
Citation: Moradi, M.; Roche, S.;

Mostafavi, M.A. Evaluating OSM

Building Footprint Data Quality in

Québec Province, Canada from 2018

to 2023: A Comparative Study.

Geomatics 2023, 3, 541–562.

https://doi.org/10.3390/

geomatics3040029

Received: 4 November 2023

Revised: 2 December 2023

Accepted: 4 December 2023

Published: 9 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Evaluating OSM Building Footprint Data Quality in Québec
Province, Canada from 2018 to 2023: A Comparative Study
Milad Moradi *, Stéphane Roche and Mir Abolfazl Mostafavi

Centre de Recherche en Données et Intelligence Géospatiales, Université Laval, Québec, QC G1V 0A6, Canada;
stephane.roche@scg.ulaval.ca (S.R.); mir-abolfazl.mostafavi@scg.ulaval.ca (M.A.M.)
* Correspondence: milad.moradi.1@ulaval.ca

Abstract: OpenStreetMap (OSM) is among the most prominent Volunteered Geographic Information
(VGI) initiatives, aiming to create a freely accessible world map. Despite its success, the data quality
of OSM remains variable. This study begins by identifying the quality metrics proposed by earlier
research to assess the quality of OSM building footprints. It then evaluates the quality of OSM building
data from 2018 and 2023 for five cities within Québec, Canada. The analysis reveals a significant
quality improvement over time. In 2018, the completeness of OSM building footprints in the examined
cities averaged around 5%, while by 2023, it had increased to approximately 35%. However, this
improvement was not evenly distributed. For example, Shawinigan saw its completeness surge from
2% to 99%. The study also finds that OSM contributors were more likely to digitize larger buildings
before smaller ones. Positional accuracy saw enhancement, with the average error shrinking from
3.7 m in 2018 to 2.3 m in 2023. The average distance measure suggests a modest increase in shape
accuracy over the same period. Overall, while the quality of OSM building footprints has indeed
improved, this study shows that the extent of the improvement varied significantly across different
cities. Shawinigan experienced a substantial increase in data quality compared to its counterparts.
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1. Introduction

The term “Volunteered Geographic Information” (VGI) was coined by Goodchild to
describe the process of geographic data production by members of the general public [1].
This new term also acknowledges that VGI data are collected voluntarily by masses of
individuals. The scope of VGI is extensive, encompassing data types such as personal
trajectories, geotagged photographs, and elements of online maps that have been digitized
by volunteers [2]. VGI can be categorized into three groups based on data content: text-
based VGI, image-based VGI, and map-based VGI [3,4]. Text-based VGI might take the form
of a georeferenced tweet, whereas image-based VGI could be exemplified by a geotagged
photo. Map-based VGI typically involves online communities where contributors are able to
edit, create, and delete map features. Indeed, map-based VGI represents a geographically
explicit form of VGI, where the contributors actively engage in generating geographic
content [5].

A prime example of web-based VGI is OpenStreetMap, which was created by Steve
Coast and is a free, editable map of the world that is open to all [6]. OSM enables con-
tributors to edit, create, and delete content on the world map. Numerous studies have
demonstrated that contributions to OSM are not uniform, revealing areas with substantial
activity as well as those with minimal contributions [7,8].

There are no prerequisites for becoming a contributor to the OSM project. As a result,
many contributors may lack geographic knowledge and are not necessarily versed in the
rules and procedures of spatial data collection [9]. Consequently, the quality of spatial data
in the OSM project cannot be assured. Additionally, a small number of vandalism cases,
where errors are introduced into the OSM map intentionally, have been detected [8].
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Conversely, it is impractical to utilize spatial data in any application without ensuring
that the data quality meets the application’s requirements. The efficient use of OSM data
hinges on the understanding of its quality. Therefore, assessing the quality of OSM data
is imperative.

A range of studies has been conducted to evaluate the quality of OSM data across
various regions of the world [10–16]. One of the first evaluations of the quality of OSM
buildings was conducted by Fan et al. [12]. They not only evaluated the completeness,
semantic accuracy, and positional accuracy of OSM buildings, but also introduced the
turning function approach to assess shape similarity, thereby enhancing the evaluation of
shape accuracy. Brovelli and Zamboni [17] proposed a novel method based on coordinate
transformation to identify the corresponding edges and vertices between features in OSM
and the reference database. Jacobs [18] evaluated the quality of OSM building footprint
data in Ottawa city. Tian et al. [19] assessed the completeness and spatial patterns of OSM
building data in China, discovering a twentyfold increase in building count from 2012
to 2017. Their findings also revealed a correlation between economic factors, OSM road
length, and the proliferation of OSM building data [19].

Borkowska, Bielecka and Pokonieczny [20] conducted an assessment of the complete-
ness of OSM buildings in Poland, noting that many developed urban areas boasted a 100%
completion rate. Conversely, lower completeness rates were prevalent in less urbanized
regions. This pattern suggests that OSM building completeness tends to be greater in more
developed areas. Biljecki et al. [21] found that the completeness of building attributes in
OSM varies significantly, being very high in some areas but notably low in others, indicat-
ing a high degree of heterogeneity in OSM attribute completeness [21]. The study revealed
that OSM contributors predominantly recorded the number of floors and the building type
for OSM structures [21]. A number of researchers have further concentrated on the attribute
data of OSM buildings, attempting to predict the building types, such as residential or
commercial ones, in cases where the attribute values for building type are missing [22–24].

