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Abstract: Fruit‑tree crops generate food and income for local households and contribute to South
Africa’s gross domestic product. Timely and accurate phenotyping of fruit‑tree crops is essential
for innovating and achieving precision agriculture in the horticulture industry. Traditional methods
for fruit‑tree crop classification are time‑consuming, costly, and often impossible to use for mapping
heterogeneous horticulture systems. The application of remote sensing in smallholder agricultural
landscapes is more promising. However, intercropping systems coupled with the presence of dis‑
persed small agricultural fields that are characterized by common and uncommon crop types result
in imbalanced samples, which may limit conventionally applied classification methods for pheno‑
typing. This study assessed the influence of balanced and imbalanced multi‑class distribution and
data‑sampling techniques on fruit‑tree crop detection accuracy. Seven data samples were used as
input to adaptive boosting (AdaBoost), gradient boosting (GB), random forest (RF), support vector
machine (SVM), and eXtreme gradient boost (XGBoost) machine learning algorithms. A pixel‑based
approach was applied using Sentinel‑2 (S2). The SVM algorithm produced the highest classification
accuracy of 71%, compared with AdaBoost (67%), RF (65%), XGBoost (63%), and GB (62%), respec‑
tively. Individually, the majority of the crop types were classified with an F1 score of between 60%
and 100%. In addition, the study assessed the effect of size and ratio of class imbalance in the training
datasets on algorithms’ sensitiveness and stability. The results show that the highest classification
accuracy of 71% could be achieved from an imbalanced training dataset containing only 60% of the
original dataset. The results also showed that S2 data could be successfully used to map fruit‑tree
crops and provide valuable information for subtropical crop management and precision agriculture
in heterogeneous horticultural landscapes.

Keywords: horticulture; Sentinel‑2 data; imbalanced data; sampling techniques; machine learning
algorithms

1. Introduction
Agriculture is regarded as the foundation of all civilization, and crops are crucial to

human nutrition and societal stability [1]. Due to the rising global human population, there
is a need to closely monitor agricultural systems [2]. The human population of the world
is experiencing a rapid increase—quadrupled in the last century, to c. 6.2 billion [3], and it
is projected to be c. 8.7 billion by 2030 [4], and 10 billion by 2050 [5]. Therefore, food pro‑
duction needs to be doubled by 2050 [6]. Timely, efficient, and reliable agricultural data is
of paramount importance to help monitor the demand for food, manage costs, and target
agriculture‑related policies [7,8]. Additionally, monitoring agricultural production is crit‑
ical in terms of climate change, loss of biodiversity, and natural disasters—e.g., drought
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and flood—which threaten food security at local and global scales [9]. The mapping of
crops is key to the management of crops, estimation of yield, and food security [10,11].

Traditionally, information on the distribution of crops has been acquired through
ground surveys and censuses [2]. However, field surveys are costly, outdated, cover small
spatial extents, and are prone to human error [12]. Remote sensing (RS) technology, which
has the advantages of monitoring extensive spatial extents and low cost, has substituted
the traditional methods [12]. As RS data are advancing in terms of spatial and temporal
resolutions, they are becoming increasingly important in generating crop‑type maps [2].
Therefore, the need for timely, accurate, and reliable agricultural data has seen unprece‑
dented growth in the economic importance of RS‑based crop mapping over the last two
decades [8]. The accessibility of satellite data by the public enabled many researchers to
minimize ground surveys by creating low‑cost crop‑type maps—using features extracted
from remotely sensed spectral differences in vegetation and other surfaces over time [13].
Agricultural RS offers insights that will radically change the operation and management
of agricultural systems [14]. These efforts have been achieved through the successful ap‑
plication of machine learning (ML) algorithms, such as support vector machines (SVM),
random forests (RF), and, increasingly, neural networks [15].

In addition to the number and quality of the training samples, algorithm performance
may be affected by class imbalance [16,17]. Class imbalance occurs when the number of
reference samples varies among the classes, leading to an imbalanced training set [16,17].
Most classifier learning algorithms that assume a fairly balanced distribution, such as k‑
nearest neighbor (k‑NN), support vector machine (SVM), and random forest (RF), are af‑
fected by imbalanced training data [17]. Imbalanced data may occur in a deliberative sam‑
ple, and they are also expected in random sampling [16,17]. In simple random sampling,
the chance of choosing a class is related to the areal coverage of the class. Thus, relatively
rare/minority classes will consist of smaller proportions of the training set, and vice versa.
The original dataset was imbalanced despite efforts to add samples of fewer crop types—
which compromises class‑specific accuracy [18]. The imbalanced data problem worsens in
a multi‑class skewed distribution because the standard classifiers are designed for binary
classification and assume a well‑balanced class distribution [19]. Advanced boosting classi‑
fiers, such as gradient boosting (GB), adaptive boosting (AdaBoost), and eXtreme gradient
boosting (XGBoost) are used to solve the limitations of standard classifiers.

Recently, the applicability of these boosting classifiers has been tested in crop type
mapping [19,20] and land cover mapping [13]. For example, [21,22] tested the performance
of the standard classifiers (RF, SVM) and boosting classifiers (GB, AdaBoost, XGBoost) in
heterogeneous crop types mapping and reported a superior performance of 86.91% using
XGBoost as compared to the RF and SVM. Similarly, [23] obtained the best accuracy metrics
of 0.88% when forecasting cereal yield using the XGBoost classifier compared to SVM, RF,
and multiple linear regression (MLR), whose accuracy was lower. The classification accu‑
racies reported in these studies involved cereal, sugarcane, and wheat crops—they possess
different canopy structures and spectral signatures. In this study, the crops were all fruit
crops—namely, avocado, banana, guava, mango, and macadamia nut—which display al‑
most similar spectral responses due to extreme heterogeneities. Such crop types are nearly
impossible to discriminate using classical multi‑spectral imagery analysis techniques [24].
This is made worse if the landscape is rugged terrains, intercropping systems scattered in
small patches, and different crop area coverage/levels of growth with varying health sta‑
tuses [25]. Additionally, the differences in management practices and soil fertility result
in spectral similarities among crops, leading to uneven distribution of crop types [26].

