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Abstract: Wheat is an important staple crop in the global food chain. The production of wheat
in many regions is constrained by the lack of use of advanced technologies for wheat monitoring.
Unmanned Aerial Vehicles (UAVs) is an important platform in remote sensing for providing near
real-time farm-scale information. This information aids in making recommendations for monitoring
and improving crop management to ensure food security. This study appraised global scientific
research trends on wheat and UAV studies between 2005 and 2021, using a bibliometric method.
The 398 published documents were mined from Web of Science, Scopus, and Dimensions. Results
showed that an annual growth rate of 23.94% indicates an increase of global research based on wheat
and UAVs for the surveyed period. The results revealed that China and USA were ranked as the
top most productive countries, and thus their dominance in UAVs extensive usage and research
developments for wheat monitoring during the study period. Additionally, results showed a low
countries research collaboration prevalent trend, with only China and Australia managing multiple
country publications. Thus, most of the wheat- and UAV-related studies were based on intra-country
publications. Moreover, the results showed top publishing journals, top cited documents, Zipf’s
law authors keywords co-occurrence network, thematic evolution, and spatial distribution map
with the lack of research outputs from Southern Hemisphere. The findings also show that “UAV”
is fundamental in all keywords with the largest significant appearance in the field. This connotes
that UAV efficiency was important for most studies that were monitoring wheat and provided vital
information on spatiotemporal changes and variability for crop management. Findings from this
study may be useful in policy-making decisions related to the adoption and subsidizing of UAV
operations for different crop management strategies designed to enhance crop yield and the direction
of future studies.
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1. Introduction

Wheat (Triticum aestivum) is one of the most important staple crops that contribute
extensively to global food security [1–3]. It provides 20% of human food calories world-
wide [4,5]. These food calories are commonly found in wheat products such as bread,
cereal, rusks, biscuits, pasta, cookies, noodles, and others [6]. Wheat is planted in more
than 120 countries across Asia, Europe, America, Africa, and Australia/Oceania [3,7]. The
estimated planted area of wheat was 220.83 million hectares (ha) worldwide in 2020/21,
which makes it the most widely grown crop, compared to 199.11 million ha of maize and
165.22 million ha of rice [8,9]. Recent reports show that annual global wheat production is
approximately 775.71 million metric tons for 2020–2021, this is an increase of approximately
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12.34 million metric tons from the 2019–2020 records [3,8,9]. The biggest contributors to
global wheat production include Asia, Europe, America, India, and Russia; minor contribu-
tors include Africa and Australia [3,10–12]. The inevitable increase in the world population
puts pressure and more demand on the wheat production industry. Based on its global
significance and lack of research studies using UAVs for wheat monitoring, it makes an
interesting research topic. Hence, continuous research and development are needed for the
wheat crop, especially in developing countries.

The fluctuation in annual wheat production has a negative impact on food security [12]
and gaps exist in the knowledge of wheat growth performances, which can enable timeous
inventions when needed. The wheat planting calendar is different worldwide, as the
seasons are not the same, which causes different planting and harvesting periods. For
instance, when majority of wheat is planted in the northern hemisphere, it is contrariwise
and harvested in the majority regions of the southern hemisphere [3]. In terms of crop
monitoring, there will be variations in the timing of phenological stages of the wheat,
which affects the creation of global wheat distribution maps. Therefore, near and real-time
monitoring of the spatiotemporal variability in wheat production and growth is necessary
to provide accurate information and ensure global food security. Variables such as crop
yield, soil parameters (moisture, nutrient, pH), and crop biophysical parameters (canopy
cover, Leaf Area Index—LAI, chlorophyll, nitrogen content) need to be monitored for the
optimal wheat growth [13,14]. Factors that affect wheat production, including inconsistent
weather patterns, climate variability, prevalent droughts, heat stress, and low precipitation,
need to be mitigated timeously to enhance wheat production [3,15,16]. Thus, UAV usage
enhance farm management practices in terms of identifying appropriate timing for different
agricultural operations such as weed management, fertilization, cultivar selection, and
irrigation-scheduling for optimal wheat production [17]. Adverse socio-economic factors
and socio-economic transformations in the agricultural industry such as the withdrawal of
government incentives have contributed to a decline in wheat production, especially in
the developing world (e.g., Northern State of Sudan, India, and South Africa) need to be
identified and improved [18–21]. Hence, spatial information on the temporal variability
of wheat production as well as soil parameters are useful for monitoring and forecasting
wheat production to improve food security.

Remote sensing technologies are vital to the understanding of spatiotemporal changes
in crop growth at the intra-field level to improve agricultural production using smart
farming and precision agriculture approaches [14,22,23]. Unmanned aerial vehicles are
emerging rapidly amongst remote sensing tools suitable for mapping and modeling spa-
tiotemporal changes in wheat crop parameters [24–27]. Subsequently, UAVs have been
investigated for a range of applications on wheat farms including estimations of grain
yields and protein content [28]. Furthermore, the use of UAVs has been investigated for
applications focusing on wheat health status, vigor, nutrient content, water stress, and
disease condition [29–31]. Other studies have used UAVs for wheat irrigation management,
spraying wheat aphids, pests, and disease control [32–35]. The advantages of UAVs are that
they provide a synoptic view, reduce the costs of using vehicles and handheld sensors, and
have a short revisit image acquisition period [13,36,37]. Additionally, they offer payload
options, have an ultra-high spatial resolution, and have the ability to fly on cloudy days
with minimal atmospheric effects for crop monitoring applications [13,36,37]. Furthermore,
UAVs reduce the tedious, time-consuming laboratory experiments and costly field inves-
tigation for crop mapping and modeling [38]. Consequently, UAVs has been a suitable
technique for near real-time decision-making in smart farming and precision agriculture.

