
Citation: Tombe, R.; Viriri, S. Remote

Sensing Image Scene Classification:

Advances and Open Challenges.

Geomatics 2023, 3, 137–155. https://

doi.org/10.3390/geomatics3010007

Academic Editors: Roberto Pierdicca,

Francesco Di Stefano and Francesca

Matrone

Received: 31 December 2022

Revised: 26 January 2023

Accepted: 2 February 2023

Published: 4 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Remote Sensing Image Scene Classification: Advances and
Open Challenges
Ronald Tombe 1,* and Serestina Viriri 2

1 Computing Sciences Department, Kisii University, Kisii P.O. Box 408-40200, Kenya
2 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001,

Durban 4000, South Africa
* Correspondence: ronaldtombe@kisiiuniversity.ac.ke

Abstract: Deep learning approaches are gaining popularity in image feature analysis and in attaining
state-of-the-art performances in scene classification of remote sensing imagery. This article presents a
comprehensive review of the developments of various computer vision methods in remote sensing.
There is currently an increase of remote sensing datasets with diverse scene semantics; this renders
computer vision methods challenging to characterize the scene images for accurate scene classification
effectively. This paper presents technology breakthroughs in deep learning and discusses their artifi-
cial intelligence open-source software implementation framework capabilities. Further, this paper
discusses the open gaps/opportunities that need to be addressed by remote sensing communities.
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1. Introduction

Remote sensing (RS) is an active research subject in the area of satellite image analysis
for the discrete categorization of images into various scene category classes based on
image content [1–3]. The satellite sensors periodically generate volumes of images that
require effective feature processing for various computer vision applications, such as scene
labeling [4], feature localization [5], image recognition [6], scene parsing [7], street scene
segmentation [8], and many others. Several image feature analysis methods have been
developed to this effect. References [2,3] groups the feature analysis methods into three
categories: (a) low-level, which focuses on human-engineering skills, (b) medium-level,
i.e., unsupervised methods that automatically learn features from images, and (c) high-
level, i.e., deep learning methods that rely on supervised learning for feature analysis
and representation.

The satellite-generated images vary in texture, shape, color, spectrum information,
scale, etc. Additionally, remote sensing images exhibit the following characteristics:

• Complex spatial arrangements. Remotely sensed images have significant variations in
the semantics (for instance, the scene images; of agriculture, airport, commercial areas,
and residential areas are typical examples of varying scene image semantics). Extracting
the semantic features from images requires effective computer vision techniques.

• Low inter-class variance. Some scene images are similar (e.g., agriculture and forest,
dense residential areas, and residential-area). This characteristic is referred to as low
intra-class variance. Achieving accurate scene classification under this circumstance
requires well-calibrated computer vision techniques.

• High intra-class variance. Those same class scene images are commonly taken at
varying angles, scales, and viewpoints. This diverse variation of same-class images
requires well-designed computer vision approaches that can extract the same pattern
features from the remotely sensed images regardless of their variations.
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• Noise: Remotely sensed images are taken under varying atmospheric conditions and
at different seasons. The scene images may have variable illumination conditions and
require robust feature-learning techniques against varying weather circumstances.

Recent studies have indicated that data-driven deep learning models [2,9,10] attain
state-of-the-art results in scene classification owing to their abilities in learning high-level
abstract features from images. Developments in hardware for graphic processing units
(GPUs) provide the capabilities to process the vast amount of data on deep learning frame-
works. Deep learning [11] gives an architecture platform for feature learning methods
that comprise several processing steps to learn remote sensing image features at differ-
ent abstraction levels. Convolutional neural networks (CNNs) are good at abstracting
local features and progressively expanding their receptive fields for more abstractions [12].
Transfer-based deep learning models [13,14] work on the premise that fundamental ele-
ments of images are the same; thus, they utilize pre-trained models that are trained on
large-scale datasets for remote sensing applications. Other studies [15,16] develop mod-
els that fuse different CNNs in exploring their performances in scene classification. The
application of transfer CNNs pre-trained models for feature extraction in remote sensing
is limiting because they need to consider the features of remote sensing images. That is,
remote sensing images are unique and vary in terms of background information, imaging
angle, and spatial layout, factors that the CNNs pre-training models assume [17]. Successful
CNN-based deep learning models in scene classification [9,18], object detection [19], and
semantic segmentation [20–23] were incorporated into remote sensing subject to resolve the
classic challenges efficiently since deep learning networks demonstrate to perform better in
image classification, object detection, and semantic segmentation jobs.

Transformer-based deep learning methods such as the excellent teacher network guid-
ing small networks (ET-GSNet) [24], and the label-free self-distillation contrastive with
transformer architecture (LaST) [25] can learn long-range contextual information. An inte-
gration framework [26] combines vision-transformer and CNNs to attain impressive results
with remote sensing public datasets. Although deep learning methods attain awe-inspiring
results in scene classification and object detection, they must improve to deliver practical
and scientific problems. First, deep learning methods rely on available datasets and do
not utilize geography knowledge or features, often resulting in inaccurate predictions [27].
Second, lack of sufficient labeled datasets for training deep learning methods to generalize
in new geographical regions [28]. Due to these challenges, new research directions in
geography-aware deep learning models are emerging [27,28]. This research paradigm
fuses knowledge and data in designing deeply blended deep learning models differently.
Geography-aware deep learning is an emerging research area in remote sensing, and
the research directions in this area include regional knowledge/features, physical knowl-
edge/features, and spatial knowledge/features. The deep learning approaches for fusing
geography knowledge and feature are majorly focusing on (1) rule-based, (2) semantic-
networks, (3) object-based, (4) physical model-based, and (5) neural network-based [27].