Thus, different sampling techniques have been designed to solve the imbalanced class
problem and ensure generalized data characteristics for class separability [27,28]. Such
techniques include the modification of the classifier and data sampling [29]. The applica‑
bility of data sampling techniques, such as random oversampling (ROS) using the synthetic
minority oversampling technique (SMOTE) and random undersampling (RUS), have been
demonstrated in land cover mapping [28,29]. These techniques provide land cover, crop,
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and soil mapping solutions by modifying the training dataset [30]. Although they pro‑
duce acceptable classification accuracy, they fail to produce acceptable individual class
accuracy [28,29]. Most of these techniques overfit the model or discard valuable samples
required to determine the decision boundary between the classes [30–32]. In all cases/
classification schemes, the datasets were split into test and training data before running
the models. Running models before splitting datasets can allow identical samples to be
present in both the test and training data, leading to the models overfitting the training
data—the sampling techniques were only applied to training data to avoid model overfit‑
ting [18,19].

Accurate and timely mapping of crop types and having reliable information about
the cultivation pattern/area play a key role in sustainable agriculture management. High‑
resolution, national‑scale maps of agricultural land are needed to develop strategies for
future sustainable agriculture. Thus, this study applied Sentinel‑2 multispectral data and
five widely‑used ML classifiers—which were used for comparison—i.e., SVM, RF, an ex‑
treme gradient boosting machine called XGBoost, AdaBoost, and GBBoost, to map fruit
crops and co‑existing land use types in Levubu area, Limpopo province, South Africa, us‑
ing imbalanced datasets.

The organization of the paper is as follows: Section 2 describes the materials and
methods used in this research. Section 3 depicts the results of the paper, while the results
of the research are discussed in Section 4. Finally, the conclusion of the paper is presented
in Section 5.

2. Materials and Methods
2.1. Methods Overview

The potential of data sampling using Sentinel‑2 multispectral data for crop type clas‑
sification was studied by selecting the Levubu sub‑tropical farming area as a research site.
The Sentinel‑2 image was pre‑processed using SEN2COR in the ESA Snap platform to re‑
move atmospheric effects, and five machine learning classifiers (i.e., GB, Ada Boost, RF,
SVM, and XGB) were used to classify the processed image. Finally, the effectiveness of
the classifier in classifying the monthly images was evaluated by computing different clas‑
sification metrics, that is, the overall accuracy (OA), F1 score, user’s accuracy (UA), and
producer’s accuracy (PA). A flowchart of the methodology followed in this research is pre‑
sented in Figure 1.

2.2. Study Region
This research was conducted in Levubu, a subtropical fruit‑tree crop farming region

located at 23◦4′60.00″ S and 30◦16′60.00″ E in the Vhembe District, Limpopo, South Africa
(Figure 2). The region experiences a warm subtropical climate with annual temperatures
ranging from ~16 to 22 ◦C [33,34]. The annual rainfall ranges from ~200 to 1500 mm; how‑
ever, it varies substantially owing to the geographic effect of the Soutpansberg mountain
range [35,36]. Regions windward and east of the mountain range receive 200 to 400 mm,
while regions leeward and west of the mountain range receive around 1000 mm [37]. The
rainfall of the region is seasonal, with distinct wet and dry seasons ranging from October
to March, and April to September, respectively [38].

Levubu, a smallholder agricultural region in Limpopo, South Africa, has diverse agro‑
climatic conditions that offer endless possibilities for commercial horticulture farming [39].
The dominant tree crop types are the macadamia nut, avocado (Hass, Maluma Hass, Pinker‑
ton, and Fuerte), banana, guava, mango, and pine tree. In addition to the crop area, the
region is characterized by other land‑use types, such as water bodies, built‑up areas, and
woody vegetation. Most crops grown in the Levubu area are subtropical, and only a few
citrus crops, such as oranges, are grown. Tree crops dominate the site, and small cultivated
crops are grown depending on the season. Levubu crops are primarily rain‑fed; however,
during the dry season, crops are irrigated. Most of the tree crops bear fruit seasonally,
and the flowering and harvesting time differs with each crop type. Many crops, including
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the macadamia nut, banana, mango, and avocado, are exported to international markets
(Department of Agriculture, Forestry and Fisheries) [40].
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2.3. Data Collection and Processing
2.3.1. Ground Truth Data

The ground truth data used for calibrating and validating fruit‑tree crop maps and
for applying ML algorithms in this study were collected using field surveys conducted on
28 and 29 December 2019 and 2 and 3 January 2020. A Garmin eTrex 20 Global Positioning
System, with a positional accuracy of 5 m, was used to capture the geographic locations
of dominant fruit‑tree crops and co‑existing land cover classes, namely: avocado, banana,
bare soil, built‑up, macadamia nut, mango, pine tree, water body, and woody vegetation.
A combined total number of n = 304 training samples was collected.

The collected field samples were used as a guide for visual comparison, identifying
and labeling samples corresponding to the tree crop species and other co‑existing land‑use
classes. A single‑pixel sampling approach was applied when digitizing the training sam‑
ples to select pure pixels and minimize the effect of landscape heterogeneity and mixed
spectral signatures on classification accuracy [41]. A purposeful sampling method was
used to increase the sample number and to consider the proportion of different types of
fruit trees in the study area. The additional training samples were digitized using Google
Earth Pro and ArcGIS version 10.6.1. The proportion of the farm was considered in gener‑
ating the number and distribution of the samples, as depicted in Figure 2. The structure of
the reference data is presented in Table 1, while the spatial distribution of the samples is
depicted in Figure 3.