Another research evaluated the quality of OSM building data in Taiwan [25]. Re-
searchers have attempted to discern the relationship between the quality of OSM building
data and indicators like the density of building footprints (Zhou, 2018) [15]. Herfort
et al. [26] investigated the completeness of OSM building data across the globe and found
that, among almost 13,000 urban agglomerations, 1848 urban centers had a completeness
exceeding 80%, while 9163 cities had less than 20% completeness [26]. It shows that the
completeness of OSM building footprint data is heterogenous. Küçük and Anbaroğlu [27]
evaluated the spatial accuracy of OSM buildings in Ankara, Turkey, and determined that
the average error is 9.5 m.

Maidaneh Abdi et al. [28] posited a relationship between the extrinsic and intrinsic
quality measures of OSM data. By attempting to predict the extrinsic quality measures
using intrinsic ones, which do not require reference data, their methodology yielded
predictions of extrinsic quality with 30% less variance compared to a baseline uninformed
predictor [28].

In regions where authoritative data are lacking, the feasibility of conducting quality
assessments of OpenStreetMap (OSM) through direct comparison with such data is limited.
This challenge has prompted researchers to investigate alternative methods, seeking quality
indicators that can offer insights into the OSM quality in these data-scarce areas [15,29–33].

Given that contributors are constantly updating the map, OSM features undergo
continuous edits, leading to ongoing changes in the quality of OSM data over time. Hecht
et al. [34] evaluated how the quality of OSM database changes over time. They found that
the completeness of OSM building footprints in Saxony, Germany, increased from 15% in
2011 to 23% in 2012 [34]. Herfort, B. et al. [26] conducted extensive research to determine
how the completeness of OSM urban building data has changed over time. They evaluated
13,189 urban centers worldwide. Their findings indicate that while there was an overall
increase in completeness for many urban centers, significant disparities were observed
across different regions. Additionally, they noted that before 2014, the spatial inequality of
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OSM buildings increased, but after 2014, it became more even [26]. Tian et al. [19] compared
the OSM building data in China between 2012 and 2017 and found that the volume of data
had increased twentyfold. It was observed that the majority of these changes occurred
along the east coast of China.

While numerous studies have analyzed the improvement of OpenStreetMap quality
over time, there appears to be a gap in comprehensive research focusing on the improve-
ment of various aspects of OSM building data quality, such as the shape and positional
accuracy, particularly in Québec.

Consequently, this research undertakes a comparative analysis of four quality mea-
sures: completeness, positional accuracy, shape accuracy, and attribute accuracy, over a
five-year period. This approach aims to shed light on how the quality of OSM building
data has evolved during this time, using these quality measures. Therefore, the central
question of this research is: How has the quality of OSM building data in Québec changed
between 2018 and 2023, when evaluated from these four different quality perspectives?

The structure of the remainder of this research is organized into three main sections.
Section 2: This section undertakes a literature review to identify the measures that previous
researchers have proposed for assessing the quality of OSM building data. Section 3:
The OSM datasets for the years 2018 and 2023 are acquired for five cities in Québec,
Canada, including Québec City, Longueuil, Repentigny, Rouyn-Noranda, and Shawinigan.
These datasets are subsequently compared with authoritative data to evaluate the quality
measures in the Québec Province for both years. Section 4: An analysis of the results is
conducted to ascertain the extent to which the quality of OSM data has improved between
2018 and 2023.

2. Materials and Methods
2.1. Correspondence Types

The relationship between OSM features and reference features can be complicated
because the majority of OSM data are digitized from aerial images and the contributors
draw the footprint of buildings based on a photo of their roof. Thus, sometimes a group
of adjacent buildings is represented as one building in OSM or vice versa. Fan et al. [12]
argued that the relationship between OSM footprints and the footprints in the reference
databases can be one of the following cases: (OSM: reference)

• 1:1—this relationship exists when one OSM building is matched to only one reference,
and that reference building also matches to only one OSM building;

• 1:0—this case is when there is a building on OSM that has no corresponding polygon
in the reference database (data commission);

• 1:n—this case happens when one OSM feature is corresponding to more than one
feature in the reference database;

• 0:1—this case is the opposite of the (1:0) relationship (data omission);
• n:1—this case is the opposite of the (1:n) relationship;
• n:m—this case means that a number of buildings in OSM are matching to a number of

buildings in the reference database.

In the case of OpenStreetMap, the purpose of feature matching is to find out which of
the abovementioned correspondence types applies to the building footprint of OSM and
the corresponding one(s) in the reference database.

2.2. Feature Matching

Feature matching is a process that aims to find corresponding features between mul-
tiple databases [12]. The majority of studies on OSM building data [15,18,25,35] used the
feature matching method that is introduced by [12], which is based on the area of the
overlapping part of the two polygons. This method is based on the fact that the polygon
displacement between OSM and the reference database is not considerable [12]. There-
fore, the area where the two polygons overlap can be used as a criterion for finding the
corresponding features [12]. Fan et al. [12] considered a tolerance of 30%, which means
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if two polygons have more than 30% overlap, they are considered corresponding poly-
gons. The following equation is proposed by Fan et al. [12] for finding corresponding
building footprints:

Areaoverlap

Min
(

Area(Footosm_i), Area
(

f ootre f _j

)) > 30% (1)

The overlap method has a great accuracy when the corresponding types are simple
(1:1, 1:0, 0:1); however, when the correspondence type is more complicated (1:n, n:m, n:1) or
when there is a considerable displacement between the OSM and the reference polygon, the
accuracy of the overlap method reduces [36]. Moradi et al. [36] proposed a feature matching
algorithm for OSM buildings that uses not only the overlap between two polygons, but
also measures the degree to which the two shapes are similar. In this research, the method
proposed by Moradi et al. [36] is used to perform a more accurate feature matching between
OSM and the reference building footprints.