The main contributions of this paper are as follows:

1. This survey presents image-feature analysis methods, strengths, and shortcomings.
2. This paper discusses the CNN architectures commonly adopted for the scene classifi-

cation of remote sensing imagery.
3. We present the deep learning models that integrate both knowledge and data archi-

tectures, which are transformer-based and ontology-based models.
4. This paper discusses the advanced machine learning implementation frameworks;

they are commonly utilized in implementing deep learning solutions in remote sensing
image scene classification.

5. We discuss the properties of remote sensing datasets and their uniqueness in evaluat-
ing the different feature learning approaches.

6. This work presents the performance evaluation metrics upon which the feature analy-
sis methods are evaluated to determine their scene classification effectiveness.



Geomatics 2023, 3 139

7. This paper discusses the open opportunities that need to be addressed by the remote
sensing community.

This paper is structured as follows: Section 2 discusses the various feature learning
and analysis approaches from the context of remote sensing. Section 3 concisely discusses
the deep learning architectures commonly adopted in remote sensing. Section 4 discusses,
in brief, deep learning models that apply transformer-based learning techniques. Section 5
presents the popular loss functions: the softmax and hinge loss. Section 6 presents the
popular open-source deep learning implementation frameworks for image classification
and object detection, and Section 7 outlines the remote sensing datasets and their properties.
Section 8 discusses the findings of this paper, while Section 9 concludes the article with
insights into future works.

2. Image Feature Learning Approaches

Remote sensing image scene classification aims at annotating scene image patches
to a semantic class depending on its contents. Figure 1 puts this concept into perspective.
The feature-learning methods can be grouped into three categories: (a) pixel-based scene
classification aimed at annotating every pixel to a category; (b) mid-level scene classification
focused on identifying objects in remote sensing objects; (c) high-level scene classification,
categorizing every remote sensing feature patch into a semantic category.

Figure 1. Scene classification of remote sensing images based on their features.

2.1. Pixel-Based Feature Learning Methods
2.1.1. Local Binary Patterns

This method identifies “uniform” local binary patterns (LBP) as critical attributes
representing image texture. The uniform local binary patterns apply to generate occurrence
histograms powerful for texture-feature representation [29]. LBPs characterize an image
using the spatial information of the image texture structure. The LBP is calculated by
thresholding neighbor {pi}n−1

i=0 pixels with the center pc pixel to compute an n-bit binary
number, which is then converted to decimal as per Equation (1).

LBPn,r(pc) =
n−1

∑
i=0

s(pi − pc)2i =
n−1

∑
i=0

s(di)2i, s(x) = {1,x>0
0,x<0 (1)

where dp = (pc − pi) denotes the difference among center and neighbor (P) pixels describing
the spatial structure of the central location with a local difference vector [d0, d1, . . . , dP − 1],
LBP then generates a histogram as depicted in Equation (2).

(H(m)) =
P

∑
p=0

J

∑
j=0

f (LBPsn,r, m ∈ [0, m]), f (x, y) =

{
1,
0,

(2)

Here m denotes the maximum LBP pattern number.
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LBP partitions an image into a fixed-size grid of cells to accomplish the pooling of
local texture descriptors. The coarse quantization of spatial features is unrestricted, thus
not well turned to the image morphology. This inevitably results in the loss of some
discriminative information.

2.1.2. Multi-Scale Completed Local Binary Pattern

The multi-scale completed local binary pattern descriptor (MS-CLBP) [30] combines
texture features in multiple scales sufficiently to cope with the limitations of a single-
scale with the LBPs. MS-CLBP works similarly to LBP [29] where the circle radius, r, is
modified to vary spatial image resolution. Combining operators CLBP_S (S is for sign) and
CLBP_M (M is for magnitude) while varying(scale(m) and radius(r)) information parameter
values achieves Multi-scale. Technically, this means combining CLBP_S and the CLBP_M
histogram features extracted on each scale to form an MS-CLBP descriptor. The MS-CLBP
method is applied in remote sensing [30], giving improved results on scene classification
compared to LBP.

2.1.3. Distinctive Features Scale-Invariant

The distinctive feature scale-invariant (SIFT) [31] is a prominent descriptor in terms
of distinctiveness. A single feature finds its correct match with great probability in a
database of features. The SIFT constructs a feature-representation vector in four major steps
that include:

1. Scale-space extrema detection: a cascading algorithm identifies candidate points,
which are further inspected. Once key candidate locations and scales were established
that can be replicated with different views on the same object, the detection of locations
follows that are invariant to scale changes of an image through looking for possible
features across every probable scale. The Scale-space search algorithm accomplishes
the task mentioned above.

2. Localization of keypoint features: This is the process of establishing key candidate
features by comparing neighbors to find a precise fit of the nearby data for location
and scales of the primary curvatures. Points with low contrast (sensitive to noise) or
unsatisfactorily localized along the edges are rejected.