Table 1. Number of samples for fruit‑tree crops and other existing land uses, the structure of training
and testing data for each class used to map fruit‑tree crops in Levubu subtropical farms.

Tree Species and Other Land
Use Classes

Reference Data Total

Training Testing

Avocado 109 47 156
Banana 181 77 258

Bare soil 120 52 172
Built‑up 122 52 174
Guava 154 66 220

Macadamia nut 113 48 161
Mango 160 68 228

Pine tree 117 50 167
Waterbody 128 53 181

Woody vegetation 126 54 180

Total sample size = 1897

2.3.2. Data Sampling
Data sampling is crucial in supervised land cover mapping based on imbalanced

data [42]. Previous research has dealt with class imbalance problems using data or
algorithm‑level methods [43]. The data‑level methods modify the distribution and degree
of imbalance of classes in the training dataset to fit the configurations of standard classi‑
fiers, while the algorithm‑level methods modify the classifiers [43,44]. Two data modifica‑
tion methods used are undersampling and oversampling [32]. The former balances data
by removing points from the majority class, while the latter duplicates points from the mi‑
nority class [44,45]. Based on the existing remote sensing literature, much attention has
been given to improving the accuracy of minority classes [29]. However, this study is built
on the assumption that all crops are equally crucial in small‑scale farming and must be
recognized to allow efficient farm management practices [44]. Hence, the study employed
undersampling techniques to retain the in‑situ data and prevent the loss of crucial samples
from the imbalanced dataset [46]. This was achieved by applying a RandomUnderSampler,
a non‑heuristic approach (naïve sampling) that selects samples from the majority class to
balance the class distribution [44].
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Space Agency.

In this study, the collected in‑situ data is presented as Dataset 7 in Table 2 and consist
of an imbalanced class ratio of 2:3, whereby the common (i.e., majority) species had more
samples than the less common (i.e., minority) species. Six different sampling strategies
were applied to generate new datasets from the original dataset, consisting of decreased
imbalanced ratio and balanced class distribution (Table 1). Firstly, two balanced datasets
(i.e., Dataset 1 and Dataset 2) were extracted, consisting of 100 and 150 balanced points.

Secondly, the imbalanced ratio on the original dataset was decreased by extracting
four datasets using sampling strategies based on percentages (i.e., 40%, 50%, 60%, and
70%) and probability sampling. These strategies resulted in the formation of Dataset 3,
Dataset 4, Dataset 5, and Dataset 6, respectively.

The sampling procedures were carried out using Imbalanced‑Learn, a Python toolbox
designed to handle problems associated with imbalanced datasets [47].

This toolbox consists of different libraries, where Scikit‑Learn and RandomUnder‑
Sampler were used to sample the datasets in this study. Seven experiments of training
datasets, including the original dataset, were tested to select the best model for mapping
fruit‑tree crops and co‑existing land‑use types in our study regions. The dataset was ran‑
domly divided into 70% training and 30% validation datasets for each class. All datasets
were cross‑validated to detect the behaviour of different classifiers on different samplings.
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Table 2. List of fruit‑tree crops and co‑existing land‑use types and the descriptive statistics of the undersampled and original datasets. The # stands for the number
of the datasets used in this research.

Crop Name Abbreviation Balanced Datasets
(#1 and 2)

Percentages Undersampled Datasets
(#3–6)

Unsampled Imbalanced
Dataset (#7)

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7
Avocado AV 100 150 62 78 94 109 156
Banana BN 100 150 103 52 154 181 258

Bare soil BS 100 150 69 86 103 120 172
Guava GV 100 150 70 87 104 121 174

Macadamia nut MN 100 150 88 110 132 154 220
Mango MG 100 150 64 81 97 113 161

Pine tree PT 100 150 91 114 137 160 228
Built‑up BU 100 150 69 86 100 117 167

Waterbody WB 100 150 72 91 109 127 181
Woody vegetation WV 100 150 72 90 108 126 180

Total number of instances 1000 1500 760 875 1138 1328 1897
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2.3.3. Remote Sensing Data Acquisition and Pre‑Processing
Sentinel‑2A (S2A) and Sentinel‑2B (S2B) are a constellation of two polar‑orbiting sen‑

sors placed in the same sun‑synchronous orbit with the same sensor configurations. Both
are equipped with a multi‑spectral imaging (MSI) sensor. The imagery acquired from the
two sensors is freely available from the European Space Agency (ESA) Copernicus Open
Access Hub website (https://scihub.copernicus.eu/). The MSI sensor consists of 13 spectral
bands ranging from visible and near‑infrared (VNIR) to the shortwave infrared (SWIR) re‑
gion (Table 2) [48]. The image has a wide‑swath width of 290 km with 13 spectral bands
consisting of three spatial resolutions (10 m, 20 m, 60 m). The 10 m spatial resolution bands
(Blue: B2, Green: B3, Red: B4, NIR: B8) are centered at 490 nm, 560 nm, 665 nm, and 842 nm,
and the 20 m spatial resolutions bands (Red Edge_1: B5, Red Edge_2: B6, Red Edge_3: B7,
Narrow NIR: B8a, SWIR_1: B11, SWIR: B12) are located at 705 nm, 740 nm, 783 nm, 865 nm,
1,610 nm, and 2,190 nm. The 60 m spatial resolution bands (coastal aerosol: B1, water vapor:
B9, SWIR‑cirrus: B10) are located at 443 nm, 945 nm, and 1, 375 nm, respectively (Table 1).
Additionally, it consists of two spectral bands that were systematically positioned in the
red‑edge position (REP). These bands are sensitive to chlorophyll content and are essen‑
tial for crop mapping [35]. The temporal resolution between the two sensors is five days
allowing for continuous crop mapping throughout the growing season [22].

