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Abstract: Night-time light (NTL) data have been widely used as a remote proxy for the economic
performance of regions. The use of these data is more advantageous than the traditional census
approach is due to its timeliness, low cost, and comparability between regions and countries. Several
recent studies have explored monthly NTL composites produced by the Visible Infrared Imaging
Radiometer Suite (VIIRS) and revealed a dimming of the light in some countries during the national
lockdowns due to the COVID-19 pandemic. Here, we explicitly tested the extent to which the
observed decrease in the amount of NTL is associated with the economic recession at the subnational
level. Specifically, we explore how the association between Gross Domestic Product (GDP) and
the amount of NTL is modulated by the pandemic and whether NTL data can still serve as a
sufficiently reliable proxy for the economic performance of regions even during stressful pandemic
periods. For this reason, we use the states of the US and quarterly periods within 2014–2021 as
a case study. We start with building a linear mixed effects model linking the state-level quarterly
GDPs with the corresponding pre-processed NTL data, additionally controlling only for a long-term
trends and seasonal fluctuations. We intentionally do not include other socio-economic predictors,
such as population density and structure, in the model, aiming to observe the ‘pure’ explanatory
potential of NTL. As it is built only for the pre-COVID-19 period, this model demonstrates a rather
good performance, with R2 = 0.60, while its extension across the whole period (2014–2021) leads
to a considerable worsening of this (R2 = 0.42), suggesting that not accounting for the COVID-19
phenomenon substantially weakens the ‘natural’ GDP–NTL association. At the same time, the model’s
enrichment with COVID-19 dummies restores the model fit to R2 = 0.62. As a plausible application,
we estimated the state-level economic losses by comparing actual GDPs in the pandemic period with
the corresponding predictions generated by the pre-COVID-19 model. The states’ vulnerability to
the crisis varied from ~8 to ~18% (measured as a fraction of the pre-pandemic GDP level in the 4th
quarter of 2019), with the largest losses being observed in states with a relatively low pre-pandemic
GDP per capita, a low number of remote jobs, and a higher minority ratio.

Keywords: VIIRS NTL data; panel analysis; COVID-19 pandemic; economic losses; socio-economic
characteristics; US

1. Introduction

Using satellite night-time light (NTL) data as a proxy for on-ground human activity
was well established in the remote sensing literature of the 1970s [1]. Since then, NTL
data have been widely used as a remote proxy for different purposes: in studies of the
economic performance of regions [2–9], in population analyses [10–15], in health geography
studies [16–20], in studies of CO2 emissions [21–24], etc. (for a comprehensive review of
current NTL usage and outlook for its future usage, see [25]).
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As a proxy of human economic activities, the use of NTL data is more advantageous
than the traditional census approach is due to its timeliness, low cost, and comparability
between regions and countries, irrespective of the statistical capacity and reporting culture.
Due to the mentioned reasons, using NTL data as a proxy for the economic performance
of the regions has become even more important during times of upheaval, of which the
COVID-19 pandemic is a prominent example.

Recent studies show that Visible Infrared Imaging Radiometer Suite (VIIRS) NTL
monthly composites reveal the dimming of light as an effect of the lockdowns in response
to the COVID-19 pandemic. Thus, Elvidge et al. [26] and Ghosh et al. [27] reported a
significant decline in the amount of night-time and monthly lighting recorded by VIIRS
DNB NTL composites during the first months of the COVID-19 pandemic in China and in
India. Xu and co-authors analyzed the amount of NTL in 20 megacities all over the world
before and after the lockdowns and reported that the amount of NTL in most cities generally
decreased after the lockdowns and that the most drastic decrease was observed for the
cities in Asia [28]. There are also some recent studies that used NTL data to explore the
COVID-19 influence on the socio-economic state of the regions. Thus, Wang and co-authors
explored the dynamics of NTL in the sites representing different types of human activities
(such as healthcare, recreation, residential, and shopping areas, etc.) during different stages
of the pandemic in four Chinese cities [29]. The authors report some tendencies, such as an
increase in the NTL levels in healthcare sites during the initial stage and a decrease in them
during the final stage of the pandemic or an increase in the amount of NTL in shopping
sites in the final stage of the pandemic, suggesting that NTL tendencies do reasonably
reflect the stages of the pandemic. In another study, Roberts shows that at the national level,
there exists a statistically significant correlation between the quarterly trends in Morocco’s
overall NTL intensity and the trends in its real Gross Domestic Product (GDP) [30]. Finally,
in the most recent study, Dasgupta reports that during the pandemic, the amount of NTL
was strongly correlated with GDP at the national level in India [31]. The question, however,
remains whether NTL data can track the economic impacts of the COVID-19 crisis at the
subnational level.

In the case of the US, a visual inspection of the NTL data recorded by VIIRS in March
2020, which was the starting point of the COVID-19 pandemic in the US, shows a sharp
decline in the amount of NTL, especially in specific areas, compared to that in the pre-
pandemic periods in February 2020, as well as in March 2019 (Figure 1a,b, respectively).
This decline contrasts with the increase in the amount of NTL normally that was observed
before the pandemic (see, for instance, Figure 2 comparing similar pre-COVID periods).
Additionally, the question is whether NTL dynamics remain a reliable proxy of the GDP
levels’ dynamics at the subnational level during times of upheaval. The present paper aims
to answer this question.