3. Orientation allocation: A consistent assignment is done for every keypoint depending
on local image feature attributes in this step. The keypoint descriptor is formulated for
orientation; therefore, they are invariant to image rotations. The keypoint descriptors
then generate orientation histograms from gradient orientations based on sample
points within a region surrounding the keypoint. A histogram contains 36 bins
spanning 360 degrees of orientation. The gradient magnitudes determine every
sample on the histogram, and a Gaussian-weighted circular window [31]. Dominant
directions of local gradients are ’peaks’ of orientation histograms. The highest peak
detected in the histogram and other local peaks above 80% of the highest peak apply
to generate a key point on an orientation histogram.

4. Local image descriptor: The operations described above, i.e., (detection of scale-space,
keypoint localization, and orientation assignment) assigned to an image the (scale,
orientation, and location) for each keypoint. These parameters create a repeatable
local 2D coordinate system that characterizes the local region of an image, thereby
providing an invariant feature descriptor [31]

The experiment results [3] demonstrate that the SIFT method performs poorly when it
is used as a low-level-visual feature descriptor on remotely sensed scene images.

2.2. Mid-Level Feature Learning Methods
2.2.1. The Bag of Visual Words

The bag of visual words (BoVWs) is an invariant statistical keypoints feature vector
representation [32]. BoVWs quantize the patches generated with either the SIFT or by the
LBP feature descriptor methods and then use the k-means algorithm to learn the holistic
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scene image feature representations [3]. Equation (3)) shows the BoVWs workings to
generate a histogram of the visual words, i.e., feature representation.

BoVWs = [t1, t2, . . . , tM], (3)

where tm is the occurrence counts of features m contained in an image and M is the feature
dictionary size. The BoVWs method is applied to scene classification [2,3] in several
datasets, such as (the UC Merced, AID, and RESISC45) where it demonstrates better scene
classification accuracy results compared to low-level methods such as the LBP and SIFT.

2.2.2. Fisher Vectors

A Fisher kernel coding framework [33] extends the BoVWs model to characterize
the low-level features using a gradient rather than the count statistics in the BoVWs
framework. This reduces the codebook size, accelerating the codebook’s learning process.
Experimental results by [33] on scene classification show that the Fisher kernel coding
framework reduces the computational cost significantly to achieve better scene classification
accuracy than methods based on the traditional BOVW model. Previous experiments [2,3]
demonstrate this with different remote sensing datasets where the Fisher vector encodes
low-level method features for image classification, and it achieves superior performance
than traditional BoVWs.

2.3. High-Level Feature Learning Methods
2.3.1. Bag of Convolutional Features

The bag of convolutional feature (BoCF) [34] extracts image features in four stages,
i.e., (1) convolution feature extraction, (2) codebook generation, (3) BoCF feature encoding,
and (4) scene classification. The BoCFs use CNNs to automatically learn the image features,
encoding histogram representations on every image. This is accomplished by quantizing
every feature descriptor into visual words in the codebook. A linear classifier is a support
vector machine (SVM) that learns the convolutional features fed to it for scene classification.

2.3.2. Adaptive Deep Pyramid Matching

The adaptive deep pyramid matching (ADPM) [35] method considers convolutional
features as “multi-resolution deep-feature-representation” of the input image. The ADPM
extracts image features of varying scales and then fuses them optimally. The ADPM ex-
tracts features from different layers in a deep spatial-pyramid matching manner following
Equation (4). Assume Hl,1 and Hl,2 are the histograms of two images at layer l (correspond-
ing to different layer resolution), then, the feature match at layer l is calculated as the
histogram intersection with Equation (4)

I(Hl,1, Hl,2) =
L

∑
l=1

wl I(Hl,1, Hl,2) (4)

L is the number of convolution layers, the fusing weight of the lth layer, and I(Hl,1, Hl,2)

= ∑D
d min(∑i,k δ(m(i,k)

1,l , cd
l ), δ(m(i,k)

2,l , cd
l )).

2.3.3. Deep Salient Feature-Based Anti-Noise Transfer Network (DSFBA-NTN)

This technique comprises two significant steps, 1. deep salient feature (DSF) extraction
step, which extracts scene patches utilizing visual-attention mechanisms. In this step, the
salient regions and scales are detected from an image [36]. These features feed to a pre-
trained CNN model to extract the DSF. In step 2, the anti-noise transfer network suppresses
the effects of different scales and noises of scene images. The anti-noise network imposes
a constraint to enforce training samples before and after inducing noise to scene images
while learning the inputs of original scenes and different noises. The anti-noise network
acts as a classifier.
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2.3.4. Joint Learning Center Points and Deep Metrics

Conventional deep CNN with the softmax function can hardly distinguish the scene
classes with great similarity [37]. To address this problem, the supervised joint-learning
with the softmax hinge loss and the center-based organized learning metrics minimize the
intra-class variances and maximize the inter-class variances of the remote sensing scene
images, which results in better accuracy in scene classification.

3. Deep Learning Architectures

Deep learning architectures (which include: CNNs, autoencoders, and GANs) have
demonstrated powerful capabilities to learn discriminant features and have penetrated
several research areas, including the field of remote sensing image scene classification. Deep
learning has attained the best scene classification accuracy. The deep learning architectures
extract image features from low-level to high-level [1–3] and abstract these features for
accurate scene classification tasks. Understanding the deep learning architecture properties
is essential for developing remote sensing applications. This work surveys popular deep
learning architectures that apply in remote sensing image scene classification. These include
AlexNet, VGGNet, GoogLeNet, Inception, EfficientNet, U-net, deep residual networks,
and DeepResUnet architectures. The subsequent subsections provide descriptions of
the architectures.