Pre‑processing of S2 data involves atmospheric corrections, geometric rectification,
and radiometric calibration. In this study, the pre‑processing was executed using a level
2A Prototype processor (SEN2COR) version 2.5.5 processing module in the ESA SNAP
toolbox [35]. Specifically, the atmospheric/topographic correction for satellite imagery (AT‑
COR) algorithm within the SEN2COR toolbox was applied to correct the image [22,34]. All
of the S2 band images were resampled to a 10 m spatial resolution using a nearest neighbor
resampling method.

2.4. Machine Learning Classification Algorithms
Selecting an appropriate classifier for a classification problem remains challenging be‑

cause the sensitivity of the classifiers during the learning stage varies per dataset owing to
topography, land use, and class distribution [22]. The algorithms used in this study were
selected based on their simplicity, robustness, and popularity in remote sensing of biophys‑
ical parameters. Therefore, it is imperative to elucidate their performance and consistency
with previous research using the same acquisition condition but in a different environment.
The study compares ML algorithms for mapping fruit‑tree crops and co‑existing land‑use
types in smallholder agriculture using balanced and imbalanced data. The classification
was implemented with 70/30 split samples for training/testing. The analysis was carried
out using Python Jupiter Notebook Version 3.9 (https://jupyter.org/).

2.4.1. Random Forest (RF)
The RF classifier is an ensemble tree‑based classifier that randomly selects features

from the training sample data and reduces tree correlations [49]. It uses bootstrap aggre‑
gating to build models using two parameters, ntree and mtry, interactively and indepen‑
dently by randomly selecting samples from the training dataset to make a final predic‑
tion [49]. All trees are aggregated to reach a final prediction. Thus, applying diverse de‑
cision trees grown using different random subsets reduces bias and prevents overfitting
in the model [49]. The bootstrap aggregating (bagging) method is robust against model
fitting and assists in obtaining a stable model [50].

A grid search was applied to select the optimal trees (ntree) and split nodes (mtry)
used to map fruit‑tree crops and co‑existing land‑use types from S2 data. Out of the cal‑
ibration dataset, approximately 1/3 of the test data is held back and used to calculate un‑
biased error estimates, referred to as out‑of‑bag (OOB) [49]. The grid search approach
was used for hyperparameter tuning, using all possible band combinations to yield a low
OOB error [50]. Previous research has determined that the default values provide good

https://scihub.copernicus.eu/
https://jupyter.org/
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results [34,50]. Therefore, we utilized the default value of ntree = 500, and for mtry, the
square root of the number of the variables as input into the RF model [49].

2.4.2. Support Vector Machine (SVM)
The SVMs are discriminative classifiers based on a statistical learning framework [51].

The SVM uses a margin‑based classifier to identify optimal linear hyperplanes with high‑
significance class prediction using a kernel function [51].

The SVM consists of kernels used to model various classification problems as a hy‑
brid classifier. Examples include the linear, polynomial, sigmoid, and radial basis function
(RBF) kernels [52]. In this study, the SVM was applied using the function in Equation [1],
which was implemented using the RBF kernel in Equation [3], consisting of two tuning
parameters, termed the “gamma” (y) and “cost” (c) [22].

f(x) = sign
(
∑n

i=1 αiyiK(x, xi) + b
)

, (1)

where αi illustrates the Lagrange multiplier and K (x, xi) represents the kernel fun.

2.4.3. Gradient Boosting (GB)
The GB classifier is an ensemble classifier that improves final prediction by combining

residuals from prior weak models [53]. A gradient descent algorithm is used to sequen‑
tially train individual classifiers using equally weighted training data during the training
process. The data are further re‑calculated during the boosting process [53]. At the same
time, the loss function is minimized by sequentially and iteratively adding new models to
improve the base learners from the weak classifiers in an additive manner until the training
data set is predicted perfectly [54].

2.4.4. Adaptive Boosting (AdaBoost)
AdaBoost is a meta‑algorithm that can be used with other classifiers to improve classi‑

fication accuracy [55]. It treats observations equally during optimization using stochastic
GB machines [56]. The boosting process uses training data to build short decision trees
in succession [57]. The performances of the trees are measured to determine the weight
allocation during the next iteration [58].

The AdaBoost classifier is initiated by allocating weight on the training dataset based
on how hard or easy the observations can be predicted. More weight is allocated to com‑
plex observations, while less is given to observations that can be easily predicted (u1, v1),
. . . , (un, vn); ui∈ U, vi∈ {−1,+1}. At the start of the boosting process, all models are as‑
signed the same distribution of D1(i) = 1/N, i = 1, . . . , N, where N represents the total
number of observations [59]. The models are sequentially trained using the distribution
(Dt), and each model updates the weights of training instances of weak learners [60]. The
new weights are calculated, and the distribution Dt: Dt+1(i) is updated according to func‑
tion 2. A final prediction is made based on the weighted vote accuracy of the trees on the
training data [57].