The observed striking difference in the dynamics of the amount of NTL used after
the onset of the pandemic might indicate the impact of the COVID-19 lockdowns on the
economy. The question, however, remains to which extent NTL data can still serve as
a proxy for the economic performance of the regions during crises. The present paper
aims to answer this question. In the analysis, we compare the US state-level quarterly
dynamics of the GDP during 2014–2021 with the pre-processed quarterly averaged monthly
composites of the NTL data measured by VIIRS. We also assess the pandemic-induced
state-level GDP losses and try to explain them using the socio-economic characteristics
of the areas. The present analysis is conducted in several steps. Firstly, we compare the
pre-processed years, 2014–2021, with the corresponding quarterly GDPs at the state level
in the US. For this reason, we build mixed linear models linking the GDP with the NTL
data separately for the pre-COVID-19 period and the whole time period. We show that
not accounting for COVID-19 dummies worsens the fit of the model built for the whole
time period. Secondly, we use the pre-COVID-based model to make post-pandemic GDP
predictions and estimate the state-level losses by comparing those predictions with actual
quarterly GDPs in the years 2020 and 2021. Finally, we try to explain the outstanding
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vulnerability to the crisis of states. For this reason, we run multivariate regressions linking
the socioeconomic characteristics of localities with the magnitude of their economic losses.
The rest of the paper is structured as follows: Section 2 describes the data and methods used
in the analysis, Section 3 presents empirical results, and Section 4 discusses the obtained
results and concludes the paper.
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Figure 1. Changes in night lights after the COVID-19 pandemic: March 2020 vs. February 2020 (a) 
and March 2020 vs. March 2019 (b). Blue and red pixels stand, respectively, for dimmer and brighter 
NTL signals. Source: Authors’ calculations based on VIIRS data from the Earth Observation Group 
and Google Earth Engine [32]. 
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Figure 1. Changes in night lights after the COVID-19 pandemic: March 2020 vs. February 2020
(a) and March 2020 vs. March 2019 (b). Blue and red pixels stand, respectively, for dimmer and
brighter NTL signals. Source: Authors’ calculations based on VIIRS data from the Earth Observation
Group and Google Earth Engine [32].
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Figure 2. Changes in night lights before the COVID-19 pandemic: March 2019 vs. February 2019 (a) 
and March 2019 vs. March 2018 (b). Blue and red pixels stand, respectively, for dimmer and brighter 
NTL signals. Source: Authors’ calculations based on VIIRS data from the Earth Observation Group 
and Google Earth Engine [32]. 
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Figure 2. Changes in night lights before the COVID-19 pandemic: March 2019 vs. February 2019
(a) and March 2019 vs. March 2018 (b). Blue and red pixels stand, respectively, for dimmer and
brighter NTL signals. Source: Authors’ calculations based on VIIRS data from the Earth Observation
Group and Google Earth Engine [32].

2. Materials and Methods
2.1. Data Used
2.1.1. NTL Data Source and Their Processing

In the present analysis, we used the monthly cloud-free composites of the Visible
Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) NTL data collected
jointly by NASA and NOAA and distributed by the Earth Observation Group (EOG) [33].
Particularly, we used a stray-light-corrected version of the NTL data, ensuring more data
coverage towards the poles. The utilized NTL data have a 15 arc-second (~500 m at the
Equator) spatial resolution and report average monthly and daily observations of the
NTL radiance (in nW/cm2/sr) [33]. A copy of the NTL data stored on Google Earth
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Engine databases [32] were used in this study for the ease of performing an analysis using
Python software.

VIIRS/DNB NTL data were chosen over the older Defense Meteorological Satellite
Program (DMSP) NTL data due to their availability at a higher frequency, spatial resolution,
higher dynamic range, and low-light detection capabilities, with the presence of on-board
calibration and the absence of saturation [34].

The NTL data utilized in this analysis cover 48 contiguous states and the District of
Columbia (DC) (we excluded from the analysis Alaska, Hawaii, and Puerto Rico states
due to their geo-locations and expectedly inaccurate NTL data contributed by volcanic
activities and auroras) spanning eight years from January 2014 to December 2021 (which
represents 96 monthly composites of stray-light-corrected NTL data).

To exclude non-reliable NTL data from the analysis, the procedure of filtering out low
cloud-free coverage and low average radiance, thus avoiding background noise, described
in [26] was performed. Thus, from each NTL composite, we excluded pixels that in
at least one dataset—within a certain quarter—had: (i) ≤2 cloud-free observations and
(ii) an ≤0 NTL level. Afterward, for each NTL composite, for each state, the numbers of
the filtered-out pixels were calculated, and if more than 5% of the original pixels filtered
out in a state, it was excluded from the analysis.

Using the filtered NTL data, we calculated the sum of light (SoL) for each state and
each monthly NTL composite. For this reason, we summed up the latitude-adjusted NTL
radiances of the pixels [26] within the administrative boundary of a state. Finally, for
the comparability with the GDP data, which are available quarterly (see Section 2.2), we
calculated the quarterly SoLs by summing up the three monthly SoLs, which make up the
corresponding quarter.