3.1. Autoencoders and Stacked Autoencoders

Autoencoders (AEs) [38] comprise three layers: input, hidden, and output (Figure 2).
It has two parts, i.e., the encoder and the decoder. The input layer transforms inputs into
hidden layers, and the decoder performs the inverse, transforming the inner units into
outputs. This is accomplished through non-linear mappings [1] where an input x maps
to a hidden, latent representation in a simple network through a function h = f (Wx + β).
W is the weight matrix estimated during training, whereas β is the bias vector. The
mapping function is reconstructed (decoded) with y = WTh + β′. The hidden units are less
compared to the inputs or outputs; this is an essential feature of autoencoders. Thus, an
autoencoder achieves dimensionality reduction via data comprehension through a hidden
sparse autoencoder layer. Stacked autoencoders comprise multiple layers of AEs where
each layer’s output connects to the next layer’s inputs. Provided with a training dataset
X = {x1, x2, . . . , xN}, training a sparse autoencoder [39] works to find optimal parameters
by minimizing the loss function in equation Equation (7). Autoencoders apply in the feature
processing hierarchy. Autoencoders are applied in feature characterization [40–42] and
have attained good results in remote sensing image scene classification.

Figure 2. The architecture of autoencoder.

3.2. AlexNet

AlexNet [19] comprises five convolutional layers and three fully connected layers.
Further, it contains normalization layers that follow the first and second convolution
layers. Its Pooling-layers are placed immediately after the normalization layers and after
the fourth convolutional layer. The AlexNet architecture won the ImageNet large-scale
visual recognition challenge (ILSVRC) [43] in 2012. The AlexNet uses rectified linear units
(ReLUs), which decreases the training time since ReLUs are faster than the hyperbolic
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tangent function. It also implements the dropout layers to minimize the network overfitting
problem. The AlexNet model is trained on the GPU; thus, it offers more cores than CPUs,
allowing it to train larger image datasets faster. AlexNet applies in remote sensing, and it
can attain magnificent results [2] in scene classification of remote sensing imagery.

3.3. VGGNet

The VGGNet [12] has two common architectures, i.e., VGG-19 and VGG-16. These
two architectures are distinguishable by network depth, whereas the design is the same.
The VGGNet strictly uses 3× 3 filters with a padding and stride of 1, a max-pooling layer
of 2× 2 with a stride of 2. The VGGNet has the following properties:

• Its filters use receptive fields of size 3. These are smaller than AlexNet (5× 5 or 7× 7).
• On the same blocks, they contain the exact size of feature maps and the number of

filters in every convolutional layer.
• The size of features increases in deeper layers; they double after every max-pool layer.

The VGGNets are hierarchical feature characterization architectures of visual data,
improving the classification accuracy [2,3,18] of remote sensing images. VGG-16 has
thirteen convolutional layers, five-pool layers, and three fully connected layers. VGG-16 is
commonly utilized for transfer learning in feature extraction of remote sensing imagery, for
instance, in the works of [2,9,10], where it achieves impressive scene classification results.

3.4. GoogleNet

The main attribute of GoogLeNet [44] architecture is the improved efficiency in us-
ing computing resources within the network. The depth and width of the network are
increased while retaining the computational-budget constant. GoogleNet architecture’s
main advantages include (1) utilization of different filter sizes in the same layer, which
retains most of the spatial information; (2) parameter reduction with the network. Hence it
is less susceptible to over-fitting and allowing it to be deeper. Comparing GoogleNet with
AlexNet network, GoogLeNet has twelve times fewer parameters. GoogleNet achieved
state-of-the-art object detection and classification tasks in the ImageNet Large-Scale Visual
Recognition Challenge 2014.

Inception

The key concept of the inception network architecture [45] is that it incorporates spar-
sity by replacing fully connected layers with sparse layers within the convolutions. The
“Inception-modules” are stacked layer-wise. Their output-correlation statistics vary because
of high feature abstraction, captured with higher layers, hence decreasing spatial feature
concentration. This requires feature embedding in the compressed, dense form to minimize
the great dimensionality problem [44]. Reference [44] uses 1× 1 convolutions for dimen-
sionality minimization before applying the expensive 3× 3 and 5× 5 convolutions. Further,
the inception architecture utilizes the rectified linear unit (ReLU) activation (Figure 3c) to
enhance the network sparse feature representation. Figure 3 shows the different versions of
the inception architecture applicable to computer vision tasks.

Figure 3. (a) Inception architecture block-V2 for dimension reduction [44], (b) inception architec-
ture block-V3 designed for computer vision [46], (c) inception architecture block-V4 with short-cut
connections [45].
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3.5. EfficientNet

The EfficientNet [47] uniformly scales CNN’s depth, width, and resolution with a
compound co-efficient θ Figure 4. Instinctively, the parameter θ is specified by a user, and
it controls the number of resources available to scale the network model. EfficientNet B3-
aux [18] achieves state-of-the-art results in remote sensing with a low computational cost.

Figure 4. Compound scaling of CNN with EfficientNet [47].