Dt(i) exp (−atytTt(ut))

Ct
(2)

2.4.5. eXtreme Gradient Boosting (XGBoost)
The XGBoost classifier has gained popularity in data science because it uses a gra‑

dient descent from the trees constructed in parallel to build an optimal model using the
majority rule [54]. The XGBoost was developed to overcome limitations associated with
previous boosting algorithms (i.e., GB and AdaBoost) [22]. It uses a regularized technique
to control model overfitting while maximizing the model accuracy by sequentially adding
models to correct errors from the existing models [21,61]. Furthermore, the classifier is an
advanced gradient boosting that is computationally efficient and uses a cluster machine to
continuously train large models while boosting fitted models on newly generated data [62].
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The XGBoost contains different tuning hyper‑parameters that are decided on using a grid
search, making it robust and suitable for classifying imbalanced multi‑class data from com‑
plex heterogeneous landscapes [21,61].

In this study, the XGBoost classification was performed using the XGBoost package
with an objective function of “multi. softprob” to model the multi‑class classification prob‑
lem. The calibration of the models was carried out using stratified 10‑fold cross‑validation
(CV). The CV is used to cater for the variance and enforce class distribution in imbalanced
multi‑class datasets while giving the dataset an equal chance to be returned to the testing
set at fold iteration [63]. The learning rate was set to 0.01 with a base score of 0.5.

2.5. Mapping Accuracy Assessment
The prediction performance of the ML algorithms (GB, AdaBoost, SVM, RF, and XG‑

Boost) in mapping fruit‑tree species and co‑existing land use types using S2 was evaluated
using 30% of the training samples from each of the seven models used in this study. A
confusion matrix was used to calculate the threshold metrics widely used in imbalanced
classification problems [64]. The OA, user’s accuracy (UA), producer’s accuracy (PA), and
F‑measures (F1‑score) were used to evaluate the classifiers’ performance [31,65]. The equa‑
tions below were applied for the assessment.

OA =
Sd
n

× 100% (3)

UA =
Xij

Xj
× 100% (4)

PA =
Xij

Xi
× 100% (5)

Fscore = 2 × UA × PA
UA + PA

(6)

where Sd demonstrates the samples correctly classified; n is the total number of validated
samples; Xij represents the observation in row i of column j; Xi is the marginal total of row
i, and Xj denotes the marginal of the total in column j.

The accuracy of the classifiers was then compared using a Student’s paired t‑test [66].
The paired t‑test was applied with an alpha level of 5% (α = 0.05), using the classifiers’ OA
to assess whether significant differences exist across the sampled datasets [67]. Boxplots
were also created for visual interpretation to complement the t‑test results.

3. Results
3.1. Spectral Separability of Fruit‑Tree Crops and Co‑Existing Land‑Use Types

The mean spectral reflectance of the dominant fruit tree crops and co‑existing land
cover types identified during the field surveys are shown in Figure 4. Compared to the
other nine classes, the built‑up class has the highest reflectance values in the visible spec‑
trum (Blue: 490 nm; Green: 560 nm; Red Edge_1:705 nm). The spectral reflectance values
superficially on Red Edge_2, Red Edge_3, Red Edge_4, and NIR are higher for guava (GV),
woody vegetation (WV), avocado (AV), macadamia nut (MN), mango (MG), banana (BN),
and pine tree (PT) than for bare soil (BS) and water body (WB) (Figure 4). The GV has the
highest spectral values in the REP among the fruit‑tree crops, followed by the MN, MG,
BN, and PT. For the non‑crops, the built‑up areas have the highest spectral values, fol‑
lowed by bare soil, and as expected, the waterbody has the lowest spectral values because
of its high absorption.
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Figure 4. Spectral signature of fruit‑tree crops, and co‑existing land cover classes extracted from
spectral Sentinel‑2A algorithms image. The mapped classes are avocado (AV), banana (BN), bare
soil (BS), guava (GV), macadamia nut (MN), mango (MG), pine tree (PT), built‑up (BU), water body
(WB), and woody vegetation (WV).

3.2. Fruit‑Tree Crops Mapping Using Machine Learning Algorithms
This study used seven data sampling scenarios and single date S2 imagery for fruit‑

tree crop mapping by applying the various ML algorithms (RF, SVM, GBoost, AdaBoost,
and XGBoost) (Figure 5a). The mapping results in Figure 5b show the effect of sampling
techniques on the performance of the algorithms. The SVM classifier produced 71% and
69% OA at 150 balanced samples (Dataset_2) and 60% undersampling (Dataset_6). Next,
the RF model recorded an OA of 65% at 100 balanced undersampled (Dataset_1) and 50%
undersampling strategy (Dataset 4). The GB and XGBoost algorithms demonstrate the
poorest performance for the data balanced at 100 sample points (Dataset_1) and sampled
at 40% (Dataset_3) but recorded a slight improvement when each class has 150 balanced
sample points (Dataset_2), scoring 50% and 70% for the undersampling strategies, respec‑
tively. Conversely, the performance of the AdaBoost classifier was stable across all datasets
except at 40% undersampling (Dataset_3), in which the other classifiers also recorded ac‑
curacy scores of below 65%.