The development of UAVs is a key tool in precision agriculture and is still in its early
stages in different regions of the world. However, there is a lack of research that assembles
and documents these trajectories for specific crops such as wheat. Therefore, a systematic
review evaluating its historical application and trends in wheat crop monitoring provides
perspectives about the technology’s adoption, successes, and application globally. The pur-
pose of this study was to provide the comprehensive evolutionary research trends of UAV
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application in monitoring wheat based on the streamlined published research documents
that accommodate the niche area. Accordingly, improvements in the use of this technology
could be promoted to ensure sustainable developments. A bibliometric investigation as
a systematic and statistical method was performed, which provides an informative and
objective scientific analysis of current research hotspots and future directions in a specific
niche area [14,39–41]. This study assessed published scientific research outputs for annual
scientific production, the spatial distribution of productive countries outputs, relevant
journals, core sources, top global cited documents, authors keywords’ co-occurrence net-
works, and thematic evolution of wheat and UAV studies retrieved from 2005–2021. The
fundamentals of this study are to provide a global overview of the practical use of UAVs to
monitor wheat crop and identify other feasible research topics for current and future wheat
and UAV studies. Furthermore, we are contributing to the literature benefiting wheat crop
management interventions that ensure food security in precision agriculture.

2. UAV Systems
2.1. UAV Data Acquisition

Several UAV systems are used for data acquisition during surveys. However, the
most frequently UAVs that have been used in the previous studies included hexacopters as
the highest with 30%, followed by quadcopters, fixed-wings, and octocopters with nearly
25%, 24%, and 19%, respectively [42]. Most studies in precision agriculture have preferred
multi-rotor UAVs to monitor wheat crops in small-scale and commercial farms [22,43–45].
The UAVs are designed to have payload capacity for different sensors such as thermal
sensors, hyperspectral sensors, multispectral sensors, and visible light (RGB) sensors. These
sensors provide a crucial role in capturing high-spatial and temporal resolution images that
help in monitoring different crop parameters. Recent studies have used all four different
common sensors in monitoring wheat crop parameters (Table 1). Thermal imagery from
UAVs has shown the potential to predict biomass and grain yields of wheat genotypes
grown under water stress areas using machine learning [15,46]. RGB visible spectrum UAV
images and deep learning approach integration have been used to build a model for the
estimation of wheat above-ground biomass [47]. UAV-based multispectral imaging has
demonstrated an ability to monitor leaf nitrogen content and grain protein content in wheat
crops [44]. Spectral data collected from UAV hyperspectral images have been used to create
a model predicting in-season genetic variations for cellular membrane thermostability,
grain yield, and other traits in wheat [16]. Consequently, all these sensors can be used for
monitoring wheat parameters.

Table 1. Most common sensors in wheat and UAV applications for precision agriculture.

Sensor Reference

Thermal sensors [2,15,30,46]
RGB [2,13,29,47]

Multispectral sensors [15,24,26,44]
Hyperspectral sensors [16,48–50]

2.2. UAV Data Processing Tools

Image pre-processing is a crucial and time-consuming step after UAV data acquisition.
The purpose of UAV data pre-processing includes correcting distortion of multispectral
bands, orthorectification, mosaicking all single images captured in each flight, and comput-
ing vegetation indices (VIs) [13,51]. However, image processing requires large computer
storage, high-speed internet, and data analytics expertise for accelerating the analysis
process. Most studies have used different ways to pre-process UAV data for various crops
in precision agriculture [52–54]. For instance, Castaldi et al. [52] applied the Support Vector
Machine algorithm, Deng et al. [53] used PixelWrench 2 software and Agisoft Photoscan
professional software package, and Kawamura et al. [54] used Agisoft metashape software.
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Table 2 presents the most common software tools used in the literature to process
UAV imagery for wheat crop monitoring. This software relies on different methods to
generate surface reflectance maps for each spectral band in the visible or near infrared
electromagnetic spectrum. The generated spectral band reflectance maps are very important
to compute VIs that monitor crop growth variations. The literature survey recommends
that Pix4D software is the optimum processing tool for UAV imagery among other software
tools [46,55].

Table 2. Common processing imagery software tools used in wheat crop monitoring for preci-
sion agriculture.

Software Tools Reference

Pix4Dmapper [2,15,55]
Agisoft Metashape [13,47,56]

Drone Deploy [57,58]
EnsoMOSAIC [59,60]

ENVI/IDL environment [24,30,44,61]
MATLAB [46,62,63]

ERDAS Imagine 2018 [48,64]
Adobe Photoshop [63,65]

2.3. UAV Application on Wheat Crop Parameters

UAV data can be used for estimating different wheat crop parameters using different
UAV systems and sensor types (Table 3). The variety of applications aim at improving crop
health and allowing farmers to take corrective measures. The application of UAV hyper-
spectral sensors seems relatively low compared to multispectral. This can be attributed to
the cost of the hyperspectral systems being too high compared to the multispectral sensors,
which are relatively more affordable.