3.6. Fully Convolutional Networks

The fully convolutional network (FCN) [48] performs semantic labeling to each pixel
of an image, Figure 5. To perform semantic segmentation, the output of FCN has to be of
the same pixel dimension as the input. Other properties of FCN include:

• Introduces skip connections to fuse information from different network depths to
achieve multi-scale inferencing.

• Uses fully convolutional architecture model. This permits it to take arbitrary size
images as inputs because in the absence of fully connected layers; no specific activation
sizes are required at the end of the network.

• The FCN allows end-to-end learning through the encoder and decoder framework,
which compresses and expands.

Figure 5. The Full Convolutional Framework.

3.7. U-Net

The U-Net network [20] performs data augmentation to utilize annotated image
samples efficiently. It comprises a contraction path and an expansion path. The contraction
section follows the conventional architecture of a convolutional neural network; that is,
it consists of two 3× 3 convolutions stacked with each other, followed by a nonlinear
rectified unit and a 2× 2 pooling operation of stride 2 for down-sampling. The number of
feature channels is doubled at every down-sampling step. The expansion section comprises
up-sampling steps for feature maps in every step followed by a 2× 2 up-convolution that
reduces by half the number of feature channels, then a concatenation of cropped feature
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maps from the corresponding contraction section and two 3× 3 convolutions which are
followed by a nonlinear rectified unit. On the last layer, a 1× 1 convolution applies in
mapping every 64-feature component vector to required classes. The network has a total of
23 convolution layers. A U-Net variant [21] provides high scalability with short processing
time while it achieves good accuracy results in remote sensing image scene classification.

3.8. Deep Residual

The increase in depth of deep networks results in network degradation because of the
vanishing gradient problems. In addressing this issue, the deep residual architecture [6]
is designed to ensure that the gradient propagates directly from the top to the bottom
of the deep network over the backpropagation. Consider a mapping function H(x) that
fits some stacked layers. In this case, x depicts the input of the first layers. Several
nonlinear layers can estimate functions asymptotically. Equally, they can asymptotically
approximate residual functions, for instance, H(x) − x (for the same input and output
dimensions) rather than stacked functions approximating H(x), they estimate a residual
function F(X) := H(x)− x. Reformulating this to F(x) + x (a form that is equivalent to
the original function H(x)). This reformulation F(x) + x resolves the network degradation
problem. This implies that when added network layers are configured as identity mappings,
more deep models should contain the same training errors as the shallower counterpart
network models. The residual learning algorithm is formulated as follows:

y = F(x, {Wi}) + x. (5)

The vectors x and y are for the input and output of the layers, which are considered,
and F(x{Wi}) is the residue mapping function that is learned. With stacked layers where
they are two or more, F = W2σ(W1x), here σ represents a ReLU. A residual mapping
operation F + x is performed through short-cut connections with element-wise addition.
Following stacked layers with short-cut connections when the dimensions of F and x are
different, a linear projection Ws is conducted with the short-cut connections to achieve
dimension matching:

y = F(x, {Wi}) + Wsx. (6)

The function F(x, {Wi}) depicts several convolutional layers.
Literature studies [49] indicate that residual architecture significantly enhances the

scene classification accuracy of remote sensing imagery with increased network depth.

3.9. DeepResUnet

The DeepResUnet [23] integrates U-Net and deep residual networks. It has two sub-
networks: A down-sampling network for feature maps extraction and an up-sampling
network to reconstruct the extracted feature maps back so the input image’s original size.
This network results in low network degradation in the trained model since it utilizes a
deep residual learning strategy. The segmentation results at the final layer are classified
with the softmax classifier.

3.10. Unified Multimodal Data Analysis Deep Learning Architecture

The multimodal deep learning remote sensing (MDL-RS) [50] architecture integrates
joint modalities: pixel-wise and spatial–spectral of fully connected networks and convolu-
tional neural networks to characterize the scene with more detail and precision than using
single modality data. Each of these modules focuses on feature characterization learning of
multimodal data with the extraction network (Ex-Net) and fusion network (Fu-Net). Figure 6
shows MDL-RS architecture. The MDA-RS jointly trains the two sub-networks (extraction
network and fusion network) from end to end.
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Figure 6. The multimodal deep learning remote sensing architecture for scene classification with sub-
networks: Extr-Net and Fu-Net. The Extr-Net comprises two feature extractors, namely: pixel-wise
fully connected network and the spatial–spectral convolutional neural network [50].

4. Transformer-Based Deep Learning Models
4.1. Excellent Teacher Network Guiding Small Networks (ET-GSNet)

The ET-GSNet [24] comprises two components, the teacher (vision transformer) and
student models. The teacher model learns the feature relationships within the high spectral
resolution image patches in the ET-GSNet. The student model applies ResNet18 in learning
local features. These networks work in two optimized phases, with the teacher model
transmitting long-range dependency knowledge from the vision transformer to ResNet18,
Figure 7 depicts this process.

Figure 7. Excellent teacher network guiding small networks (ET-GSNet) [24].

4.2. Label-Free Self-Distillation Contrastive Learning with Transformer Architecture (LaST)

The Label-free self-distillation contrastive learning with transformer architecture (LaST) [25]
uses knowledge distillation to gain global (long-range) knowledge of scene images which it
fuses with the local features of the target student network. Figure 8 shows this process. LaST
comprises the backbone and head, i.e., the backbone does feature extraction representations for
the downstream tasks while predictions by the softmax project to the head.
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Figure 8. Label-free self-distillation contrastive learning with transformer architecture(LaST) [25].