2.1.2. Socio-Economic Characteristics of the States

To compare the dynamics of the GDP with the processed NTL data measured by VIIRS
(see Section 2.1), we used the quarterly GDP at the state level measured in millions of
chained 2012 dollars, which we obtained from the Bureau of Economic Analysis [35]. As
the provided data were scaled to the annual GDP, we divided the given values by four to
obtain a quarterly average. Figure 3 reports the average state quarterly GDP for 2014–2021.
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Figure 3. The average state quarterly GDP for the 48 states and DC for 2014–2021. The shaded area 
shows ±1 standard error from the mean. 
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shows ±1 standard error from the mean.
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To assess the pandemic-induced state-level GDP losses and explain their variation
across the states, we used state-level socio-economic characteristics, such as initial develop-
ment level and sectoral composition, as well as the racial and ethnic composition of the
states. The initial development level was assessed as GDP per capita (millions of chained
2012 dollars per person). It is established in the literature that economically stronger re-
gions tend to better cope with crises (see, for example, [36,37]), and we expected the initial
pre-pandemic GDP per capita to be negatively correlated with the pandemic loss. Sectoral
specialization across regions is known to influence the magnitude of economic impact. A
recent study showed that areas with a diversified structure or those specialized in sectors
such as information and technology suffered less, while states concentrated in tourism
suffered more [38]. In the present analysis, the sectoral compositions were calculated as
fractions of the total state GDPs contributed by a certain sector of the economy. We mainly
tested the service sectors that were highly impacted by the lockdowns, such as those which
require in-person work, and the sectors that are resilient to lockdown, such as those which
can easily switch to remote work, and states with a large fraction of highly impacted sectors
that were expected to experience large loss and states with a large fraction of resilient
sectors that were expected to experience small losses. Finally, the pandemic is likely to
have different impacts on different ethnic groups [39,40]. In the present analysis, racial
and ethnic compositions were measured as a fraction of the total state population. We
defined the fraction of non-white people to be the fraction of the minority and predicted
that the fraction would correlate positively with the pandemic loss. In the analysis, we also
tested other socio-economic variables, such as age, gender structure, education, poverty,
and unemployment levels, as well as population densities; these variables, however, were
statistically insignificant in the tested models (with p > 0.1)

GDP data including industry shares were obtained from the BEA [35]. Statistics
regarding population, age, and racial composition were obtained from the US Census
site [41].

2.2. Methodology

In the first stage of the analysis, we linked the state-level quarterly GDPs (Section 2.2)
to the corresponding state-level quarterly SoLs (Section 2.1). For this reason, we initially de-
veloped a linear mixed effects model to use NTL as a proxy for GDP in the following form:

log(GDPi,t) = α + β log(SoLi,t) + ∑4
q=2 δqQq + γYearadj + µi + εi,t (1)

where log(x) stands for the natural logarithm of x; SoLi,t stands for the sum of lights in
the ith state for the tth time period; Qq stands for the quarterly dummies using Q1 as a
reference, and it is implied to account for seasonal NTL changes; Yearadj stands for the
year minus 2013 (so, the series starts with a value 1 in the year 2014), and it is implied to
account for long-term dynamics of the NTL; µi is the time-invariant state effects; εi,t is the
error. We should stress, here, that the aim of the present model’s specification—common
to economic studies, which use NTL data as a proxy for economic development of the
regions [9]—is to check whether the NTL data are still a reliable proxy for the real GDP
during a pandemic also.

For this reason, we first applied this model to the period prior to the pandemic
(2014–2019 only), as well as to the whole period under analysis (2014–2021). By doing so,
we aimed to show that the standard model’s fit became lower when we applied it to the
whole period due to the force majeure event breaking down the ‘natural’ dynamics of the
NTL intensities.
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To account for the pandemic impact, we expanded upon the model (see Equation (1)),
introducing to it eight additional interactive terms between the year and quarter dummies
in 2020 and 2021:

log(GDPi,t) = α + β log(SOLi,t) + ∑4
q=2 δqQq + γYearadj+∑4

q=1 ρqY2020Qq

+∑4
q=1 φqY2021Qq + µi + εi,t

(2)

These new variables describe pandemic season-specific deviations from the ‘normal’
seasonal dynamics separately for the two pandemic years. This analysis was conducted in
Python software. For all of the models, the parameters were estimated using a maximum
likelihood approach.

In the second stage of the analysis, to assess the pandemic-induced GDP losses in the
states, we used the model (Equation (1)) built for the 2014–2019 period. From this model,
we calculated the GDP predictions for the quarters within 2020–2021 and compared them
with the corresponding actual GDP values. We calculated three metrics to measure the
economic impact: maximum loss, total loss, and the number of quarters until GDP recovery
to the 4th quarter (Q4) of 2019. Maximum loss is defined as the largest single difference for
any quarter between the counterfactual GDP and observed GDP. This measure intends
to capture the magnitude of economic loss at the trough (peak of the pandemic). Total
loss is defined as the sum of the positive differences between the predicted counterfactual
GDP and the observed GDP in each quarter between 2020 Q1 and 2021 Q4 until the state’s
observed GDP recovers to the counterfactual GDP level. For the states whose GDP did not
recover until 2021 Q4, the total loss is the sum of the positive differences of all of the eight
quarters between 2020 Q1 and 2021 Q4. This measure intends to capture the magnitude of
economic loss before the economy returned to the pre-pandemic growth trajectory during
the period after the onset of the pandemic. The number of quarters until recovery to the 2019
Q4 levels measures the number of quarters each state took until their GDP returned to the
pre-pandemic GDP level, with 2020 Q1 defined as t = 0. For example, if a state recovered
to its GDP level in 2019 Q4 in 2020 Q4, the number of quarters until recovery is 3. This
measure intends to capture the speed of the recovery. For this, it is worth emphasizing that
the calculated losses are estimates only, and they can not be validated explicitly, although
their quality, which was evaluated proceeding the performance of the models, was used for
the prediction of GDP (Equations (1) and (2)).