Above-Ground Biomass (AGB) is closely related to crop yield, therefore, in-season
estimates of AGB can be used to improve farm management practices to optimize crop
yield [66]. Yue et al. [67] evaluated VIs and found that textures from ultrahigh-ground-
resolution images are closely related to wheat AGB. Additionally, their study found that the
combined use of textures and VIs are optimal instead of using these products independently.
Moreover, high AGB values during the reproductive growth stages can be estimated
accurately with their proposed method.

Nitrogen content can be estimated from UAV data, and this nutrient is crucial for crop
growth and the quality of crops [68]. Liu et al. [69] observed a lack of studies using UAV-
based hyperspectral remote sensing in precision agriculture. The study by Liu et al. [69]
found that the predicted wheat leaf nitrogen content values have a high accuracy during
the jointing stage, flagging leaf stage, and flowering stage, but are less accurate in the
filling stage. Soil moisture is important for hydrothermal energy exchange, mitigating
climate change, and land carbon uptake [70]. Ren et al. [49] observed that previous studies
focused on exploring the relationship between soil moisture and soil properties using the
partial least squares regression models based on reflectance. The study by Ren et al. [49]
investigated the relationships between soil moisture and spectral indices derived from the
red-edge or NIR wavelength. Findings from the study indicate that the red-edge band are
more sensitive to the soil moisture during the jointing and flowering stages. However, their
sensitivity decreased with increasing water stress.

Soil properties influence crop growth and yield. Goffart et al. [50], Webb et al. [71],
and Křížová et al. [72] used the conditional inference (CI)-forest algorithm and machine
learning algorithms to map the spatial distribution of soil properties with UAV imagery. The
framework developed in the study contributes to better management of fertilizer inputs
by identifying soil properties that need site-specific management. Water stress can be
estimated with UAVs, and this phenomenon limits wheat growth and yield. Das et al. [30]
observed a lack of studies on the use of UAV thermal imaging and machine learning
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techniques to predict crop growth and yield, which aids in identifying cultivars tolerant
to sodic soil constraints. The study developed a thermal imaging and classification and
regression tree machine learning-based methodological tool that improves understanding
of genotypic performance under variable water stress on different sodic soils. Findings
from that study suggest that the period close to flowering is a suitable time to identify
water stress on crops and is also used to identify wheat cultivars that are tolerant to sodic
soil constraints.

Table 3. Different types of UAV systems used in wheat crop applications.

UAV Names Sensor Type Applications Country References

DJI Matrice 100
Quadcopter RGB Biomass estimation Brazil [6,26,47]

Six-rotor DJI S1000
UAV system

450–950 nm at 4
nm sampling

interval

Yellow rust disease
modelling China [3,12,55,73]

AZUP-T8
eight-propeller UAV 450–950 nm LAI modelling China [13,74]

Six-rotary wing UAV
Matrice 600 Pro; DJI

Phantom 4D RTK

RGB;
Multispectral

Wheat lodging and
mapping USA [26,31,75,76]

eBee SQ UAV fixed
wing; eBee UAV Multispectral Nitrogen mapping China [26,31,69,77]

DJI Phantom 4 Pro
multi-rotor RGB Wheat foliage

disease severity USA [12,34,78]

md4-1000 multi-rotor RGB Vegetation cover Spain [13,79]

Falcon 8 octocopter Multispectral Crop density
estimates Germany [13,56]

3DR Solo
Multi-rotor Multispectral Planting row

detection China [15,53]

Dajiang Four Rotor
Multispectral Multispectral Soil moisture

estimation China [27,50,60,80]

Quadcopter RGB Nitrogen status
of wheat India [44,61,81]

DJI Matrice 600 Pro Multispectral Wheat yield Ukraine [16,26,48,82]

AscTec Falcon 8 Multispectral
High-throughput
phenotyping in

wheat
Mexico [29,62,83]

DJI Phantom 3
Standard quadcopter RGB

Plant and water
stress in winter

wheat
Pakistan [15,57]

DJI Matrice 600 Pro
hexacopter drone;

Quadrotor DJI Matrice
100

Multispectral +
thermal

Water stress;
evapotranspiration

Australia;
Denmark [15,30,58]

Specialized
Unmanned Aerial

Vehicle (SUAV) sense
Flye eBee Ag

Multispectral

LAI, fraction of
Absorbed

Photosynthetically
Active Radiation

(fAPAR), fraction of
vegetation cover

(fCover)

Bulgaria [84]