2.3. Completeness

Completeness refers to whether or not the objects in the real world and their attributes
exist in the database [37]. Completeness has two main components: data completeness and
model completeness [37]. In this study, only data completeness for building footprints is
evaluated. Attribute completeness expresses how completely the attributes that describe
the characteristics of a feature exist in the database [37]. Two main issues are related to
completeness evaluation of the data: commission and omission [38]. Commission is when
the object in the database does not exist in the real world and omission happens when an
object in the real world is not mapped in the database [38]. In the case of building footprints
of the OSM database, completeness means how complete the buildings of the study area
are mapped by the OSM contributors.

There are two common methods for evaluating the completeness of OSM building
footprints: the area-based method and object-based method [34]. The area-based method
compares the total area of the building polygons of the OSM database to the total area of
the building footprints of the reference database in the study area [34]. The object-based
method compares the total number of the OSM buildings in an area to the total number
of buildings in the reference database in that area [34]. The area-based method is easier
because it does not require feature matching and it just compares the total area of the
polygons of the two databases. However, the object-based method requires finding the
corresponding features before comparing numbers. Hechtet et al. [34] compared the two
methods and suggested the use of an object-based method because the area-based method
is highly sensitive to disparities between the building footprints in OSM and building
footprints in the reference databases. Törnros et al. [13] compared the two methods of
completeness evaluation and found that neither of them pays attention to the geometrical
representation of the buildings. Therefore, both methods have shortcomings that may
result in the overestimation or underestimation of the completeness [13]. For example,
when a block of buildings in the real world are represented with just one polygon in OSM,
comparing the total number of buildings may underestimate the completeness [13]. Törnros
et al. [13] proposed to merge the adjoining buildings in both databases and then compare
the resulting polygons and calculate three parameters : true positive, false negative and
false positive. This method tries to solve the problem where sometimes adjoining buildings
are represented by only one polygon.

2.3.1. Area-Based Method

In the area-based method, the completeness is simply calculated based on the ratio of
the total area of buildings in OSM to the total area of buildings in the reference database [18].
This method is not computationally heavy. However, a number of issues can cause uncer-



Geomatics 2023, 3 545

tainty in the results [13]. Area-based completeness can be calculated using the following
equation [34]:

CArea =
∑n

i=1 Area( f ootprintOSM)

∑m
j=1 Area

(
f ootprintRe f erence

) (2)

where n is the number of buildings in OSM and m is the number of buildings in the reference
database. A number of research studies applied the area-based method for assessing the
completeness of OSM building footprints [12,18,34,39].

2.3.2. Object-Based Method

In the object-based method, first, the corresponding features are detected. Then, the
completeness is calculated based on the comparison between the number of the features
in OSM and their number in the reference database. Therefore, it is more reliable for
completeness assessment [34]. The object-based completeness evaluation of OSM buildings
can be carried out using the following equation [34]:

Completeness =
Number o f f eatures in OSM

Number o f f eatures in re f erence DB
(3)

This method can calculate omission and commission much more accurately than the
area-based method because in this method, the features are matched and the corresponding
types are known.

2.4. Positional Accuracy

In GIS, the position of an object in the real world is measured with respect to an appro-
priate coordinate system and is stored in the databases [37]. The position of the objects of the
real world can be obtained via repeated measurements [37]. The precision of the position
refers to the spread of the results obtained by the measurements [37]. However, accuracy
is the distance from the measured position to the true position (which is unknown) [37].
The ISO standard for spatial data quality defines positional accuracy as the accuracy of the
position of objects with respect to a coordinate system [38]. Positional accuracy has three
elements: absolute accuracy, relative accuracy, and gridded data positional accuracy [38].
Absolute accuracy is the closeness of the measured coordinates in comparison to the true
coordinates, while the relative positional accuracy refers to the positional accuracy of the
objects of the map with respect to the position of the other objects [38].

A number of research studies evaluated the positional accuracy of the OSM building
footprints [2,12]. The common point among all these research studies is that they mostly
used a reference database to compare with OSM. Fan et al. [12] evaluated the positional
accuracy of building footprints of OSM by comparing the position of their corresponding
vertices. Firstly, this method finds the corresponding vertices of the OSM polygon and the
reference polygon. Then, it calculates the average distance of these points as a measure
of the positional accuracy of the buildings [12]. Only the buildings with a 1:1 relation are
included in the calculations. Finally, they calculated four measures, including the maximum
offset, minimum offset, average offset, and standard deviation [12].

Brovelli and Zamboni [17] proposed a method for evaluating the positional accuracy
of the OSM building footprints. In the first step, this method estimates the parameters of
an affine transformation between OSM building vertices and the corresponding reference
vertices [17]. A manual detection of more than four homologous points is required for
each region of the map [17]. Finally, all the points of OSM are transformed using the
affine transformation. Then, they are compared to the corresponding points of the reference
database [17]. The distance between the two homologous points is the measure of positional
accuracy in this method [17].

A simple but efficient method of positional accuracy assessment for building foot-
prints of OSM is applied by Copes [2]. Copes [2] compared the position of the centroid
of the building on OSM to the centroid of the corresponding building in the reference
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database. The distance between the two centroids can be used as an indicator for positional
accuracy [2]. The measure of positional accuracy of this method is calculated as follows:

Distanceaverage =
∑n

i=1

√(
Xi

OSM − Xcorresponding
re f

)2
+
(

Yi
osm −Ycorresponding

osm

)2

n
(4)

where Xcorresponding
re f is the X coordinate of the centroid of the polygon in the reference

database that is corresponding to the centroid of the ith polygon of OSM and n is the
number of OSM buildings that have a 1:1 relationship with reference buildings.

The distance is not the only parameter that can be measured between the two centroids.
Barronet et al. [40] proposed an intrinsic quality indicator that compares the displacement
of the road junctions over the time. In a normal case, the displacement of the road junctions
should be distributed uniformly in all directions [40]. However, vandalism can affect
distribution in one direction more than others [40]. The authors believe that this method
can be used for building centroids. Therefore, we propose to not only compare the distance
between the two centroids, but also to evaluate the distribution of the directions. The
evaluation of the directions can answer the question whether or not the buildings of OSM
(compared to the reference ones) are displaced toward any specific direction.