In the final stage of the analysis, we examined the association between the socio-
economic characteristics of the states and the magnitude of loss and the speed of recovery.
For this reason, we performed a cross-section analysis for the 48 contiguous states and DC
with three sets of regressions, with the dependent variables being the maximum loss, the
total loss, and the number of months before recovering to the 2019 Q4 level. As independent
variables, we used the initial development level, the racial and ethnic composition, and the
sectoral composition (see Section 2.2). To control for potential endogeneity, we introduced
a lagged value (the year 2019) for the independent variables. The regression is presented
as follows:

log(PIVi) = α+ β log(GDPpci) + γ(log(GDPpci))
2 + δ log(mi) + σ log(hsi) +ω log(lsi) + εi (3)

where PIVi stands for the pandemic impact variable (either the maximum loss, the total
loss, or the number of quarters until GDP recovery) in the ith state; GDPpc stands for
per capita GDP in the 2019 pre-pandemic year; m represents the minority ratio, which is
calculated as the fraction of the non-white population; hs represents the fraction of GDP
contributed by services with a high incidence of remote working, such as those related
to information, finance and insurance, real estate and rental and leasing, professional,
scientific, and technical services; ls represents the fraction of GDP contributed by services
with a low incidence of remote working, such as those related to accommodation and food
services, arts, entertainment, and recreation. Additionally, to address the potential effects of
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the spatial autocorrelation, we examined spatial error and spatial lag models. The analysis
was performed in the GeoDa 1.8.x software [42].

3. Results
3.1. NTL–GDP Association

The NTL data filtering of low cloud-free coverage and low average radiance (see
Section 2.1) resulted in a decrease in the number of observations from 1568 (four quarters in
eight years for 48 states and DC) to 1244, which is a ~20% decrease. Most of the decreased
values were for 2015 or 2016 or the summer months or a few states such as Wyoming
and Oregon.

The regression results (see Equation (1) in Section 2.2) of the association between GDP
and NTL data for the pre-pandemic years, 2014–2019, and for the whole of the 2014–2021
period are represented in the first two columns in Table 1 (Models 1 and 2, correspondingly).
The results show that the SoL is positively associated with the GDP in a significant manner
(t = 2.08; p < 0.05) in the pre-pandemic period, 2014–2019 (see Model 1 in Table 1). A
positive coefficient for the year indicates a positive association with an increasing trend of
the GDP over the years. Similarly, positive coefficients of the quarterly dummies for Q2–Q4
(with Q1 as the reference point) capture the seasonality and show that the GDP value is
higher for a given value of SoLs in Q2 compared with that in Q1, and the difference in Q3
and Q4 is even bigger compared to that in Q1, which are all consistent with the literature
on the variation of the NTL data [30,43,44].

Table 1. Association between GDP and NTL before and after the COVID-19 pandemic.

Predictors and Summary Statistics Model 1:
Log(GDP), yy 2014–2019

Model 2:
Log(GDP), yy 2014–2021

Model 3:
Log(GDP), yy 2014–2021

Log(SoL) 0.013 ** (2.08) 0.010 (1.37) 0.025 *** (4.01)

Year adjusted 0.016 *** (31.91) 0.117 *** (25.72) 0.015 *** (27.92)

Q2 dummy 0.010 *** (3.64) −0.004 (−1.39) 0.013 *** (4.45)

Q3 dummy 0.163 *** (5.44) 0.012 *** (3.63) 0.020 *** (6.40)

Q4 dummy 0.019 *** (7.73) 0.017 *** (5.96) 0.020 *** (7.70)

2020 * Q1 dummy - - −0.001 (−0.26)

2020 * Q2 dummy - - −0.107 *** (−22.60)

2020 * Q3 dummy - - −0.037 *** (−7.97)

2020 * Q4 dummy - - −0.030 *** (−5.93)

2021 * Q1 dummy - - −0.014 ** (−2.47)

2021 * Q2 dummy - - −0.012 ** (−2.34)

2021 * Q3 dummy - - −0.013 *** (−2.71)

2021 * Q4 dummy - - −0.005 (−0.90)

Constant 10.629 *** (77.83) 10.685 *** (72.02) 10.457 *** (74.64)