Geomatics 2023, 3 120

Most of the studies utilizing UAV systems to monitor wheat are based in developed
countries (i.e., USA, Germany, and Australia), while a small number of studies came from
developing countries such as Brazil, Ukraine, Mexico, India, Philippines, and Pakistan,
among others (Table 3). Interestingly, China is the only developing country that is catching
up with the rapid UAV trends in wheat research. It is worth noting that developing
countries are still far behind on the rapidly evolving UAV trends usage because of the
estimated billions of dollars in UAV investment [85]. For instance, most developing
countries are still using cost-effective and relatively old UAV systems (i.e., DJI Matrice
100 quadcopter) and cameras to monitor wheat. Meanwhile, developed countries are one
step forward with the usage of vastly improved newer UAVs (i.e., DJI Matrice 600 Pro
hexacopter) and specifications (weight, endurance, payload, range, wingspan, and flight
altitude) over time based on user interest. These UAV specifications play an important role
in monitoring wheat. For instance, reduced flight battery limitation and enhanced data-
processing speed for large fields [86]. The global aerospace industry reveals the usage of
UAVs is still emerging for several developing countries, thus prevalent research in multiple
fields is central to developed countries [85,86]. As the technology and resources become
available to developing counties [87], it is expected that the use of UAV systems for wheat
crop monitoring will improve and contribute to food security. It is not clear the criteria used
to select the UAV systems and sensors. However, it appears that the type of application
is the main factor contributing towards sensor selection. For example, a thermal sensor is
required for water stress and evapotranspiration studies. Meanwhile, multispectral and
hyperspectral sensors are mostly used for biophysical and biochemical parameter modeling.
The projected UAV trends are likely to be integrated into the harvesting decisions of smart
farming, due to the fast growth in UAV technology.

3. Data Collection and Methods
3.1. Bibliometric Study Design

The current study uses three databases to assemble comprehensive scientific literature
dataset for bibliometric analysis. The Web of Science (WOS), Scopus, and Dimensions
databases were systematically mined for this study on 5 and 11 May 2022. WOS and Scopus
are the most widely used bibliometric databases, as they are the only large bibliometric
data sources dated more than 15 years [88]. However, recent bibliometric databases such as
Dimensions are seen as the alternative with extensive scientific research documents [89].
In addition, these databases are widely acknowledged for their high scientific impact
and comprehensive research coverage [90]. Most studies have used these three databases
separately for bibliometric analysis due to difficulties and a time-consuming data cleaning
process. For instance, similar studies in the niche areas of wheat, remote sensing, and
UAV application have only used the WOS database for exploring bibliometric analysis
trends [91,92]. The above three databases were integrated into the current study. The
information in Figure 1 shows the selection criteria for wheat and UAV studies appraised
and selected for bibliometric analysis.
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Figure 1. Schematic diagram illustrating criteria for publication selection. 
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1251 authors contributed to multi-authored documents with a collaboration index of 3.23 

Figure 1. Schematic diagram illustrating criteria for publication selection.

3.2. Bibliometric Data Processing

The study retrieved all the publications in wheat and UAV research using these search
terms: “wheat AND unmanned aerial vehicle remote”, “winter wheat AND unmanned
aerial vehicle”, and “Triticum aestivum AND unmanned aerial vehicle”, based in the
document titles, abstract, and keywords from 2005 to 2021. The Boolean operation AND
was used to combined search terms. The retrieved documents were refined to 541, 676,
and 431 articles, conference papers, conference reviews, reviews and book chapters from
databases. Furthermore, the Zotero software (Version 6.0.7) tool was used to collate the total
and merge the 1648 bibliographic records of all retrieved documents in the databases [89,93].
Documents were processed for data cleaning, screening, and removing duplicates using
both Zotero [94] and R-software [39]. All the bibliometric analysis results were carried out
using open-source software such as R-Studio (v4.0.4), biblioshiny, or VOSviewer software
(v1.6.16), which provide an interactive bibliometrix web interface [39,94–96].

4. Results
4.1. Characteristics of WOS, Scopus, and Dimensions of Science Indexed Databases

This study presents a bibliometric analysis of 398 published document types (articles,
conference papers, conference reviews, reviews, and book chapters) retrieved from Di-
mensions, Scopus, and WOS databases. All the investigated documents were streamlined
to accommodate the niche study area. The summary of the information extracted from
these databases is presented in Table 4. The documents had a total of 1251 authors, while
1251 authors contributed to multi-authored documents with a collaboration index of 3.23
and 6 authors wrote single-authored documents. The authors’ keywords were clustered
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into 1071 authors’ keywords (ID) and 447 authors’ keywords (DE) in the field of wheat and
UAV studies [97,98]. In addition, the 165 sources evaluated (journals, books, etc.) involve
2018 authors’ appearances with 0.317 documents per author (3.16 authors per document)
and 5.58 co-authors per document. The study has an average annual percentage growth of
20.49% in citations per document recorded during the survey period.

Table 4. The summary information of WOS, Scopus, and Dimension retrieved on wheat and UAV
application studies.

Description Results

Time Span 2005–2021
Documents 398

Sources (Journals, Books, etc.) 165
Keywords Plus (ID) 1071

Author’s Keywords (DE) 447
Average citations per document 20.49

Authors 1257
Author Appearances 2018

Authors of Multi-Authored Documents 1251
Single-Authored Documents 6

Documents per Author 0.317
Authors per Document 3.16

Co-Authors per Documents 5.58
Annual Growth per Documents 23.94

Collaboration Index 3.23
Document Types

Article 329
Conference Paper 50

Conference Review 6
Review 3

Book Chapter 2

4.2. Historical and Current Trend of Scientific Contribution per Document

The historical annual research production rate was low compared to recent years
based on the number of documents recorded from 2005 to 2021 (Figure 2). However,
a rapid increasing trend in document production rate started from 2015 to 2018. This
could be indicative of more organizations gaining access to UAV technologies and an
increase in research outputs. A prominent decreasing trend was observed in 2020, while
the publication trend peaked in 2019 and 2021. It is worth noting that the study has
witnessed an inconsistency over the past three years of maintaining the same growth trend
of publications. However, the study conformed to Price’s law of bibliometrics based on the
exponential annual scientific production growth [99]. This exponential scientific production
growth was witnessed from 2005 to 2019 and 2020 to 2021. The study observed 23.94%
annual growth in wheat and UAV studies for the year 2021. This indicates that the field of
research was developing for wheat and UAV studies. Therefore, annual growth signifies
the emerging interest of research institutions for potential UAV uses in managing and
monitoring wheat.
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Figure 2. Annual scientific production of wheat and UAV studies from 2005–2021, a correlation of 
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Figure 2. Annual scientific production of wheat and UAV studies from 2005–2021, a correlation of
more than 90% is observed.