2.5. Shape Accuracy

The buildings of OSM are usually digitized by the contributors from areal imageries.
Fan et al. [12], and Törnros et al. [13], mentioned that the buildings of the OSM are in fact a
simplified representation of the buildings of the reference database. Therefore, on one hand,
the shapes of the polygons are not digitized with the same level of details as the reference
database [12,39]. On the other hand, sometimes there are some errors in the digitization
process due to the lack of geographic knowledge of the contributors or even vandalism
activities. Thus, a shape dissimilarity can happen due to different reasons. It is necessary to
evaluate how similar the shapes of the buildings in OSM are to the shapes of the buildings
in the reference database.

Fan et al. [12] defined the shape accuracy as the similarity between the footprints in
the two databases. Fan et al. [12] proposed the use of a turning function to measure the
similarity of the polygons. This method was used by a number of other researchers [12,
25,41]. This method represents each polygon with a set of tangents of the edges and the
length of each edge [12]. The length of each edge should be normalized by the perimeter
of the polygon so that different polygons can be compared [12]. The dissimilarity of two
polygons can then be calculated by comparing these two functions.

Xu et al. [42] proposed using discrete Fourier transform for calculating the shape simi-
larity between the two databases. This method first finds the polygons with 1:1 relationship.
Then, each polygon will be considered as a signal and Fourier transformation is used to
express that signal in terms of a complex exponential [42]. The measure of the similarity of
the two polygons is then defined by the distance between the two exponentials [42]. This
method is innovative but computationally heavy because there are many buildings in the
province of Québec, and it takes a very long time to calculate Fourier transformation for all
of them.

Siebritz [39] applied three measures to compare the building footprints of OSM and
building footprints of the reference database. The first criterium is the ratio of the two
areas [39]:

Area Ratio =
Areaosm

Areare f
(5)
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This measure can indicate how the area of the two polygons is similar. However,
this measure cannot indicate the difference in the shape of the two polygons. The second
measure that is applied by [39] is compactness:

Compactness =
Area(

0.282 ∗ Perimeter)2
(6)

This measure can tell us more precisely if the two shapes have the same level of
compactness or not. The compactness of a polygon indicates the degree to which the
polygon deviates from a circle [39]. A circle is considered the most compact shape. The
third measure of the shape similarity applied by Siebritz [39] is elongation:

Elongation = 1− W
L

(7)

where W and L are the width and the height of the smallest rectangle containing the shape.
When elongation is 0, the shape is similar to a circle, and when it is 1 the shape is similar to
a line. Comparing the elongation of the OSM footprint to the reference footprint shows
how similar the two polygons are from the point of view of elongation.

The other measure that can be used for comparing two shapes is the discrete Hausdorff
distance for polygons. This measure indicates how far two polygons are from each other.
A low Hausdorff distance means that the points of the two polygons were close to each
other, while a high Hausdorff distance means that the points constructing the two polygons
are far from each other. In order to be able to use this measure as a measure of shape
similarity, first, the positional displacement between the two polygons should be removed.
Therefore, in this research, the OSM polygon is moved so that its centroid is placed on
the centroid of the corresponding reference polygon. Then, the result of the Hausdorff
distance will be only due to the shape dissimilarity of the two shapes. This function is
available in the PostGIS extension of the PostgreSQL database (https://postgis.net/docs/
ST_HausdorffDistance.html (accessed on 07 December 2023)). The Hausdorff distance is
calculated as follows [43]:

Hausdor f f Distance(A, B) = Max
(
supx∈Ad(x, B), supx∈Bd(x, A)

)
(8)

where A and B are two closed sets and d is the Euclidean distance [43]. Therefore, if the two
polygons are concentric, Hausdorff distance is the maximum possible distance between the
borders of the two polygons.

The authors believe that the abovementioned methods provide significant knowledge
about the shape similarity between the two polygons. However, they are not enough to
provide a measure of the shape similarity. Therefore, the authors applied the average
distance method to measure the similarity between the two shapes. The average distance
is calculated between the lines that represent the border of the two polygons. Discrete
average distance between two polygons is calculated as follows [44]:

Average Distance (A, B) =
∑n

i=1 d
(

pA
i , B

)
n

(9)

where A and B are two concentric polygons. Variable d is Euclidean distance and pA
i is i-th

point on the border of polygon A. Therefore, the average distance is the average distance
between a set of points on the border of polygon A and their nearest point on the border of
polygon B.

In this method, firstly, the two polygons will become concentric. Then, a set of points
will be generated on the border of the first polygon. Finally, the distance of each point to
the border of the second polygon will be calculated. If the average distance between the
two polygons is 0, it means that the two shapes are exactly similar. If the average distance

https://postgis.net/docs/ST_HausdorffDistance.html
https://postgis.net/docs/ST_HausdorffDistance.html
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is high, it means that the corresponding points of the two polygons are far from each other,
which means that the two shapes are not similar.

2.6. Attribute Accuracy

The attributes are an important part of spatial data. In fact, spatial data are described by
the help of the attributes. Therefore, the accuracy of the attributes is a very important part
of the quality of the data. In the case of OSM, the attributes are stored as tags. There is no
rule for storing these tags. The first attribute that is used in this research is “building = yes”
which is used to find out the polygons that represent any buildings [12]. The other attribute
that is important for us is the name of the building. However, in this research, our objective
is to find out the accuracy of the names. The comparison of the name of the buildings in
OSM and in the reference database is carried out via the Levenshtein distance algorithm.
This algorithm finds the number of deletions, insertions, and substitutions that is required
to change string A to string B [45]. Therefore, a great value of Levenshtein distance indicates
that the two strings are not similar, while a Levenshtein distance equal to 0 indicates that
the two strings are equal.