3.3. The Variable Importance
Variable selection is an important process that eliminates redundant information and

increases the classifier’s performance [42]. The permutation feature selection was used to
retrieve important variable(s) from all possible parameter combinations [42]. The results
show that the S2 bands’ contribution and strength in discriminating classes vary across
datasets, suggesting that the classifiers were sensitive to the sampling methods (Figure 6).
For the 100 balanced samples, the SWIR_2 (B12: 2190 nm), SWIR_1 (B11: 1610 nm), and
red (B4: 665 nm) are shown as the most optimal variables. For 150 balanced data points
(Dataset_2), Red‑Edge_2 (B6: 740 nm), green (B3: 560 nm), and SWIR_1 (B11: 1610 nm)
were most important for discriminating the classes. A sampling at the 40% strategy,
SWIR_2 (B12: 2190 nm), Red (B4: 665 nm), and RedEdge_2 (B6:740) produced the high‑
est MDA scores, while at 50% sampling, the SWIR_1 (B11:1610), SWIR_2 (B12: 2190 nm)
and Red‑Edge_2 (B6: 740 nm) were the top contributing bands. At 60%, the SWIR_1 (B11:
1610 nm), SWIR_2 (B12: 2190 nm), and red (B4: 665 nm) were recorded as the best variables,
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while, at 70% sampling, the Red‑Edge_2 (B6: 740 nm), red (B4: 665 nm) and SWIR_2 (B12:
2,190 nm) were the best variables. The original dataset displayed the red (B4), SWIR_1
(B11: 1610 nm), SWIR_2 (B12: 2190 nm), and Red‑Edge_2 (B6: 740 nm) to be the bands
crucial for accurate mapping.
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Figure 5. Comparison of the overall classification accuracies (a) and F1‑Score (b) from GB, Ada
Boost, RF, SVM, and XGBoost using seven different datasets. Dataset_1 (balanced undersampled at
100 points), Dataset_2 (balanced undersampled at 150 points), Dataset_3 (undersampled randomly
at 40%), Dataset‑4 (undersampled randomly at 50%), Dataset‑5 (undersampled randomly at 60%),
Dataset_6 (undersampled randomly at 70%), and Dataset‑7 (imbalanced dataset).

3.4. The Class Accuracies
The F1 Scores

In Figure 7, the F1 scores for avocado, water body, and woody vegetation are above
60% for all ML classifiers across all datasets. Figure 8 shows that individual classes’ UA
and PA values were inconsistent across the datasets. The PA values for individual classes
ranged between 17.78% (pine tree), using balanced data with 100 observations, to 100%
(waterbody), using Dataset_2 (resampled at 40%) and the gradient boost classifier. At the
same time, the UA ranged from 17.78% (pine tree, Dataset_2) to 100% for the water body
class when applying the GB algorithm. The AdaBoost produced a PA of 23.33% for the
mango class using Dataset_2 and 100% (waterbody) using Dataset_3. The UA accuracies
ranged between 19.23% for macadamia nut, using Dataset_2, and 100% for waterbody,
using Dataset_1 and Dataset_3 and the AdaBoost classifier.

The PA values for individual classes ranged from 0 (pine tree) to 100 (avocado, water‑
body) for XGBoost. The UA accuracies ranged from 0% (pine tree) for Datasets 3, 5, and 6
to 100% for the avocado and waterbody classes for Dataset_3,5 and 6. The pine tree class
recorded the lowest user accuracy on account of the low PA produced using the XGBoost
classifier. The RF recorded PA values ranged between 15.38% for the mango class using
Dataset_4 and 100% for the waterbody class using Dataset_5. The UA ranged between 32%
for the pine tree class using Dataset_4 and 100% for the avocado and water body class using
Dataset_1, 3, and 4, respectively. The SVM produced PA values ranging between 15.38%
for the mango class using Dataset_4 and 100% for the waterbody class using Dataset_5.
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Figure 6. A comparative importance of explanatory variables used in permutation feature selec‑
tion on seven datasets based on S2 spectral bands for Dataset 1 (balanced undersampled at 100
points), Dataset 2 (balanced undersampled at 150 points), Dataset 3 (undersampled randomly at
40%), Dataset 4 (undersampled randomly at 50%), Dataset 5 (undersampled randomly at 60%),
Dataset 6 (undersampled randomly at 70%), and Dataset 7 (imbalanced dataset). The most influential
bands are depicted by spikes indicating the highest feature importance scores. The color maroon, red,
orange, yellow, lime green, green, light blue, blue, dark blue and purple represent Sentinel‑2 bands,
namely: Band 2 (Blue), Band 3 (Green), Band 4 (Red), Band 5 (Rededge_1), Band 6 (Rededge_2), Band
7 (Rededge_3), Band 8 (NIR), Band 8a (Rededge_4), Band 11 (SWIR_1) and Band 12 (SWIR_2).
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Figure 7. F1‑scores rankings indicating the effect of sampling methods on class‑specific accuracies obtained from GB, Ada Boost, RF, SVM, and XGBoost classifiers.
The mapped classes are avocado (AV), banana (BN), bare soil (BS), built‑up (BU), guava (GV), macadamia nut (MN), mango (MG), pine tree (PT), water body (WB),
and woody vegetation (WV).
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Figure 8. User’s (blue) and producer’s (red) accuracy per class produced using GB, Ada Boost, XG‑
Boost, RF, and the SVM classifier. On each classifier, there is a trade‑off between the user and pro‑
ducer accuracy across the datasets.

3.5. Statistical Comparison of ML Classifiers from Seven Datasets
A comparison of the performance of the classifiers across the sampling techniques for

the seven datasets shows that the Ada Boost and RF algorithms are sensitive (Figure 9).
The overall mean ranged from 2.37 for RF and XGB (p = 0.001) to 5.42 for SVM (p = 0.008).
The results indicate that the performance of the models across the datasets is statistically
different and significant (p = 0.001). However, the GB, SVM, and XGBoost algorithms have
the same mean and p of 0.292 and 0.780, respectively. The prediction of the fruit‑tree crops
with their co‑existing land uses using different classifiers was significant across the datasets.
Furthermore, the prediction was more statistically significant using the GB and XGBoost
than for AdaBoost, RF, and SVM.
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Figure 9. The boxplot shows the mean (yellow line), the low and upper quantile (black whiskers) comparison of the model performance across datasets and among
the models using students paired t‑test, where (A) represents the gradient boosting; (B) AdaBoost; (C) random forest; (D) support vector machines; (E) eXtreme
gradient boosting; while (F) depicts the comparison of model performance amongst models, respectively. From the x‑axis, the 100, 150, 40, 50, 60, 70, and original
dataset labels correspond to Dataset 1, Dataset 2, Dataset 3, Dataset 4, Dataset 5, Dataset 6, and Dataset 7, respectively. The green triangles represent the mean in
relation to the overall performances of each classifier per dataset.
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4. Discussion
4.1. The Effect of Sampling Size on the Performance of Machine Learning Algorithms