R2 within 0.60 0.42 0.62

R2 between 0.02 0.01 0.03

R2-adjusted 0.35 0.18 0.37

Number of obs. 897 1244 1244

Note: * stands for p < 0.1; **—for p < 0.05; ***—for p < 0.01. t-statistics in parentheses. The random effects
estimations are applied following the results of the Breusch and Pagan LM test and Hausman test.
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Our analysis also shows that a mechanistic extension of the model (Equation (1))
to 2020–2021 after the onset of the pandemic results in a poorer fit of the model (with
R2-adjusted 0.18 vs. 0.35—see Models 1 and 2 in Table 1). Due to this, the association
between GDP and NTL is insignificant (t = 1.37; p > 0.1). In the meantime, accounting for
the COVID-19 phenomenon (see Equation (2) in Section 2.2) shows that the association
between GDP and NTL is positive and significant (t = 4.01; p < 0.01—see Model 3 in Table 1),
and the model fit essentially improves (R2 adjusted from 0.18 to 0.37). Notably, the effects
of the main predictors in the extended model (see Model 3 in Table 1)—SoL, year, and
seasons—appear to be close to those in the initial pre-COVID model (Model 1 in Table 1).
Due to this, the association between GDP and NTL is stronger, as manifested by the higher
significance of the corresponding effect (t = 4.01 in Model 3 vs. t = 2.08 in Model 1). As
expected, the coefficients of the interactive terms that capture the quarter-specific impacts
of COVID-19 are all negative. The magnitude of the interactive term 2020*Q2 (which is
the beginning of the lockdown in the US) indicates the extremely large negative shock
(t = −22.60; p < 0.01) to the economy that occurred at the time when the COVID pandemic
began. The magnitude of the coefficients of 2020*Q3 and 2020*Q4 also remained imposing
(t < −5.93; p < 0.01), but these are only ~30–40% of the magnitude of the 2020*Q2 coefficient.
This signals the prolonged large negative impact and nascent rebound. The magnitude of
the coefficients in Q1–Q4 in 2021 are essentially smaller, but they remain negative. Due to
this, the last coefficient 2021*Q4 is as insignificant (t = −0.90; p > 0.1), meaning that the last
quarter of 2021 already behaves as a typical non-COVID fourth quarter does.

3.2. State-Wise Economic Losses Due to the Pandemic

The state-wise pandemic impact in the present analysis was measured by the mag-
nitude of the estimated economic losses, either in terms of the maximum loss, the total
loss, or the number of quarters until the GDP recovered to the level of the 4th quarter of
2019 (see Section 2.2). Thus, Figure 4 reports the maximum loss of the quarterly GDP of
each state after the pandemic as a ratio to its 2019 Q4 GDP level. For most of the states,
the ratio has a range of ~10–15%. Figure 5 shows the total loss of GDP of each state until
its recovery to the pre-pandemic level as a share of its 2019 GDP. For most of the states,
the ratio ranges from ~5% to ~15%. The results show that Nevada suffered the largest
maximum loss (~18%—see Figure 4) and total loss (~15%—see Figure 5), which could be
related to the heavy hit to tourism industries in Las Vegas due to COVID-19.
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Figure 5. Total loss of GDP until recovery to pre-pandemic trends as a share of the GDP level in 2019.

Figure 6 reports the number of quarters it took for each state to recover to the pre-
pandemic GDP in the 4th quarter of 2019. While it took from two to seven quarters for most
of the states to recover to the pre-pandemic level GDP, seven states, including Connecticut,
Louisiana, Maryland, New Mexico, North Dakota, Oklahoma, and Wyoming, did not
recover before the end of the analyzed period (the 4th quarter of 2021). This demonstrates
the severity of the COVID shock on the economy and the challenges to post-pandemic
recovery. The results reported in Figure 6 largely corroborate the findings in Figures 4 and 5,
pointing out that states experiencing larger maximum losses and less speedy recoveries
often suffer larger total losses.
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3.3. Socio-Economic Characteristics vs. State-Wise Economic Losses

Table 2 displays the results of the association between the socio-economic characteris-
tics of the states and pandemic-induced economic losses, which are represented by either
the maximum loss, the total loss, or the number of quarters until the GDP recovered to
the level of the 4th quarter of 2019 (see Section 2.2). For all of the reported models, the
variance of the inflation factor for all of predictors did not exceed 1.5, with acceptable
multicollinearity between the explanatory variables. Tables A1 and A2 in Appendix A
report the database and correlations between the analyzed predictors.

Table 2. Association between the magnitude of the economic losses and socioeconomic characteristics
of the states (model type: linear regression).

Predictors and Summary Statistics Model 4:
Log(Max Loss)

Model 5:
Log(Total Loss)

Model 6:
Log(N. of Quarters)

2019 GDPpc (log) −4.284 *** (−4.47) −7.345 *** (−2.95) −4.683 ** (−2.28)

2019 GDPpc (log, squared term) −0.789 *** (−4.37) −1.522 *** (−3.24) −0.979 ** (−2.52)

Minority ratio (log) 0.134 *** (2.94) 0.401 *** (3.40) 0.305 *** (3.13)

Services with the remote working
opportunities (log) −0.292 ** (−2.45) −1.233 *** (−3.99) −0.723 *** (−2.83)

Services with the limited remote
working opportunities (log) 0.424 *** (4.03) 0.492 * (1.80) 0.262 (1.16)

Constant −6.924 *** (−5.90) −10.586 *** (−3.47) −3.295 (−1.31)

R2 0.404 0.385 0.306

R2-adjusted 0.335 0.314 0.226

Moran’s I 3.306 *** 1.065 2.376 **

Number of obs. 49 49 49

Note: * stands for p < 0.1; **—for p < 0.05; ***—for p < 0.01. t-statistics in parentheses.

While we were running the models, for the seven states whose GDP did not recover to
the 2019 Q4 level until 2021 Q4 (see Figure 5 in Section 3.2), the number of quarters until
the recovery to the 2019 Q4 GDP was artificially assumed to be eight. This assumption was
made to keep all of 49 states in the regression without excluding the states that experienced
the least speedy recoveries.