2.7. Study Area

The focus of this research is the province of Québec, which is Canada’s second most
populous province, home to approximately 8 million residents. Situated in eastern Canada,
Québec shares its borders with other provinces such as Ontario and New Brunswick. The
majority of Québec’s population resides in the southern regions, particularly near the
United States border. Home to the largest French-speaking community in North America,
Québec’s primary language is French, which is reflected in the attributes of many OSM
features. Consequently, French accents, such as é and à, may present issues if contributors
do not adhere to accurate spelling conventions.

In this study, we assess the quality of OSM data across various cities to enable compar-
isons. To this end, both large and small cities have been selected. However, the expansion
of the study to include additional cities and villages was constrained by the availability of
reference data. Table 1 lists the metropolitan areas chosen for analysis in this research.

Table 1. The cities selected for the study.

ID Name Population (2021) Coordinates

1 Repentigny 84,965 45.7533◦ N, 73.4401◦ W

2 Ville de Québec 542,298 46.8139◦ N, 71.2080◦ W

3 Shawinigan 50,060 46.5619◦ N, 72.7435◦ W

4 Rouyn-Noranda 42,334 48.2342◦ N, 79.0188◦ W

5 Longueuil 246,855 45.5369◦ N, 73.5107◦ W

Figure 1 illustrates the map of the province of Québec and the location of the cities and
metropolitan areas that are selected as the study area of the research. As mentioned before,
most of the population of Canada in general and the province buildings in particular is
concentrated in the southern part of the province. Thus, the cities selected are mostly in the
southern part of the province and near the border of the United States.
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2.8. Data

In this research, we employ a quality assessment method that relies on comparison
with the reference data. Accordingly, the quality of OSM data is evaluated by contrasting
it with authoritative datasets, herein referred to as the reference data. We operate under
the assumption that the reference data are of impeccable quality and accurately depict
real-world objects. Thus, a comparison with reference data is tantamount to a comparison
with reality. This assumption is necessary due to the impracticality of comparing OSM data
on a large scale directly with reality.

2.8.1. Reference Data

The reference data in this research are downloaded from Données Québec (
https://www.donneesquebec.ca/ (accessed on 04 November 2018)). Données Québec
is a collaborative hub for Québec open data. The datasets are individually compiled by
the municipalities of each respective city. The building footprint data are produced from
georeferenced aerial images.

2.8.2. OSM Data

The OpenStreetMap (OSM) data utilized in this research were sourced from the
GeoFabrik portal (http://download.geofabrik.de/ (accessed on 04 November 2018)). This
portal offers OSM data for various geographic regions, including continents, countries,
and provinces, in multiple formats such as Shapefile, *.osm, and *.pbf. The *.osm format,
a text file, is particularly popular with applications designed for OSM data processing.
Furthermore, the OSM data can be imported into a PostGIS database using tools like

https://www.donneesquebec.ca/
http://download.geofabrik.de/
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Osmosis. Alternatively, osm2pgsql provides another method for importing data into a
PostgreSQL database, including the ability to integrate changesets.

For this study, the OSM database for the province of Québec was retrieved on two
distinct dates: 4 November 2018, and 1 October 2023, from GeoFabrik. This dataset
encompasses building footprints across the province. Consequently, the specific study
areas (the selected cities) needed to be extracted from the entire database. Figure 2 displays
the spatial distribution of building footprints within the province in 2023.
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As Figure 2 demonstrates, there is a higher density of building footprints in the
southern region of the province. Because reference data are not available for all areas, the
OSM building footprint dataset must be clipped to the city boundaries to ensure consis-
tent borders between both datasets. On 4 November 2018, the OSM database contained
311,465 buildings for the Québec province, covering a total area of 173,743,179.59 square
meters. The average building area was 557.8 square meters, with the smallest and largest
footprint areas being 0.0033 square meters and 228,942.6 square meters, respectively.

2.9. Preprocessing

In the case of this research, preprocessing is required because the two datasets are
not in the same projection systems. The database of OSM is in GCS_WGS_1984, while
the reference data are in NAD83. Thus, both datasets should be projected in the same
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projection system to be able to continue the processes. NAD_1983_MTQ_Lambert is used
in this research because it is designed to fit the road network of the Québec province.

In addition, both 2018 and 2023 OSM building data should be clipped with the bound-
ary of the cities in order to have two equivalent datasets with the reference dataset. Figure 3
shows the reference data and clipped 2018 OSM data in Québec City.
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The next step of preprocessing is removing the polygons that are smaller than 40 m2

because they are most likely not representing buildings. Given that the majority of the
building footprints in OSM are created by digitizing the areal images, it is likely that a
parking or swimming pool is categorized as a building due to the low resolution of the
Bing map aerial images.

2.10. Finding Corresponding Features

Feature matching is performed using the method proposed by Moradi et al. [36] for
both 2018 and 2023 OSM datasets. To assess the precision of feature matching, the outcomes
of the 2023 OSM data matched against reference data were subject to manual verification.
For this purpose, 100 buildings were randomly selected from the reference dataset, and
their corresponding structures in the 2023 OSM data were identified manually. The authors
then ascertained the correspondence types for these 100 buildings. It was found that the
correspondence type for only 2 out of the 100 buildings had been incorrectly assigned by
the algorithm.

Once the correspondence types between the two datasets were established, com-
parisons of the paired polygons were conducted. This enables the evaluation of the
completeness, positional accuracy, shape accuracy, and attribute accuracy of the OSM
building footprints.

