documented problem that originates from bulk gene expression
analysis [55]. Here, we compared the two methods, i.e.,, DESeq2 and DEsingle, which
are based on two different models to identify the DE genes. At a 1% level of significance,
DEsingle identified 634 genes and DESeq?2 detected 79 genes with only 25 genes common
between them. At a 0.1% level of significance, 401 genes were detected by DEsingle, while
75 were detected by DESeq2, with only 22 common genes detected by both methods. The
results of this analysis are summarized in Table 3. Further, the list of the top 500 DE genes
for the Adenocarcinoma cell lines is given in Supplementary Table S1.

Table 3. Summary of results from a comparative analysis of DEsingle and DESeq2 using case I
clustering method.

Level of Significance DEsingle Genes DESeq2 Genes Common Genes
1% 634 79 25
0.1% 401 75 22

From the above table, it can be concluded that NB model-based tools are not efficient
in handling zero-inflated datasets such as the scRNA-seq. So, methods specific to the
scRNA-seq need to be used. To substantiate our findings, we conducted a sensitivity
analysis through ROC curves.
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4.12. Evaluating Performance

We evaluated the performances of the two DE analysis methods on these Adenocarci-
noma scRNA-seq data and the results are shown in Figure 5. In other words, the ROC and
AUROC of the two methods, i.e., DESeq2 and DEsingle, are shown in Figure 5.
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Figure 5. Comparative analysis of DEsingle and DESeq2 in terms of AUROC. The figure shows the
ROC curves of the two DE analysis methods, DESeq2 and DEsingle. The red color indicates the
DEsingle and the blue color represents DESeq2. DEsingle has better performance in terms of AUC
value as compared to DESeq2.

The AUROC:s for DEsingle and DESeq2 were found to be 76.2% and 66.6%, respectively
(Figure 5). It is observed that DEsingle has a higher AUROC value than DESeq2 (Figure 5).
This indicates that DEsingle performed better than DESeq2 on these Adenocarcinoma
scRNA-seq data. This is because the ZINB model implemented in DEsingle provides better
estimates of mean and dispersion than the NB model [16]. Thus, it offers better suitability
of the ZINB for modeling the zero-inflated and over-dispersed scRNA-seq count data
(Figure 2A,B). Further, the poor performance of DESeq2 can be attributed to the fact that the
NB model accommodated excess zeros in scRNA-seq data by underestimating the mean
and overestimating the dispersion, which further jeopardizes the statistical power to detect
DE genes [51].

5. Conclusions

Here, we provide a comprehensive step-by-step guide for the analysis of raw scRNA-
seq data. Since the noise of scRNA-seq data is high, it is crucial to use appropriate methods
to overcome noises in scRNA-seq data. Quality control helps in excluding low-quality
cells to avoid involving artifacts in data interpretation. The count data generated after
pre-processing was zero-inflated. We observed that the number of zeroes in a dataset did
not affect our clustering or cell type detection. In other words, our statistical results indicate
that the zero-inflation had no or minimal role in clustering. We also provide an insight into
the comparative analysis for two DE analysis tools based on the ZINB and NB models. The
results indicate that the existing DE tools designed for the RNA-seq data are not capable
of distinguishing the two types of zeros. Further, the sensitivity analysis-based findings
suggest that bulk RNA-seq DE methods did not provide an accurate and efficient way to
analyze zero-inflated scRNA-seq data.
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Although many methods have been specially designed to analyze the scRNA-seq data,
new techniques that can effectively handle the technical noise and expression variability of
cells are still required. The new bioinformatics approaches would significantly enhance
biological and clinical research and provide deep insights into the gene expression het-
erogeneity and cell dynamics. The approach of determining the optimum number of cell
clusters is graphical, which is qualitative. Hence, a statistically sound approach needs to be
developed, where the number of cell clusters is determined based on statistical significance
values. To study the effect of zero-inflation on the performance on DE analysis approaches,
more comprehensive computational studies need to be designed. Since there are no pre-
existing clusters (such as cases and controls), selecting the optimal number of clusters may
have an effect on significant gene signatures that we plan to study somewhere else.
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