5. Machine Learning Algorithms
5.1. The Softmax Function

Softmax [51] is a popularly utilized loss function with CNNs. Given a train set
[x(h), y(h); h ∈ 1, . . . , N, 1 ∈ y(h)1, dots, C], notice that x(h) represents the hth patch of the
image input, whereas y(h) is its target class label from the C classes.

A prediction for the ith class based on the hth input is a transformation by the softmax

loss function: p(h)i = ez(h)i / ∑C
l=1 ez(h)

l , in this case, z(h)i is typically the activation functions

of a densely connected network layer. Therefore z(h)i can be expressed as z(h)i = wT
i f(h) + bi.

The softmax transforms predictions to give the probability distributions for the C classes.
These probabilistic kinds of predictions apply to computing the multinominal logistic loss.
The softmax loss is defined as:

Lso f tmaxloss = −
1
N
{

N

∑
h=1

C

∑
i=1

1[y(h) = i]logp(h)i } (7)

The large-margin softmax loss function [52] advances the softmax loss by incorporating
the angle margin for the angle θi in between an input vector f(h) and the ith column wi,
which is a weight matrix. Their investigation [52] shows that large-margin softmax loss
is effective in avoiding overfitting, and it achieves better results on CIFAR-10, CIFAR-100,
and MNIST datasets than the soft-loss function.

5.2. The Hinge-Loss Function

The hinge-loss function typically applies in training classifiers with large margins,
e.g., the support vector machines (SVMs). The hinge-loss function for multi-class SVM is
mathematically defined as:

Lhinge−loss =
1
N

N

∑
s=1

C

∑
r=1

[max(0, 1− δ(y(s), r)wTxs)]
p (8)

In this case δ(y(s), r) = 1 when y(s) = r, else δ(y(s), r) = −1. Observe that when p = 1,
Equation (8) is the hinge loss function (L1 − loss), whereas if p = 2, it is a squared hinge
loss function (L2 − loss) [53]. The investigation [54] compares the performance of L2 of
SVMs with softmax in deep networks. The performance results on the MNIST dataset [55]
show that L2SVM is superior to the softmax function.
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6. Deep Learning Open-Source Frameworks

Several open-source frameworks [56,57] provide artificial intelligence and advanced
machine learning capabilities to implement deep learning. The following are popular
frameworks in the remote sensing literature:

6.1. TensorFlow

TensorFlow [58] is an advanced machine learning system that works in heterogeneous
environments and at large scales. TensorFlow provides dataflow graphs that apply to
computation operations and shared states. The nodes of the dataflow map to different
machines across clusters, including GPUs, multi-core CPUs, and tensor processing units.
This framework gives application developers the flexibility to experiment with training
algorithms. TensorFlow was released under an open-source license in 2015. The API of
TensorFlow includes Python and C++. TensorFlow supports image, speech, handwriting
recognition, natural language processing, and forecasting. TensorFlow is a popular deep
learning implementation framework for remote sensing image scene classification [9,50].

6.2. Caffe

Caffe [59] is a popular deep-learning framework for the computer vision community.
In 2014, It won an ImageNet Challenge. The Caffe framework offers deep learning tool kits
for model training and deployment. Reference [35] attains state-of-the-art remote sensing
scene classification results with the Caffe implementation framework. Caffe is C++ based
and can be compiled on heterogeneous devices. Caffe supports Matlab, C++, and Python
programming interfaces. The Caffe framework’s vast user community contributes to the
deep net repository called the “Model Zoo”. GoogleNet and AlexNet are two standard
user-made networks available to the public.

6.3. Deeplearning4J

The Deeplearning4J [60] framework has built-in GPU support, an essential feature for
the training process, and supports Hadoop’s distributed YARN, application framework.
Deeplearning4J has a rich set of deep network architecture support: Recurrent Neural
Networks (RNN), RBM, long short-term memory (LTSM) network, DBN, convolutional
neural networks (CNNs), and RNTN. Deeplearning4J further provides support for a
vectorization library known as Canova. Deeplearning4J is Java implemented and is faster
than Python. This framework offers natural language processing, image recognition, and
fraud detection capabilities.

7. Remote Sensing Datasets for Models-Evaluation

This section reviews the properties of popular remote sensing image datasets. Table 1
Gives the summary for different image datasets: (scene image classes, scales, cumulative
images per class, the year of release, etc). Figure 9 shows the semantics of sample images
taken from the recent remote sensing RESISC45 dataset [2].

Table 1. Summary of the remote sensing dataset properties.

Datasets ImagesPerClass Classes TotalImages Resolutions(m) Dimensions Release YR

UC Merced [32] 100 21 2100 0.3 256× 256 2010
WHURS [61] ≈ 49 19 1005 ≈ 0.5 600× 600 2012
RSSCN7 [62] 400 7 2800 – 400× 400 2015
Aerial Image

Dataset (AID) [3] 220–420 30 10,000 8 to 0.2 600× 600 2017

RESISC45 [2] 700 45 31,500 30 to 0.2 256× 256 2017
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Figure 9. Semantics of sample images from RESISC45 dataset.