3. Results
3.1. Evaluating the Completeness

The completeness of the five cities was calculated using both area-based and object-
based methods in 2018 and again in 2023.

3.1.1. Area-Based Completeness Evaluation

Two measures of completeness are calculated: based on the number of buildings in
the two databases and based on the total area of the buildings in the two databases. Table 2
shows the area-based completeness of the cities.
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Table 2. The area-based completeness for the selected cities in the Québec province.

City Repentigny Québec Shawinigan Rouyn-
Noranda Longueuil

OSM 2018

No. of
Buildings 1693 14,409 384 421 3027

Area (m2) 1,183,340 10,479,443 828,649 400,208 3,865,171

OSM 2023

No. of
Buildings 9260 44,021 18,925 1370 8034

Area (m2) 2,436,737 16,133,074 3,777,721 801,392 6,099,164

Reference
Dataset

No. of
Buildings 24,133 160,485 19,115 26,686 61,304

Area (m2) 4,527,833 30,849,277 3,806,090 3,664,484 10,622,880

Completeness
2018

Based on
Number 7% 9% 2% 1.5% 5%

Based on Area 26% 34% 22% 11% 36%

Ratio 3.7 3.7 11 7.3 7.2

Completeness
2023

Based on
Number 38% 27% 99% 5% 13%

Based on Area 53% 52% 99% 21% 57%

Ratio 1.4 1.9 1 4.2 4.3

Table 2 indicates that in 2018, Québec City had the highest completeness rate among
the five cities, while Rouyn-Noranda, the smallest of the selected cities, had the lowest
completeness at only 1.5%. Additionally, there was a marked increase in the completeness
of Shawinigan from 2018 to 2023. This variability reinforces the notion that OSM data
quality is heterogeneous and that different cities—even those in proximity—cannot be
presumed to have the same level of data quality.

This theory is further examined by analyzing the average building area in all cities
according to OSM data. Table 3 presents the average area of building footprints for both
the reference and OSM databases for 2018 and 2023. The data in Table 3 suggest that in
nearly all cities, the average building area in OSM is significantly larger than that in the
reference database, with the exception of Shawinigan in 2023. The variance between the
area-based and number-based completeness measures could stem from the fact that OSM
more comprehensively maps larger buildings, while smaller ones are often omitted.

Table 3. The average area of the building footprints in OSM and in the reference databases.

ID City Avg. Area in OSM (m2)
Avg. Area in Reference (m2)

Ratio

2018 2023 2018 2023

1 Repentigny 698 263 187 3.7 1.4

2 Québec 727 366 192 3.7 1.9

3 Shawinigan 2157 204 199 10.8 1

4 Rouyn-
Noranda 950 584 137 6.9 4.2

5 Longueuil 1276 759 173 7.3 4.3

The 2018 comparison between the cities also demonstrates that Québec and Longueuil
tend to be slightly more complete than the other cities. Interestingly, by 2023, Shawinigan
was nearly fully mapped.
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Overall, the number-based measure of completeness improved for all cities in 2023.
Québec City, Repentigny, Shawinigan, Rouyn-Noranda, and Longueuil experienced in-
creases in completeness by 16%, 31%, 97%, 3.5%, and 8%, respectively.

3.1.2. Object-Based Completeness Evaluation

An object-based approach to completeness assessment is more reflective of reality, as
it identifies corresponding features first before computing completeness based on the types
of correspondence established. Thus, it allows for the quantification of completeness errors
such as omissions and commissions. Table 4 presents the completeness of Québec cities
using the object-based method.

Table 4. The object-based completeness assessment for the cities of the province of Québec.

ID City
Omission (No. of B.) Commission (No. of B.) Completeness

2018 2023 2018 2023 2018 2023

1 Repentigny 22,470 15,404 24 33 6.7% 35%

2 Québec 147,544 108,173 1164 1197 7.1% 24%

3 Shawinigan 18,840 288 138 159 1.05% 99%

4 Rouyn-Noranda 26,383 21,171 127 222 1.01% 4.5%

5 Longueuil 58,946 54,178 822 1168 3.2% 12%

Table 4 indicates that in 2023, there was an increase in commission values across all
cities. This suggests that polygons representing new constructions or edifices, which were
not included in previous authoritative datasets, have been incorporated by OSM contribu-
tors. On the flip side, the rate of omission errors declined in 2023, with Shawinigan showing
a significant decrease. In Shawinigan, the addition of approximately 288 buildings would
result in a 0% omission error rate, indicating the complete mapping of the city’s buildings.

3.2. Evaluating the Positional Accuracy

In this study, positional accuracy is determined by comparing the centroid of a polygon
in OSM with the centroid of the reference polygon. The distance between these two
centroids is measured and serves as the metric for positional accuracy. Thus, if an OSM
building is digitized precisely at the same location as the reference building, the positional
accuracy is considered high, and the distance between the centroids is zero. Conversely, a
significant distance between the centroids indicates that the OSM building is far from its
correct position, denoting low positional accuracy. Hence, there is an inverse relationship
between positional accuracy and the centroid distance. Figure 4 displays the centroids of
buildings in a sample area.

The mean distance between the two centroids is computed for each city, considering
only the buildings that have a “1:1” relationship for this analysis. The positional accuracy
of the building footprints is calculated using the PostGIS extension for the PostgreSQL
database. Figure 5 shows the average distance between centroids for each city in the
province of Québec for the years 2018 and 2023.
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Figure 5. The average distance between the centroid of the buildings of OSM and their corresponding
reference building in 2018 and 2023.

The positional accuracy of the building footprints is generally acceptable, considering
that the quality of the aerial images is around 4 m. In 2018, the highest positional quality
within the OSM database was observed for Repentigny, with a deviation of 2.1 m, and the
lowest was for Shawinigan, with a deviation of 5.7 m. In Québec City, the average distance
between the OSM centroid and the corresponding reference centroid was approximately
3.4 m, which is acceptable given the positional quality of the aerial images.