4.3. Spatial Distribution and Most Global Cited Scientific Research Contributions per Country

The contributions of different countries to wheat and UAV studies were analyzed from
2005 to 2021 [100]. Table 5 shows the top 10 most productive countries and their percentage
in the total scientific production (TCP), which includes the following: total citations (TC);
average document citations (ADC); single country publications (SCP); and multiple country
publications (MCP). These indicators reflect the research success and academic authority
of a country. The number of documents identified for wheat and UAV studies is very few.
Based on these numbers, China has contributed 28 documents, accounting for 7% of the TCP,
while the USA produced only 11, and Germany only 9 documents, accounting for 2.8% and
2.3% of the TCP, respectively, during the survey period. Furthermore, low research outputs
and single country publications were observed in Italy, Denmark, Finland, and other
countries. The TC and ADC are other indicators of the influence that a country has in the
research field. The top four most cited countries were the USA (TC = 545 and ADC = 49.55),
followed by Spain (TC = 417 and ADC = 69.50), Finland (TC = 388 and ADC = 129.33), and
China (TC = 352 and ADC = 12.57), respectively. This study acknowledges the limitation
of bibliometrics in terms of quantified citation analysis highlighted in previous studies
using multiple databases [101–103]. The results show that most of the publications were
completed by only one country, and only China and Australia were involved in multi-
national publications.
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Table 5. Top 10 most productive and cited countries per average document citation on wheat and
UAV studies from 2005–2021.

Rank Country TCP (%) TC ADC SCP MCP

1 China 7% 352 12.57 25 3
2 USA 2.8% 545 49.55 11 0
3 Germany 2.3% 156 17.33 9 0
4 Australia 1.5% 106 17.67 6 1
5 Spain 1.5% 417 69.50 6 0
6 United Kingdom 1.3% 61 12.20 5 0
7 Canada 1% 27 6.75 4 0
8 Italy 1% 38 9.50 4 0
9 Denmark 0.8% 12 4.00 3 0

10 Finland 0.8% 388 129.33 3 0
Note: total scientific production (TCP); total citations (TC); average document citations (ADC); single country
publications (SCP); multiple country publications (MCP).

In relation to countries’ contributions, Figure 3 shows the spatial distribution of
the documents published on wheat and UAV-related studies from 2005 to 2021. The
distribution observed from this map indicates that Australia is the only country in the
southern hemisphere that has published research in this field. Developing nations in
Sub-Saharan Africa such as Ethiopia and South Africa are valuable producers of the wheat
crop [104]. However, most developing nations in Africa were expected to have contributed
to wheat production, but they have poor research outputs. This can be attributed to the
high cost associated with UAV technology and regulations that limit the publication of
research documents.
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4.4. Temporal Journals Analysis

The number of journal sources that have published wheat- and UAV-related work
was 165, which includes document types such as articles, conference papers, conference
reviews, reviews, and book chapters. Table 6 summarizes the journal sources that have
published six or more documents in the niche area of study. Remote sensing is the top-
ranked journal with the most published scientific outputs (n = 76, 19.09%). The second and
third journals in the ranking are the Computers and Electronics in Agriculture journal and



Geomatics 2023, 3 125

the Frontiers in Plant Science journal, which have published a total number of 19 (4.77%)
and 17 (4.27%) documents, respectively. However, the sixth to eighth place ranked journals
produced below twelve documents, indicating that the top five journals are the most widely
disseminating journals for documents published on wheat and UAV research. The impact
factor varied in all the journal sources, and most of them were classified under quartile 1,
which is the top ranking. The top selected journal sources with their number of documents
per journal conform to Bradford’s law. Bradford’s law indicates that that the dissemination
of scientific production associated with a particular subject is unequal, and a relatively
small number of journal sources publish a large number, reaching one-third of the total
documents [105]. Furthermore, a large number of journal sources have a common number
of publications.

Table 6. Top journals on wheat and UAV studies from 2005–2021.

Rank Sources N IF of JCR (WoS) IF of SJR (Scopus)

1 Remote Sensing 76 5.349 (Q1) 1.283(Q1)
2 Computer and Electronics in Agriculture 19 6.757(Q1) 1.6(Q1)
3 Frontiers in Plant Science 17 6.627 (Q1) 1.36(Q1)
4 Sensors 16 3.847 (Q2) 0.8(Q1)
5 International Journal of Remote Sensing 12 3.531 (Q2) 0.87(Q1)
6 Precision Agriculture 6 5.767 (Q1) 1.17(Q1)
7 Agronomy 6 3.949 (Q1) 0.65(Q1)
8 Agronomy Journal 6 2.650 (Q2) 0.69(Q1)

Note: N = number of documents; IF = impact factor; and Q = quartile.