Timely and accurate image classification from earth observation data involves ongo‑
ing efforts in various global agricultural systems based on distinctive climatic regions and
different user needs, advances in mapping approaches, and easier access to remote sensing
data. Spatially explicit information at a fine scale is required for site‑specific management
to optimize production and maximize returns. Thus, continuous mapping of smallholder
agricultural systems is required for proper agricultural management, informing decisions,
and developing policies to ensure sustainable food systems and economies in rural com‑
munities. This study evaluated the influence of sampling techniques on mapping fruit‑tree
crops in a subtropical agricultural region, namely, Levubu (South Africa), using a pixel‑
based approach with Sentinel‑2 data.

The results demonstrate that applying effective sampling techniques and S2 data could
provide spatially explicit information to improve the mapping of fruit‑tree crops in a het‑
erogeneous horticultural environment while reducing the need for extensive data collec‑
tion. The fruit trees and co‑existing land types in the study area were classified at an OA
of 71% when applying the SVM algorithm, and the imbalanced dataset that was sampled
at a 60% level (i.e., Dataset_6). Recent studies by [61,68] also reported the SVM as superior
to other ML algorithms in discriminating crop species. The SVM uses spectrally weighted
kernels to eliminate redundant information, select optimal variables based on their rela‑
tive importance, and improve classification accuracy [41,61]. This advantage corroborates
findings in previous crop type classification studies [63,69,70]. The ability of the SVM to
achieve good classification results using small training samples should be considered when
mapping landscapes with terrain characteristics that hinder the collection of balanced sam‑
ples [71].

The superiority of the boosting classifiers (GB, AdaBoost, XGBoost) to the benchmark
classifiers (RF, SVM) has been reported in previous studies [69,72]. The boosting algo‑
rithms have also been applied in crop mapping to overcome the configurations of the stan‑
dard classifiers [21,22]. Studies by [23,73] also compared different ML algorithms for crop
classification. They concluded that the XGBoost was the best classifier over SVM, RF, and
GB. However, our results showed that the XGBoost algorithm performed poorly compared
to SVM and RF for our study area. These results are consistent with findings from recent
similar studies [21,61]. The performance of the GB classification showed higher accuracy
when applied to a 50% sampled dataset (Dataset_4) but produced poor results for the other
sampled datasets. This may be attributed to the sensitivity of the GB algorithm to hyper‑
parameter selection, which was not evaluated in this study [61]. In all tested experiments,
the results of the AdaBoost classifier were similar to the other classifiers, which contradicts
with findings by [74]. In their study, the AdaBoost was more accurate in classifying the
canola crops than the SVM.

The sensitivity of the classifiers differed based on the degree of class overlap, class
imbalance, and lack of density in minority classes [75]. The effect of sampling on classi‑
fiers’ performance was noticeable in imbalanced training samples. The GB, AdaBoost, and
XGBoost were mostly affected compared to RF and SVM. The GB was affected by small
balanced and imbalanced training samples (Dataset 1 and Dataset 3), while the overall ac‑
curacy of the AdaBoost, RF, and XGBoost decreased on small imbalanced training samples
(i.e., Dataset 3). The performance of the XGBoost in this research was not stable on imbal‑
anced samples, which contradicts the findings by [76]. The RF and SVM overall accuracy
was over 65% on selected imbalanced training samples (i.e., Dataset 3, Dataset 5, Dataset
6, and Dataset 7). The performance of the RF was comparable on balanced samples. The
differences in overall accuracy were significant with the increase in imbalanced training,
which is similar to the report by [77]. The SVM was least sensitive to imbalanced training
samples and performed well in detecting overlapping instances and showed the most ac‑
curate results even on small training samples. However, the results were slightly different
from RF [16,77]. These findings are consistent with the results by [28]. We caution, how‑
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ever, that this conclusion is based on a small study area with a limited number of reference
data. We suggest that the findings of this study should receive considerable additional in‑
vestigation with other and big numbers of samples before it is accepted as a substitute for
reliable results.

4.2. The Statistical Comparison of the Classifiers among and within the Classifiers
The five classifiers recorded significant differences (p = 0.001), suggesting that the sam‑

pling techniques had an effect on the classification results and can be used to improve
crop discrimination in smallholder agriculture. In contrast, the mean differences in over‑
all accuracies of the classifiers within the classifiers were statistically insignificant for GB,
SVM, and XGBoost across the datasets (p = 0.780). Although the highest classification accu‑
racy was obtained using the SVM model, the classifier’s statistical comparison within the
datasets was not statistically significant, corroborating the findings by [78,79], who stated
that the SVM classifier was reliable and able to perform well in classification using limited
training samples. The SVM classifier was robust and produced stable accuracies across
the various balanced and unbalanced training set samples [68,77]. Conversely, the RF and
Ada Boost performances differed across the various datasets and were statistically signifi‑
cant [80]. The models were robust and independent of the statistical distribution of training
data, corroborating the statistical significance obtained using Student’s paired t‑test.