In 2023, the positional accuracy for all cities had improved, except for Repentigny,
which experienced a minor decline of 0.1 m. This trend aligns with the authors’ expectations,
as it is anticipated that the quality of OSM data will enhance over time due to increasing
contributions (as per Linus’s law). Shawinigan underwent a significant improvement in
positional accuracy, advancing from 5.7 m in 2018 to 1.1 m in 2023.

The distance between the two centroids provides information on the precision of
the OSM polygon’s positioning relative to the corresponding Québec polygon. However,
it does not reveal whether the building footprints are uniformly shifted in a particular
direction or are scattered randomly. Therefore, this phase involves analyzing the scatter
diagram of the displacements to determine if there is any discernible pattern. Figure 6
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presents the scatter diagram of these displacements, which are calculated by comparing the
position of the OSM building’s centroid to the reference building’s centroid. Figure 6 shows
that in some cities, the displacement is not random. For instance, in Québec City, buildings
are, on average, shifted toward the north and northeast, while in Rouyn-Noranda, the shift
is toward the west and southwest. Additionally, the denser concentration of scatter points
near the coordinate system’s center in 2023 compared to 2018 suggests an improvement in
positional accuracy for Shawinigan.
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radial displacement of the building tops (which are the parts OSM contributors see and
digitize, not the actual footprints). Buildings located farther from the image center may
have rooftops that appear displaced from their footprints.

3.3. Evaluating the Shape Accuracy

As previously mentioned, the building footprints in OSM are primarily digitized by
OSM contributors. Consequently, the shape of the digitized polygons does not exactly
mirror the actual footprint shapes. This section will calculate five measures previously
used in research to assess the shape accuracy of OSM building footprints in selected cities
of the Québec province. These measures will provide insights into the resemblance of OSM
building footprints to those in the reference database.

3.3.1. Calculating the Area Ratio

The area ratio, defined as the area of the building footprint in OSM relative to the area
of the corresponding building in the reference database, is a basic yet informative measure
of similarity between two polygons. This metric is straightforward to compute. Figure 7
depicts the area ratios of building footprints between the two databases.
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Figure 7. The area ratio between the OSM buildings and their corresponding reference building.

According to Figure 7, the average area of buildings in OSM is comparable to the
average area of the corresponding buildings in the reference database; the average ratio
of the two areas is nearly 1 for all cities. The area ratio suggests that the shape accuracy
of building footprints in Shawinigan within OSM has noticeably improved from 2018 to
2023. However, for most cities, this measure has remained stable. It is crucial to note that
this area ratio is calculated exclusively for buildings that have a one-to-one correspondence
with those in the reference database. Based on Figure 7, the area ratios of Rouyn-Noranda
and Shawinigan are higher compared to those of the other cities. This suggests that the
average area of OSM polygons relative to those in the reference database is larger in these
cities. Consequently, it can be inferred that the shape accuracy of building footprints in
Rouyn-Noranda and Shawinigan is lower. We hypothesize that the mapping quality in
these two cities is inferior, as indicated by several quality measures being lower compared
to other cities. A plausible explanation for this could be the lower population density in
these areas.
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3.3.2. Calculating Compactness

The similarity in compactness between the buildings in OSM and those in the reference
database suggests a greater resemblance between them. While compactness does not reveal
the exact degree of similarity between two sets of polygons, it offers insights into their
comparative shapes. Figure 8 displays the compactness differences for the cities in 2018
and 2023.
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Figure 8 indicates that, from 2018 to 2023, the compactness of OSM buildings has
become more aligned with that of the reference database buildings across all cities, par-
ticularly in Shawinigan. The area ratio and compactness assess the general shape of the
building footprint, providing an overarching notion of similarity. In contrast, the Hausdorff
distance and average distance yield more detailed information about shape accuracy.

3.3.3. Calculating the Hausdorff Distance

The Hausdorff distance is a metric that quantifies how closely the points of two
polygons approximate each other. It is an extreme measure, indicating the greatest distance
across the peripheries of two polygons. Therefore, the Hausdorff distance is particularly
effective for identifying significant errors or inaccuracies in the digitization of building
footprints. In this study, each OSM polygon is initially adjusted to be concentric with its
corresponding reference polygon. Following this, the Hausdorff distance between the
adjusted OSM polygon and the reference polygon is computed. Subsequently, we calculate
the average of these distances for each city. A Hausdorff distance of zero would imply
that the points of both polygons coincide, suggesting similar shapes. Conversely, a large
Hausdorff distance denotes dissimilarity in shape. Figure 9 presents the average Hausdorff
distance for each city.Geomatics 2023, 3, FOR PEER REVIEW 19 
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As illustrated in Figure 9, nearly all cities exhibit a reduced Hausdorff distance in
2023 compared to 2018, with the exception of Repentigny. Given that the Hausdorff
distance identifies larger errors, it can be inferred that the polygon shapes in Repentigny
might have been digitized with less precision from 2018 to 2023. Shawinigan has seen
the most significant enhancement in shape accuracy, while the Hausdorff distance for
Rouyn-Noranda has not changed more than 0.5 m since 2018.

3.3.4. Calculating the Average Distance

The Hausdorff distance is influenced by the maximum distance between the corre-
sponding points of two polygons, representing extreme errors rather than the average
dissimilarity between two shapes. Therefore, in this section, we use the average distance
method to gauge the similarity of two shapes. Initially, the OSM polygon is aligned to be
concentric with the reference building polygon. Subsequently, we compute the average
distance between the OSM polygon and the corresponding reference polygon. Figure 10
depicts the average value of this distance for each city.
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Figure 10 indicates that Rouyn-Noranda has the highest average distance, while
Repentigny has the lowest. This suggests that the shape accuracy in Repentigny is superior
to that of other cities, whereas Rouyn-Noranda has the least shape accuracy. Moreover, it
can be deduced that shape accuracy has improved in 2023, which aligns with Linus’s law.
The average distance for all cities is less than 1 m, signifying that, on average, the points
of the OSM footprint polygons are less than 1 m away from those in the reference dataset
when the polygons are concentric.