4.5. Summary of Top Global Most Cited Published Documents on Wheat and UAV Research

Table 7 provides a summary of the top globally cited published documents on wheat
and UAV studies selected during the survey period. The study selected top globally cited
documents based on the citation ranking for research performance analysis [106]. In Finland,
the researchers implemented a processing methodology for a UAV-mounted hyperspectral
sensor and investigated its applicability in wheat biomass estimation [107]. They used
the K-Nearest Neighbor algorithm and different radiometric processing techniques for
biomass estimation. The authors found that radiometric correction had an influence on the
accuracy of biomass estimation. For radiometrically uncorrected and corrected data, they
achieved normalized mean root square errors (NRMSEs) of 26.2% and 20.4%, respectively.
They achieved NRMSEs of 15.5%, 17.3%, and 24.4% when using data pre-processed with
radiometric block adjustment and in situ irradiance measurements. In the final analysis,
there was a recommendation for the use of multivariate statistical techniques for the
identification of more suitable spectral bands and spectral indices [107].

In the USA, a study correlated LAI with green normalized difference vegetation
index (GNDVI) derived from a UAV-based NIR-green-blue digital camera [108]. The study
observed that GDNVI was consistently linearly related with a correlation of 85% with wheat
LAI when the LAI was less than 2.7. At an LAI of above 2.7, GNDVI was not sensitive to
the changes in LAI. The relationship between LAI and GNDVI was better when images
were collected at 210 m than at 105 m. The authors recommended that more research was
needed to discriminate between leaf chlorophyll and LAI-caused GNDVI variations. In
Spain, another study investigated the influence of flight altitude and the number of days
after sowing on a UAV-mounted camera’s ability to map vegetation fraction in a wheat
field [13]. Among the different VIs compared in this study, the excess green index achieved
the highest classification accuracy (91.99%) at 30 m flight altitude followed by the vegetative
index (91.81%). These two indices produced the best classification results independent
of the image acquisition date. However, the authors observed that classification accuracy
was influenced by flight altitude, with an average accuracy reduction of 3.95% when flight
altitude was increased from 30 m to 60 m. In the final analysis, the authors recommended
the use of their method for early season mapping of wheat rows and detection of weeds.
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In France, researchers used UAV-based visible and near infrared sensors to monitor
different varieties of wheat [100]. They achieved this by relating different VIs including
NDVI, soil adjusted vegetation index (SAVI), GI, and GNDVI with ground-based measure-
ments of biophysical parameters including LAI and nitrogen uptake. A strong correlation
of 82% was obtained between the LAI and NDVI, and also, between nitrogen uptake and
GNDVI, a correlation of 92% was observed. However, date-specific correlations between
these parameters were not as good. In the final analysis, the authors observed that improve-
ments could be made by shifting the locations of the spectral bands and through reflectance
recalibration. The study by Sankaran [109] reviewed state-of-the-art UAV-based imaging
sensors and their capabilities for phenotyping of field crops. The study reported that
plant water stress, nutrient deficiency, heat stress, plant emergence, vigor, LAI, biomass,
yield potential, and plant height are some of the parameters that can be measured with
UAV-based spectral indices and visible, NIR, and TIR data. Although UAV-based sensors
have been used for identifying and monitoring diseases, remote sensing of disease severity
and susceptibility of different varieties to diseases is still underdeveloped. The authors
also reported that, while UAV operation is often constrained by sensor payload, operating
altitude, and flight time, data processing such as image blur and geometric corrections,
image stitching, georeferencing, and automated feature extraction need to be improved.

In the UK, crop height and crop growth rate retrieval from multi-temporal data
recorded through structure from motion by a high-resolution UAV-mounted camera were
investigated [110]. Although crop height was underestimated in some instances, the
authors found that the data could generally retrieve crop height with accuracy of more
than 93%, with an RMSE of 0.077 m. The authors concluded that the RMSE values achieved
in this study meant that crop growth rate could be derived from the multi-temporal surface
models produced from this dataset. They also found that variables such as canopy structure
and plant density influenced the results. In the final analysis, the study recommended
further exploration of the camera viewing angle and incorporation of NIR imagery for
improved results. However, in 2018 there was a review on the progress made with UAV-
based remote sensing of drought stress, weeds and pathogens, nutrient status, growth
vigor, and crop yields [37]. They observed that UAV-based remote sensing of drought stress
focused more on orchards than on field crops. Furthermore, the authors noted that the
application of multispectral imagery for early detection of plant infections had produced
mixed results with false negative observations, while hyperspectral sensing of infections
had not been widely explored with UAVs. In the final analysis, the study emphasized the
need to use UAV-based data in robust radiative transfer and crop growth models rather
than in empirical and linear regression models.

Other researchers have used a UAV-based RGB sensor, flown at low altitude and
low speed, to estimate plant density of winter wheat at emergence [111]. They employed
object classification by training support vector machines with plant number-related image
objects. The study obtained a range of RMSEs between 21.66 and 52.35 plants/m2 under
variable conditions and observed that the estimation accuracy decreased as plant density
increased. In the final analysis, they recommended 0.40 mm and a higher spatial resolution
for estimating wheat plant density. In Spain, researchers used UAV-mounted visible and
multispectral sensors and an object-based method to classify vegetation over wheat, maize,
and sunflower crop fields [112]. They found that object size affected the classification
accuracies because classification error was low when the object size was nearly the average
plant size in the image. For instance, in wheat plots, they found that classification error
was minimal when the scale parameter was equal to one pixel because of the small sizes of
wheat plants. In contrast, shape and compactness parameters exhibited minor influence
on classification accuracy. In the final analysis, the object-based image analysis algorithm
implemented in the study produced classification accuracies with errors ranging between 0
and 10%.