4.3. Comparison of Individual Class Accuracies
The discrimination between classes was assessed using the F1 scores, UA, and PA. As

inferred from the F1 scores, it is evident that the performance of the classifiers is optimized
when the data is balanced with a low imbalanced class ratio in the training data [63]. Al‑
though there was spectral overlapping among the mango, macadamia nut, and pine tree,
the separability of the mango class from other classes was enhanced as a result of its partic‑
ular structural and textural properties [81]. In addition, it has a loose canopy that displays
unique tonal changes. However, these classes recorded low accuracies due to the differ‑
ences in stem elongation, flowering, and fruiting, suggesting that the image acquisition
was not optimal for these crops [82]. In some instances, spectral confusion can be exac‑
erbated by factors, such as landscape heterogeneity, variations in agronomical practices,
cropping calendars, and the pixel‑based approach applied in this study [82]. Consistent
with findings by [23,73], the best class‑specific metrics in this study were achieved using
GB, AdaBoost, RF, and XGBoost. The results indicate that the avocado class was the most
accurately classified crop across the datasets. The co‑existing land uses (i.e., water bod‑
ies and woody vegetation) have the highest classification accuracy except for the bare soil
and pine tree classes. The performance of the classifiers was consistent and comparable in
detecting the built‑up class due to its high scattering mechanism, which was not affected
by the balanced and imbalanced ratio of the datasets [83]. The lowest F1‑score value was
achieved using the SVM classifier, which is similar to the [58] findings. In their study, the
highest F1 score was achieved using the RF algorithm when mapping the winter wheat
crop in an urban agricultural region in Jiangsu Province, China. The crop spectral similar‑
ities had an effect on the classification algorithms as they lowered the classification results
on some of the datasets [61]. High misclassifications among the macadamia nut, mango,
and pine tree were observed from the accuracy metrics resulting from their small field size
and spectral similarities. The difficulties in mapping macadamia trees are attributed to
their hedgerow structures, as reported in other horticultural studies [82,83].

The pixel‑based classification failed to capture the spectral heterogeneity in macadamia
nuts and mango trees owing to intercropping, structural overlapping, and mixed spec‑
tral signatures [20,84]. The findings corroborate previous research that cited class overlap‑
ping and spectral similarities as the main factors hindering classification accuracy [84,85].
The results further demonstrate the effectiveness of S2 data in discriminating horticultural
crops with mixed classes and high spatial heterogeneity [34,84]. Overall, stable class ac‑



Geomatics 2023, 3 88

curacies were obtained using Datasets 3 and Dataset 4, indicating the robustness of the
classifiers in handling imbalanced data.

4.4. Importance of Variables in Mapping Fruit‑Tree Crops and Co‑Existing Land‑Use Types
Measuring the importance of the explanatory variables concerning the modeled bio‑

physical parameters has been fully explored in the existing literature [22,50]. In addition,
variable importance is used to investigate the structure and the parameters that are used to
train the model to understand their significance or a set of critical variables used to derive
predictions [50]. The sensitivity of the S2 bands across different training datasets was eval‑
uated using permutation feature selection. The comparative assessment of the derived
feature importance (Figure 6) indicates a shifting pattern in the importance of S2 bands
across different sampling techniques. The prominence of the S2 red band (B4: 665 nm),
RedEdge_2 (B6: 740 nm), and the SWIR bands (B11,12: 1610–2190 nm) are comparable and
more significant for class separability, regardless of the dataset used in this study. The re‑
sults are consistent with the findings by [22]. The performance of RedEdge‑1 (B5: 705 nm)
is similar when data is balanced, sampled at 60%, 70%, and the original imbalanced dataset.
The blue band (B2: 490 nm) scored high at 100 equal splits (balanced), sampling at 60% and
70%. The additional S2 RedEgde_2 band (B6: 740 nm) improved the classification results in
the research area and was among the top three crucial variables. As expected and reported
in previous studies, the results highlighted the effect of biophysical parameters on various
electromagnetic spectra [50,86]. These findings are similar to previous research on crop
type mapping using Sentinel‑2 data [69,70]. The S2 shortwave region is characterized by
increased spectral variability sensitive to water content on leaf canopies [72]. The impact
of phenology on the SWIR reflectance enhanced the crop classification, as noted in recent
research [87]. In contrast, the S2 visible spectrum and REP were found to be sensitive to
chlorophyll content and leaf area index (LAI) in a study by [88]. The S2 10m spatial resolu‑
tion reduces landscape heterogeneity and creates opportunities for crop type mapping in
complex smallholder systems [89,90].

5. Conclusions
The influence of data sampling techniques and class imbalance for mapping fruit‑tree

crops and co‑existing land uses was evaluated using five machine learning algorithms (GB,
AdaBoost, RF, SVM, and XGBoost). The SVM algorithm outperformed the other algo‑
rithms with imbalanced data sampled at 60% and a balanced dataset with 150 instances
per class. The overall accuracies ranged between 69% for 150 balanced datasets and 71%
for imbalanced data sampled at a 60% level. Compared to GB, AdaBoost, RF, and XGBoost,
the results show the superiority of the SVM classifier and Sentinel‑2 data in mapping fruit‑
tree crops in a heterogeneous horticultural landscape.

It is concluded:
• Data sampling and selecting appropriate classification algorithms are essential for ac‑

curately mapping fruit trees in a horticultural environment characterized by complex
and heterogeneous landscapes.

• Sentinel‑2 offers similar classification accuracy and can be used for crop type invento‑
ries; these reduce the need for extensive data collection.

• The Sentinel‑2 Red‑Edge_2, SWIR_2, SWIR_1 (B11), and red (B4) bands are the most
crucial predictor variables for crop classification using all datasets.

• The S2 Red‑Edge bands are centered in the biomass region and contribute more to
biomass studies.

• The best overall accuracy was achieved using the SVM and the dataset sampled at 60%
(i.e., Dataset 7), while the class accuracies were stable when the dataset was sampled
at 40% and 50%, respectively (i.e., Dataset 3 and Dataset 4).
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