7.1. UC Merced Dataset

UC Merced is a 21-class dataset [32], each class contains 100 images of 256× 256 pixel
regions with a pixel resolution of 1 ft. This dataset comprises 2100 images that are uniformly
labeled to 21 classes that are highly overlapped; for instance, (agricultural and forest are
different by the type of vegetation covers). These diverse scene patterns present a challenge
for effective feature characterization methods.

7.2. WHURS Dataset

The image size of the WHURS dataset [61] is 600× 600 pixels with resolution up
to half a meter. There are three release versions of this dataset. The initial version [61]
contains 50 samples in each of the 12 aerial land cover classes. In a later version, ref. [63]
extended the dataset to 19 classes. The new inclusions to this dataset are the [desert, beach,
football field, farmland, park, railway station, and mountain] resulting in a total of 950 images.
Reference [64] expanded WHURS to contain 5000 aerial images, and each class contains
more than 200 image samples. WHURS dataset images are in different orientations and
scales under various lighting conditions. The images are selected from numerous places
around the globe.

7.3. RSSCN7 Dataset

The RSSCN7 dataset [62] has 2800 scene images obtained from Google Earth. It has
7 scene categories with each class containing 400 images of dimensions 400× 400 pixels. This
dataset’s images have 4 different scales each, i.e., 100 images per scale in varying imaging
angles. This renders the RSSCN7 dataset challenging properties that require well-crafted
image analysis and feature representation methods that can work across the multiple-image
scales and angles for robust feature analysis and interpretation.

7.4. Aerial Image Dataset

The aerial image dataset [3] is a more recent and relatively large dataset with 30 scene
classes. Each class contains images ranging from 220–440 and a total of 10,000 images. The
images are obtained from multiple sources with Google Earth imaging sensors across the
world. AID images are multi-resolution, i.e., pixel resolutions range from 8 m to half-meters
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at a size of 600× 600. Key properties of AID, (1) high intraclass variations: due to the
high spatial resolutions; therefore, geometrical structures of scenes are clearer; (2) smaller
inter-class dissimilarity: AID has scenes that share similar objects, for example, both the
stadium and playground can contain fields; (3) AID has a relatively large-scale dataset
compared to RSSCN7, UC Merced, and WHU-RS. This dataset requires superior and more
sophisticated image feature–descriptor methods for effective feature characterization.

7.5. RESISC45 Dataset

The RESISC45 [2] dataset has 31,500 images categorized into 45 classes of remote
sensing imagery. Every class contains 700 images of dimensions 256× 256 pixels in 3 color
channels with spatial resolutions of about 30 to 0.2 m in every pixel. The RESISC45 dataset
covers more than 100 countries and regions globally. The RESISC45 properties dataset
(1) is a huge dataset of remotely sensed images; (2) contains images with very diverse semantics,
i.e., the images chosen from different seasons under varying weather and illuminations
conditions on different scales and resolutions; (3) has huge inter-class similarity and intra-class
diversity. Therefore, the RESISC45 dataset is challenging, necessitating innovative (and
well-calibrated) computer vision image analyses and interpretation techniques for effective
image feature learning for the accurate scene classification of remote sensing imagery.

7.6. Metrics Performance Evaluation
7.6.1. Overall Accuracy

The overall classification accuracy (OA) is the number of accurately classified sample
images irrespective of the class they belong to, divided by the number of sample images

OA =
accuratelyClassi f iedImages

SampledImages
× 100 (9)

7.6.2. Average Accuracy

The average accuracy (AA) is the classification accuracy of every class irrespective of
the number of image samples.

AA =
accuratelyClassi f iedImages

Total Images
× 100 (10)

7.6.3. Confusion Matrix

The confusion matrix is a table that presents and analyses the errors and any resultant
confusions among the various classes that are generated via counts of every type of incorrect
and correct scene classifications by the test samples and aggregating the results on a table.

7.7. Scene Classification Performance Analysis of the State-of-the-Art

Table 2 presents the overall and average performance accuracies of the feature analysis
methods, i.e., LBP, SIFT, MS-CLBP, BoVWs + SIFT, FV + SIFT, ADPM, DSFBA-NTN, JL-
CPDM, and BoCFs with the different remote sensing datasets. Table 2 shows that high-level
(deep learning-based) methods attain the best results with all four remote sensing datasets.

Table 3 shows the performance accuracies with different CNNs under training ratios
of 80%, 50%, 20%, and 10%. It can be observed that the training-used ratio considerably
affects the accuracy. VGG16, with a training ratio of 80%, achieves better accuracy than
when the training ratio of 50% is used with the UC Merced dataset. This trend is the same
as the AID and RESISC45 datasets. Table 3 also shows the CNN parameter settings.
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Table 2. Scene classification with feature analysis methods.