In China, researchers combined UAV-based snapshot hyperspectral (UHD 185) and
crop height data to estimate above-ground biomass (AGB) of winter wheat [113]. They
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first correlated AGB with UHD 185 and ASD reflectance and found high correlations in
the 462 to 720 nm region, and low correlations in the 750 to 882 nm region. Spectral bands
and VIs that had stronger and significant correlations with AGB were B470, G550, R670,
and NIR800, ratio vegetation index, NDVI, and wide dynamic range vegetation index.
These variables were then used in conjunction with crop height data in different regression
models to estimate AGB of wheat. The authors found that the combination of spectral
and crop height data improved AGB estimation. By incorporating crop height data, the
correlation increased from 54–59% to 71–76%, while RMSEs decreased from 1.47–1.55 tons
per hectare (t/ha) to 1.12–1.22 t/ha. Model performances improved even further with
different combinations of VIs and spectral bands, achieving a maximum correlation of 78%
and RMSE of 1.08 t/ha.

Table 7. Top 10 globally cited published documents on wheat and UAV studies from 2005–2021.

Rank Document Title TC TC per Year References

1
Processing and Assessment of Spectrometric, Stereoscopic Imagery

Collected Using a Lightweight UAV Spectral Camera for
Precision Agriculture

353 35.300 [107]

2 Acquisition of NIR-Green-Blue Digital Photographs from Unmanned
Aircraft for Crop Monitoring 317 24.385 [108]

3 Multi-Temporal Mapping of the Vegetation Fraction in Early-Season Wheat
Fields using Images from UAV 296 32.889 [13]

4 Assessment of Unmanned Aerial Vehicles Imagery for Quantitative
Monitoring of Wheat Crop in Small Plots 275 18.333 [100]

5 Low-Altitude, High-Resolution Aerial Imaging Systems for Row and Field
Crop Phenotyping: A Review 245 30.625 [109]

6 Perspectives for Remote Sensing with Unmanned Aerial Vehicles in
Precision Agriculture 217 54.250 [37]

7 High Throughput Field Phenotyping of Wheat Plant Height and Growth
Rate in Field Plot Trials Using UAV Based Remote Sensing 214 30.571 [110]

8 Estimates of Plant Density of Wheat Crops at Emergence from Very Low
Altitude UAV Imagery 208 34.667 [111]

9 An Automatic Object-Based Method for Optimal Thresholding in UAV
Images: Application for Vegetation Detection in Herbaceous Crops 185 23.125 [112]

10
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned
Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height

Improved Models
173 28.833 [113]

4.6. Authors’ Keywords and Co-Occurrence Network

The selected authors’ keywords co-occurrence network in wheat and UAV studies
are presented into clusters and nodes, which show the frequency of authors’ keywords
(Figure 4). The selection of the number of authors’ keywords was based on Zipf’s law. In
addition, lines between nodes indicate the strength and relationship of the clusters. How-
ever, bigger nodes such as UAV, crops, and wheat suggest the higher frequency of authors’
keywords and their significance in wheat and UAV studies toward precision agriculture.
The nitrogen fertilizer was the most considered and monitored wheat parameter estimation
used in authors’ keywords during the survey period. Furthermore, common tools such
as cameras, infrared devices, and field spectroscopy for data acquisition appeared in key-
words. The prevalent methods were neural networks, decision trees, agricultural robots,
and vegetation index such as NDVI for authors’ keywords. However, big data, machine
learning, artificial intelligence, soil parameters (moisture, pH, soil nutrients, properties),
crop parameters (crop density, canopy, LAI, plant height, AGB), and other VIs were not
visible in the authors’ keywords, suggesting low frequency or little attention given in terms



Geomatics 2023, 3 128

of research. Therefore, future studies can navigate towards investigating these crucial
factors in characterization of wheat using UAVs.
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4.7. Authors’ Keywords Thematic Evolution

The thematic evolution presents developments of focal research areas in a specific
field of study over time. Accordingly, authors’ keywords were used to evaluate thematic
progress on wheat and UAV published documents (Figure 5). The results revealed that the
unmanned aerial vehicles and precision agriculture have been stable themes used by au-
thors from 2005 to 2020. In addition, deep learning and vegetation index became prevalent
themes in 2020, although they did not progress in the wheat and UAV research domain.
The study witnessed unmanned aerial vehicles and precision agriculture focused on winter
wheat in 2021 based on high frequency authors’ keyword during the survey period.
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5. Discussion

The study aim was to review the trends of research and technology adoption focusing
on wheat and UAVs. The trends were revealed through a bibliometric analysis of annual
scientific production, productive countries’ outputs, top global cited published documents,
core sources, authors’ keyword co-occurrence networks, and thematic evolution of authors’
keywords in wheat and UAV studies. The findings from the current study show that
the annual scientific production trend in wheat and UAV studies peaked in around 2019,
and in 2021, with an overall growth rate of 20.49% in citation per document. The annual
scientific production growth rate was 23.94%, suggesting that global research on wheat and
UAV studies has been increasing during the survey period. Consequently, there has been
a realization of wheat importance in the global market and UAV systems are becoming
affordable, so many research institutes can afford these types of technologies for research
developments. There has been an increasing application of UAVs to monitor wheat crop
growth and dynamics at a broad spatial, temporal, and near real-time farm-scale [14,35].