As it can be seen from the table, the states with a higher GDP per capita before the
COVID-19 pandemic typically experienced smaller maximum and total losses, as well as
shorter recovery periods (to see a statistically significant negative association between the
three metrics and 2019 GDP per capita (t < −2.28; p < 0.05), see Models 4–6 in Table 2). Our
results also indicate that states with a higher ratio of services that were paid better and
employed remote working opportunities experienced smaller losses (t < −2.45; p < 0.05),
while the states with a higher ratio of services with limited remote work opportunities
generally suffered more losses (t > 1.8; p < 0.1). Additionally, the states with higher minority
rates suffered larger economic losses and a less speedy recovery (t > 2.94; p < 0.01).

For two out of three models, the effect of spatial autocorrelation was not negligible
(with Moran’s I > 2.376; p < 0.05). Table 3 reports spatial error models (they are better fit and
have more generality compared to their spatial lag counterparts). As it can be seen from the
table, the spatial error model results are remarkably close to the values of the coefficients
for the main predictors (compare models in Tables 2 and 3), although the overall fit appears
to be better (R2 = 0.401–0.574 vs. R2 = 0.306–0.404).
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Table 3. Association between the magnitude of the economic losses and socioeconomic characteristics
of the states (model type: spatial error regression).

Predictors and Summary Statistics Model 4a:
Log(Max Loss)

Model 5a:
Log(Total Loss)

Model 6a:
Log(N. of Quarters)

2019 GDPpc (log) −4.014 *** (−5.86) −7.330 *** (−3.32) −5.085 *** (−3.17)

2019 GDPpc (log, squared term) −0.762 *** (−5.85) −1.525 *** (−3.65) −1.057 *** (−3.47)

Minority ratio (log) 0.107 ** (2.16) 0.376 *** (3.10) 0.244 ** (2.26)

Services with the remote working
opportunities (log) −0.514 *** (−5.20) −1.431 *** (−4.89) −1.081 *** (−4.75)

Services with the limited remote
working opportunities (log) 0.436 *** (5.48) 0.525 * (2.10) 0.333 * (1.79)

Constant −6.651 *** (−7.79) −10.699 *** (−3.92) −4.132 ** (−2.07)

λ 0.615 *** (4.98) 0.224 (1.22) 0.516 *** (3.62)

R2 0.574 0.401 0.427

Number of obs. 49 49 49

Note: * stands for p < 0.1; **—for p < 0.05; ***—for p < 0.01. z-statistics in parentheses.

4. Discussion

In this paper, we have used the latest set of monthly night-time light (NTL) composites
from VIIRS/DNB from 2014 to 2021 to examine the relationship between NTL and the
economic activities in the U.S. and measure the pandemic’s impact on the economy at the
state level. In the core analysis, we first examined the relationships within the latitude-
adjusted NTL data, which were filtered on the low cloud-free coverage and low average
radiances, for the state-level GDP over the pre-pandemic period (from 2014 to 2019) on
a quarterly basis. Secondly, we extended the model to the pandemic period (from 2020
to 2021) with additional control variables to account for the shock caused by COVID and
assessed the economic loss compared with the counterfactual GDP estimate (in the absence
of COVID-19). Finally, we elaborated on the association between the socio-economic
characteristics of the states and the magnitude of their economic loss and the speed of
recovery. Several recent studies explored NTL dynamics during the COVID-19 pandemic
and concluded that drastic changes did take place [26–28]; some studies have confirmed
that the NTL data correlate with GDP in the pandemic period at the level of selected
cities [29] and at the national level [30,31]. Our study adds value by using the NTL to
measure the changes in the quarterly GDP at the subnational level in the U.S. before and
during the pandemic period. An important finding of our analysis is that NTL data, as they
do in the ‘normal period’, remain a reliable proxy for the economic development of the
regions at the subnational level even under external shocks. Our analysis also sheds light
on the characteristics of the regions that are the most vulnerable—in terms of economic
losses and the speed of recovery—to COVID-19.

The results of the association of the quarterly NTL data and GDP at the state level,
which were controlled for the seasonal and long-term NTL changes, indicate a significantly
positive GDP–NTL association in pre-pandemic period (t = 2.08; p < 0.05, see Model 1 in
Table 1), with the model fit achieving R2 = 0.60. These numbers corroborate the previous
findings in the literature that NTL is a reliable proxy for GDP at the subnational level in
the ‘normal period’. Thus, in their recent comprehensive analysis, Gibson and Boe-Gibson
report a fit of R2 = 0.35–0.70 for GDP-NTL association models based on the US 2014–2019
state-level data and different versions of annual NTL composites [9].

Our results indicate that NTL may remain a reliable GDP proxy—at least to the same
extent as it does in ‘normal periods’—even after large external shocks (such as the pandemic
in 2020 and 2021), given that the effect of COVID is referred to via using the interactive terms
of year and quarter dummies. The GDP–NTL association in our analysis was significantly
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positive (t = 4.01; p < 0.01, see Model 3 in Table 1), and the model fit achieved R2 = 0.62.
These results are in line with those of the previous analysis by Roberts, reporting that at the
national level, in the case of Morocco, a strong correlation between the quarterly trends in
overall NTL intensity and the GDP levels existed during the pandemic [30].