3.4. Evaluating the Attribute Accuracy

In this step, we evaluate the attributes of OSM buildings that are stored as tags. The
most important attribute, the building’s name, is assessed here. All attributes in OSM are
stored as key = value pairs. TagInfo (https://taginfo.openstreetmap.org/ (accessed on 12
September 2023)) is a website providing the most frequent tags associated with a key [46].
It is a valuable resource for evaluating the variety of tags contributors have used to describe
geographic locations.

In this section, we compare the names of OSM buildings with those in the reference
database using the Levenshtein distance algorithm. This algorithm quantifies the number
of deletions, insertions, and substitutions required to convert string A into string B [45].
Thus, a high Levenshtein distance value indicates low similarity between two strings, while

https://taginfo.openstreetmap.org/
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a distance of 0 means that the strings are identical. We calculate the Levenshtein distance
between the names of buildings in OSM and those in the reference database, with lower
values indicating better attribute quality.

For our reference databases, only buildings in the cities of Rouyn-Noranda and Re-
pentigny have named entries, permitting comparison only within these locales. In Re-
pentigny, 238 buildings, and in Rouyn-Noranda, 113 buildings are named. Other buildings,
even in the reference database, do not have names, which is reasonable, as only a small per-
centage of buildings are named in reality. The average Levenshtein distance for Repentigny
and Rouyn-Noranda in 2018 was 2.4 and 3.3, respectively. This suggests that, on average,
building names had two-to-three letter differences from their actual names. By 2023, the
average Levenshtein distances for Repentigny and Rouyn-Noranda improved slightly to
1.9 and 2.6, respectively, indicating a modest enhancement in attribute accuracy. Several of
these discrepancies are related to French accents on letters such as “è,” “é,” “à,” etc. This
issue arises partly because individuals do not always spell building names correctly. Users
of OSM data in Québec should be mindful of this, as it can lead to challenges depending
on the application in which the OSM data are employed.

4. Conclusions

This research evaluates the quality of OpenStreetMap (OSM) building footprint data
between 2018 and 2023 in five selected cities—Québec City, Repentigny, Shawinigan, Rouyn-
Noranda, and Longueuil—within the Québec province. The primary aim is to assess the
current quality of OSM data and analyze how it has evolved over the past five years. Due to
limited access to authoritative datasets, this study focuses on four key spatial data quality
aspects: completeness, positional accuracy, attribute accuracy, and shape accuracy.

The findings indicate an overall improvement in data quality. Completeness, mea-
sured via object-based and area-based methods, showed significant progress. In 2018, the
average area-based completeness across the cities was 25.8%, which increased to 56.4% by
2023. Similarly, the object-based completeness rose from 3.8% in 2018 to 34.9% in 2023, high-
lighting the active contributions made to the OSM project during this period. A noteworthy
enhancement was seen in Shawinigan, where object-based completeness surged from 1%
to 99%, illustrating the heterogeneous nature of OSM data quality. Positional accuracy also
improved, with the average distance between the centroids of OSM and reference data
decreasing from 3.7 m in 2018 to 2.3 m in 2023. This indicates that in the research area,
the average distance between the centroids of OSM buildings and those of the reference
buildings decreased by 1.4 m. This reduction may be attributed to the fact that subsequent
modifications corrected positional errors in the buildings over the study period.

For shape accuracy, four metrics were evaluated: area ratio, compactness, Hausdorff
distance, and average distance. While the area ratio and compactness provided broad
shape information, they could not detect minor discrepancies. In contrast, the Hausdorff
distance and average distance were more effective in differentiating the shape similarities
and dissimilarities. The results showed a decrease in the average distance measure (in five
cities) and suggested an improvement in the shape accuracy overall. Moreover, the average
distance measure was less than 1 m for all cities in both 2018 and 2023, which means that
all building footprints of the province have a relatively good shape accuracy. In addition,
the Hausdorff distance value indicates a reduction in the number of major errors in the
shape of buildings over the study period.

Attribute accuracy, assessed using the Levenshtein distance for building names, in-
dicated minimal discrepancies, typically not exceeding two-to-three characters in both
2018 and 2023. Our study’s findings suggest a minor but noteworthy improvement in
the attribute accuracy of OpenStreetMap (OSM) building names over the course of our
research period.

We were constrained in expanding our research to other cities and villages of the
province due to the lack of access to recent, consistent, and high-quality reference datasets.
Another limitation relates to the outdated nature of the available data: the reference data
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only represent buildings as of 2018. Consequently, new constructions and modifications
in the buildings post-2018, which could slightly alter the calculated measures, are not
accounted for in our research. This aspect presents an opportunity for future researchers
to explore the temporal quality of OSM in greater detail. Additionally, exploring the
relationship between the quality of OSM data and the rate of improvement of OSM data
over time, in relation to variables such as population, income, and other potential quality
indicators, could be a fascinating topic for future studies.

Additionally, the study observed that incomplete cities in OSM have larger average
building footprints compared to reference data, leading to the hypothesis that contributors
may prioritize digitizing larger buildings. This hypothesis, proposing that the average size
of OSM buildings could serve as an indicator of completeness in areas lacking reference
data, can be explored in future research. Future research could extend beyond the building
name to other OSM building attributes, further enriching our understanding of data quality
and contributing to the enhancement of OSM data.
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