UC Merced Dataset

feature analysis Method Method Level accuracy %

LBP [2,3,65] low-level 36.29 ± 1.90
SIFT [3] low-level 32.10 ± 1.95
MS-CLBP [30] low-level 89.9 ± 2.1
BoVWs(SIFT) [3] Medium-level 74.12 ± 3.30
FV(SIFT) [3] Medium-level 82.07 ± 1.50
ADPM [35] High-level 94.86
DSFBA-NTN [36] High-level 98.20
JLCPDM [37] High-level 97.30 ± 0.58

WHURS19 Dataset

feature analysis method Method Level accuracy %

SIFT [3] low-level 27.21 ± 1.77
BoVWs(SIFT) [3] medium-level 80.13 ± 2.01
FV(SIFT) [3] medium-level 86.95 ±1.31
ADPM [35] High-level 84.67
DSFBA-NTN [36] High-level 97.90

AID Dataset

feature analysis method Method Level accuracy %

LBP [3] low-level 29.99 ± 0.49
SIFT [3] low-level 16.76 ± 0.65
BoVWs(SIFT) [3] Medium-level 67.65 ± 0.49
FV(SIFT) [3] Medium-level 77.33 ± 0.37

Resisc45 Dataset

Feature analysis method Method Level accuracy %

LBP [2] low-level 21.74 ± 0.14
BoVWs(SIFT) [2] medium-level 44.13 ± 2.01
BoCFs [34] High-level 84.32

Table 3. Scene classification of remote sensing images by the fine-tuned CNNs approaches in the
literature.

UC Merced Dataset

Literature work parameter settings CNNs accuracy % Train %

Adam, learning rate (lr) = 0.001
[2] Iterations= 1000–15,000 AlexNet + SVM 94.58 80

strides = 1000 GoogleNet + SVM 97.14
[66] SGD, lr = 0.0001, iter = 50 VGG16 97.14 80

VGG16 96.57 50
[18] RMSprop, lr = 0.0001 EfficientNet-B3 98. 22 50
[18] RMSprop, lr = 0.0001 inception-v3 95.33 50

AID Dataset
Literature work parameter settings CNNs accuracy % Train %

[18] RMSprop, lr = 0.0001 inception-v3 90.17 20
[18] RMSprop, lr = 0.0001 EfficientNet-B3 94.19 20
[66] SGD, lr = 0.0001, iter = 50 VGG16 93.60 50

VGG16 89.49 20

Resisc45 Dataset
Literature work parameter settings CNNs accuracy % Train %

[2] VGG16 84.56 10
[10] VGGNet16 87.15 10
[9] VGG16 91.05 15
[10] VGGNet16 90.36 20
[18] RMSprop, lr = 0.0001 EfficientNet-B3 91.08 10
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8. Discussions

The tremendous advances in remote sensing sensor technologies over the past decade
yield enormous image data for intelligent earth monitoring, such as scene classification of
remote sensing imagery. Various computer vision techniques have been advanced in the lit-
erature (Table 2) to aid in feature analysis and subsequent scene interpretation. In particular,
deep learning-based feature analysis has demonstrated state-of-the-art performance with
the different remote sensing datasets. These scene classification approaches are generally
dictated by the nature of the problem they address, such as the deep salient feature-based
anti-noise transfer network (DSFBA-NTN) [36] attempts to address the noise problem.
Even so, its primary operation mechanism works with patch-based feature extraction.
Similarly, the other deep feature learning techniques—such as the adaptive deep pyramid
matching [35], joint learning center points, and deep metric [37] methods—learn features
in multi-layers, end up with high-feature representations that feed into a softmax [51] or an
SVM [53], and solve pattern recognition problems (scene classifications, in this case).

It is also evident from Tables 2 and 3 that the performances of deep learning approaches
substantially decrease with sizeable remote sensing datasets (specifically for the AID and
the RESISC45 datasets). The implication is that deep learning approaches need to be well-
calibrated to attain higher scene classification accuracy results with the more challenging
remote sensing datasets; then, the knowledge will be migrated to real-time remote sensing
artificial intelligence applications.

With deep learning architecture, VGG16 [12] is the most adopted scene classification
of remote sensing images. This architecture is deep and efficient in its computing resource
utilization, while its internal structure parameters are better able to calibrate the archi-
tecture for more effective image feature learning. In our paper [9], we utilize the VGG16
architecture for deep co-occurrence feature learning, then apply the ensemble classifiers for
scene classification. M. Tan and Q.V. Le [47] developed a compound scaling mechanism for
CNN; the method scales three network parameters: depth, width, and resolution. Refer-
ence [18] utilizes compound scaling with CNNs to attain state-of-the-art results in the scene
classification of remote sensing imagery with UC Merced, AID, and RESISC45 datasets at
low computation costs.

Recently, ref. [50] proposed a unified multimodal deep learning remote sensing (MDL-
RS) architecture that integrates common modalities: pixel-wise and spatial–spectral aspects
of fully connected networks and convolutional neural networks to characterize the scene
with more detail and precision than using single modality data. The MDA-RS provides
mechanisms to address the following challenging research questions in the field of remote
sensing: “how to fuse”, “what to fuse”, and “where to fuse”.

9. Conclusions and Future Work

Scene classification of remote sensing images aspires to annotate them to a semantic
class based on their contents. We present a concise and comprehensive survey of the
literature’s feature representation methods in this view. This survey paper establishes that
deep learning approaches attain superior accuracy in the scene classification of remote
sensing images. Further, this paper covers the deep learning methods that have been
applied, their strengths, and their shortcoming. Additionally, it covers the various deep
learning architectures and available software implementation frameworks. This paper also
presents evaluations from the literature on the effectiveness of deep learning approaches in
scene classification with different remote sensing datasets.

In general, this work gives insights into the feature learning methods, deep learning
architectures, and software frameworks that can be exploited for implementing deep learn-
ing solutions for remote sensing image scene classification. Additionally, this paper gives
descriptions of remote sensing datasets that can be utilizable to evaluate the effectiveness
of image semantic categorization strategies.
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