While we were assessing the pandemic-induced losses and the time of recovery, we
applied an accepted form of analysis using satellite NTL data to study the dimming and
recovery of lights after exogenous shocks, such as natural disasters and conflicts (see, for
example, [45,46]). Thus, as our analysis indicates, the magnitude of loss due to COVID-19,
as well as the speed of recovery, varied widely across the states, with most of the states’
ratio of maximum quarterly loss ranging from ~10% to ~15% in the pre-pandemic 4th
quarter in 2019, and the total GDP loss ranging from ~5% to ~15% in 2019. In the 4th
quarter of 2021, 42 out of the 49 states recovered to the GDP level of the 4th quarter in 2019.
These findings generally coincide with the patterns of GDP and jobs. Thus, Ettlinger, while
citing the results from the September 2021 Bureau of Labor Statistics monthly survey, stated
that while the U.S. as a nation, overall, has recovered close to 80% of those jobs, the rate
of the recovery of the lost jobs in individual states ranges from 36% of the pre-pandemic
levels to a full recovery [47].

Our results argue that the states with a lower initial pre-pandemic GDP per capita
level, a higher number of low-paid services jobs with limited remote working opportunities,
and a higher minority ratio suffered larger economic loss and less speedy recovery post-
pandemic. This association between the socio-economic characteristics and economic losses
are largely consistent with several recent studies on the pandemic’s impact on the economy
in the U.S. Thus, Breaux et al. argued that while the pandemic had a drastic impact on the
entire economy and people’s life, the impact varied by industry [48]. Klein and Smith [49]
found that the cities with a high concentration of tourism, such as Las Vegas and Orlando,
suffered the largest losses, while the cities with a high concentration of technology and
information industries, such as San Francisco and Seattle, suffered less. The authors also
argue that the areas with relatively large Hispanic or Latino communities were more
vulnerable to the pandemic-induced consequences, probably reflecting the demographic
composition of workers in heavily impacted industries [49].

In the meantime, the results of the analysis should be interpreted with caution: Firstly,
the relationship between GDP and NTL is not perfect. While, typically, the NTL intensity
increases as incomes rise, the imperfection of the association is due to its complexity
and is conditioned by many factors [50,51], including indoor versus outdoor lighting,
contributions of investment versus income, and the energy/light intensity of different
productive activities. For example, the production of manufacturing products might result
in a in the use of more light than the design of computer software would for the same value
of GDP. Energy preservation habits and population density often play an important role
as well. Gibson and Boe-Gibson show that NTL is a poor predictor of agricultural activity
and changes in the total economic activity in highly agricultural counties [9]. In Mellander
et al.’s study, the authors demonstrate that the link between NTL and economic activity
estimated by wages is slightly overestimated in large urban areas and underestimated in
rural areas [7]. The NTL data were found to be a better predictor for GDP in metropolitan
statistical areas than they were for entire states, as night-time light may be more closely
related to urban sectors than rural sectors [52]. In addition, the reasons a weaker association
between NTL and GDP in the growth data might be related to the errors or inconsistencies
in the digital image luminosities captured by satellites over time; the decay of the optical
attributes of sensors affects the reliability of the radiance measures at night, and seasonal
changes captured by the VIIRS, such as stray light in high-latitude regions, increases in
the summer [52]. Secondly, filtering the NTL data on the low cloud-free coverage and
low average radiance might affect the areas differently, which could have varied impacts
on the estimates. Finally, the estimated counterfactual GDP in 2020 and 2021 is drawn
from the trendline, with a slope that stands for the national average and the intercept
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adjusted for state-specific levels, which might underestimate or overestimate the would-be
counterfactual GDP for the states with growth rates that deviate from the national average.

Future research may be focused on refining the revealed patterns in the NTL–GDP
association during the pandemic at the state level. This would help us to address variations
in lockdown policies across the states. It also seems promising to explore the effects of
other socio-economic variables to improve the estimates of GDP losses both to improve the
estimates for GDP losses in the US and to adjust the developed models beyond the study
area to other countries and regions.

A potential concern may be associated with the absence of the atmospheric calibration
of the used EOG-provided NTL data product. Indeed, several recent studies have reported
changes in the concentrations of some pollutants during the pandemic times. Rather ex-
pectedly, the lockdown policies resulted in decreased emissions of the main atmospheric
pollutants, such as carbon dioxide, nitrogen oxides, aerosols, and particulate matter [53,54]
(although the opposite local effects were sometimes observed due to weather peculiari-
ties [53]). Most of the mentioned pollutants, however, absorb electromagnetic radiation that
is beyond the visible light range, and thus do not affect NTL brightness. For those pollu-
tants that do absorb light in its visible spectrum, such as aerosols, the negative association
between their concentration and atmospheric transmissivity is long understood [55]. Thus,
a pandemic-induced decrease in the amount of aerosols should result in slightly brighter
NTL radiances. This means that if it was observed, the lockdown-associated dimming
would have had to surpass the above-mentioned brightening effect. This justifies using
the EOG NTL product in studies focusing on dimming [26,27]. However, atmospheric
gases are known to affect light scattering, especially in the short-wavelength range. Thus,
decreased emissions of pollutants during the outbreak might lead to some dimming of the
NTL. Although the impact of this effect seems minor compared to that of the economically
induced changes, it should still be checked by using the atmospherically calibrated NTL,
such as the Black Marble product [56].