The results revealed that China, USA, Germany, and Australia ranked as the most
productive countries in terms of publications and total citations. Similar findings have
revealed that USA, China, Australia, and Germany have been leading countries in terms of
publication contributions [91]. This may be linked to countries’ wheat production, where
China is the leading wheat producer, followed by USA in the fourth position (after India
and Russia) [5,9,114]. The research developments in China and USA may explain their
efforts for global wheat production, as they are part of the top four current wheat producers
with India and Russia [3,5,8]. In addition, China and USA are the leading countries with
UAV applications to monitor different crops in precision agriculture, which may support
their top ranking for the current study [23]. China primarily uses UAVs in precision
agriculture over conventional agricultural monitoring methods [115]. This may explain
why China has more research outputs in wheat and UAV studies.

The spatial distribution map revealed low global research output with no records
in some parts of North America, Europe, Asia, South America, and Africa in wheat and
UAV studies during the survey period. The low global annual research publications on
wheat and UAV studies cannot be generalized in terms of countries’ publications. However,
the high cost of UAVs with compatible cameras, limited licensed pilot experts, certificate
of authorization acquisition, and aviation regulations may be linked with the low global
research output in monitoring wheat [116–119]. The lack of research outputs in wheat and
UAV-related studies based on Africa can be associated to its low level of initial adoption
over past years [95,112,120]. Moreover, the results revealed that China and Australia are
the only countries with multiple-country publications. Consequently, it is evident that
countries still lack collaborations to strengthen research partnerships in wheat and UAV
studies to alleviate food security challenges. This suggests a motivation for countries’
collaboration to increase research funding and counteract the high cost of UAV application
to monitor wheat and increase research outputs. The advancement in grant funding is
crucial to strengthen research productivity [40,121]. Other countries including North China,
USA, Australia, and Germany have adopted the UAV-associated approach in monitoring
their crop farming systems [122]. This may be extended to other developing countries to
accelerate the low global research output in wheat and UAV studies.

The study observed that the journals Remote Sensing and Computers and Electronics
in Agriculture are in a central position in all publishing journal sources of wheat and UAV
studies evaluated. This suggests that, with their high impact factor and global influence,
the journals can strengthen research developments in this niche area [123]. However, most
journals have published research on “wheat and UAV”, but the current study evaluates
relevant journal on WOS, Scopus, and Dimensions databases. The study further revealed
“UAV” and “wheat” were the highest frequency authors’ keywords appearing in the
field of wheat and UAV studies. This demonstrates the contribution of remote sensing
application and synergy between UAVs and wheat [66,124]. Results further revealed that
“cameras”, “infrared devices”, and “field spectroscopy” appeared in high frequency for
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authors’ keywords and play important roles to monitor wheat parameters such as biomass,
chlorophyll, LAI, and nitrogen content in wheat and UAV studies [47,67,68]. The keywords
“neural networks”, “decision trees”, and “NDVI” have contributed to monitoring and
modelling wheat parameters based on their appearance in authors’ keywords during
the survey period. NDVI is the most used VI and indicator to monitor wheat growth in
farmlands [38,100,125]. This index is a good to contrast between the vegetation and the soil
in monitoring winter wheat AGB [38,67]. Furthermore, it is worth noting that the winter
wheat, UAVs, and vegetation index are current themes within the niche area of the study.
For instance, the recent studies on wheat and UAV research have published within the
scope of the above themes [5,15,24,27,29,61,64,66,67,69,71,78,79,112,125]. This may suggest
a research direction in the field of wheat and UAV studies. However, there is still limited
research focus exploring the use of space-borne and UAV imagery fusion for agricultural
applications, particularly in wheat research [126,127]. Despite this, there has been recent
development of spatio-temporal fusion (STF) framework on UAV and satellite imagery
for continuous winter wheat growth monitoring [126]. Thus, future studies are strongly
recommended to consider STF framework to accelerate research developments in the niche
area of the study.

6. Conclusions

This study reviewed the trends of research and technology adoption focusing on wheat
and UAVs, using a bibliometric method from 2005 to 2021, to provide a comprehensive
evolution and understanding of current research hotspots. Findings from the research
reveal that studies focusing on wheat and UAVs have been increasing during the study
period. However, developed countries that produce large quantities of wheat are using UAV
technologies more than developing countries. This trend is similar for research outputs and
top global cited documents. The main findings are associated with the efficiency of UAVs
to monitor and provide important information about crop variability at near real-time for
instant crop management. This study will help government corporation and agricultural
institutions bolster their realization, implementation, adaptation, and integration of recent
technologies to improve crop management strategies for high-yielding crops and meet
global market. Therefore, findings from this study are vital for optimizing farming practices
in crop production with evolving research developments that shed light on the low-ranking
authors’ keywords with those countries that had little or no research on wheat and UAV
studies and provide hints for future research. The study limitations involved complex
assembling of multiple databases and data fusion. This paper show potentials of the
applied methods in the current study, and other research databases should be integrated to
reveal more possible research developments within the niche area of the study.
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