5. Conclusions

A prompt understanding of the magnitude of the economic losses and capturing the
signs of recovery is required to take swift and informed action in stressful periods. This
especially holds for countries and regions where traditional measures are unavailable,
infrequent, or inaccurate. The herein presented results suggest that the NTL data, which
are available at high frequency at granular spatial levels for almost all of the areas on
Earth and are accessible free of charge with only a short time lag, remain a reliable proxy
for the economic performance of regions, even during periods of upheaval. Furthermore,
comparing the statistical associations between GDP and NTL in ‘normal’ and pandemic
periods allows us to assess the degree of the vulnerability/resilience of different areas
to socio-economic perturbations, which would contribute to building informed precise
anti-crisis policies.
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Appendix A

Table A1. Database for the analysis of the association between the socio-economic characteristics
of the states and pandemic-induced economic losses (represented by either maximum loss, total
loss, or the number of quarters until GDP recovered to the level of the 4th quarter of 2019). See
Sections 2.2 and 3.3 for the explanation.

State Maximum
Loss Total Loss Quarters Until

Recovery GDP pc Minority % Share of High
Services

Share of Low
Services

AL 0.107 0.069 6 0.041 0.309 0.249 0.052
AZ 0.081 0.035 3 0.044 0.174 0.319 0.060
AR 0.084 0.038 4 0.039 0.210 0.208 0.054
CA 0.107 0.052 4 0.069 0.281 0.386 0.057
CO 0.097 0.059 5 0.062 0.131 0.359 0.065
CT 0.127 0.114 8 0.071 0.203 0.415 0.050
DE 0.096 0.084 7 0.066 0.308 0.496 0.040
DC 0.072 0.071 6 0.176 0.540 0.400 0.112
FL 0.102 0.051 5 0.045 0.227 0.359 0.080
GA 0.105 0.069 5 0.053 0.398 0.378 0.046
ID 0.085 0.026 2 0.041 0.070 0.252 0.054
IL 0.114 0.091 7 0.061 0.232 0.349 0.060
IN 0.113 0.041 4 0.050 0.152 0.221 0.054
IA 0.093 0.044 4 0.055 0.094 0.290 0.046
KS 0.100 0.065 5 0.055 0.137 0.278 0.046
KY 0.117 0.068 5 0.043 0.125 0.228 0.054
LA 0.124 0.140 8 0.051 0.372 0.215 0.055
ME 0.090 0.035 3 0.044 0.056 0.295 0.071
MD 0.103 0.095 8 0.061 0.415 0.354 0.057
MA 0.107 0.056 5 0.075 0.194 0.420 0.057
MI 0.140 0.072 5 0.047 0.208 0.291 0.054
MN 0.102 0.067 5 0.060 0.162 0.303 0.050
MS 0.110 0.061 4 0.034 0.409 0.205 0.063
MO 0.099 0.062 5 0.047 0.171 0.303 0.061
MT 0.081 0.034 3 0.044 0.111 0.255 0.068
NE 0.092 0.036 3 0.061 0.119 0.287 0.043
NV 0.189 0.139 7 0.051 0.261 0.278 0.167
NH 0.100 0.030 3 0.057 0.069 0.348 0.073
NJ 0.127 0.090 7 0.063 0.281 0.359 0.049
NM 0.098 0.100 8 0.045 0.181 0.240 0.061
NY 0.116 0.092 7 0.077 0.304 0.494 0.063
NC 0.104 0.048 4 0.049 0.294 0.304 0.055
ND 0.084 0.103 8 0.074 0.131 0.191 0.039
OH 0.114 0.075 6 0.052 0.183 0.287 0.052
OK 0.114 0.133 8 0.051 0.260 0.189 0.048
OR 0.105 0.070 5 0.052 0.133 0.290 0.061
PA 0.125 0.095 7 0.056 0.184 0.325 0.053
RI 0.109 0.058 5 0.050 0.164 0.316 0.069
SC 0.100 0.040 4 0.041 0.314 0.271 0.065
SD 0.064 0.018 2 0.053 0.154 0.296 0.053
TN 0.136 0.055 4 0.048 0.216 0.267 0.079
TX 0.103 0.071 5 0.062 0.213 0.263 0.046
UT 0.065 0.024 3 0.053 0.094 0.328 0.057
VT 0.123 0.094 7 0.048 0.058 0.287 0.083
VA 0.091 0.065 6 0.057 0.306 0.366 0.055
WA 0.079 0.030 2 0.070 0.215 0.396 0.050
WV 0.103 0.068 5 0.040 0.065 0.194 0.052
WI 0.110 0.090 7 0.052 0.130 0.283 0.052
WY 0.121 0.177 8 0.067 0.075 0.168 0.049
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Table A2. Pearson’s correlations between socio-economic characteristics of the US states used in the
analysis (see Table 2).

Year 2019
GDPpc (log)

Minority Ratio
(log)

Services with the Remote
Working Opportunities

(log)

Services with the Limited
Remote Working

Opportunities (log)

2019 GDPpc (log) 1.00

Minority ratio (log) 0.27 1.00

Services with the remote
working opportunities (log) 0.50 0.31 1.00

Services with the limited
remote working
opportunities (log)

0.06 0.08 0.12 1.00
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