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Abstract: Understanding long-term land use/land cover (LULC) change patterns is vital to imple-
menting policies for effective environmental management practices and sustainable land use. This
study assessed patterns of change in LULC in the Vaal Dam Catchment area, one of the most critically
important areas in South Africa, since it contributes a vast portion of water to the Vaal Dam Reservoir.
The reservoir has been used to supply water to about 13 million inhabitants in Gauteng province
and its surrounding areas. Multi-temporal Landsat imagery series were used to map LULC changes
between 1986 and 2021. The LULC classification was performed by applying the random forest
(RF) algorithm to the Landsat data. The change-detection analysis showed grassland being the
dominant land cover type (ranging from 52% to 57% of the study area) during the entire period.
The second most dominant land cover type was agricultural land, which included cleared fields,
while cultivated land covered around 41% of the study area. Other land use types covering small
portions of the study area included settlements, mining activities, water bodies and woody vegetation.
Time series analysis showed patterns of increasing and decreasing changes for all land cover types,
except in the settlement class, which showed continuous increase owing to population growth. From
the study results, the settlement class increased considerably for 1986–1993, 1993–2000, 2000–2007,
2007–2014 and 2014–2021 by 712.64 ha (0.02%), 10245.94 ha (0.26%), 3736.62 ha (0.1%), 1872.09 ha
(0.05%) and 3801.06 ha (0.1%), respectively. This study highlights the importance of using remote
sensing techniques in detecting LULC changes in this vitally important catchment.

Keywords: remote sensing; image classification; random forest; change detection

1. Introduction

Land resources have been used for social, material and cultural human demands,
which leads to significant changes in LULC patterns [1,2]. Such changes have consequently
been associated with various impacts and effects on different fields at multiple scales; local,
regional and global [3,4], including surface energy balance through its effect on the weather
and climate at local, regional [5,6] and global scales, such as how changing the tropical
rainforest areas impacts the global climate [7]. LULC changes affect the hydrological cycle
by altering the hydrological response of watersheds in terms of surface runoff, decreas-
ing groundwater recharge, water quality and pollutant transfers. These factors affect the
dispersion of non-point water pollutants and direct them into freshwater bodies [8]. Further-
more, changes in LULC affect biodiversity and aquatic systems [2,4,9,10] and the receiving
ecosystem service values by affecting their structure and functioning [11,12]. Therefore,
understanding the spatial and temporal variations of LULC on a watershed level is critical
for effective monitoring, planning and management of the resources and ecosystems [10].
Accurate information on LULC changes can also contribute to other applications, including
the assessment of damage and deforestation, the monitoring disasters and measurement of
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the expansion of urban areas. It also assists with land use management and planning [13].
However, obtaining such information can be achieved through performing long-term time
series analysis of the LULC changes [1,13].

The Vaal Dam Catchment forms a vast part of the Upper Vaal Water Management
Area (WMA). It is part of the Vaal drainage system in South Africa [14]. Extensive gold
and coal mining activities have taken place within the Upper Vaal catchment [15]. In the
Vaal Dam Catchment area, the range of land use includes major agricultural activities
(encompassing mainly cattle grazing and dry land cultivation), gold and coal mining
and some industrial activity [8,9]. In the past, most human activities within the Vaal
Dam Catchment area were dependent on or related to agriculture [16–18]. The most
extensively cultivated areas within the Vaal Dam Catchment have been near the Vaal
and the lower-lying valleys of the Wilge River, with stock farming in the hilly parts [16].
With the building for Sasol of the synthetic fuel complex and the commencement of coal
mining in late 1970 (alongside other economic developments), the land use character of
the catchment has changed substantially. The towns related to these developments grew
significantly, mainly in the Waterval sub-catchment in the northern part of the Vaal Dam
Catchment [18]. These economic developments have contributed to the ongoing expansion
of settlement areas in the catchment area [10]. The southern and southeastern part of the
Vaal Dam Catchment is contained in the Wilge River Sub-catchment, which is dominated
by agricultural land (consisting of non-cultivated arable land, cultivated farms, livestock
pastures and some human settlement areas) [12]. As human activity has intensified in
recent decades, ecosystems within the catchment have been degraded [18]. As a result of
these activities, the discharge of treated effluents from the mine dewatering and urban
areas within some areas of the Vaal Dam Catchment returns into the river system and
causes significant impacts on river water quality [15].

A remote sensing (RS) approach is particularly effective for characterising the LULC
changes for large areas such as the Vaal Dam Catchment. Satellite RS has been used as a
cost-effective method in mapping and developing a clear understanding of LULC changes.
Various satellites with moderate to high spatial resolution and temporal coverage are avail-
able that can be used to study long-term changes in LULC [19]. Many studies have used
satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS) [20–22] and
Landsat series data to study LULC at regional scales in different regions in the world [23].
MODIS coverage started in 2000 with a spatial resolution of one kilometre and a revisit
time of one day. Starting in 1972, Landsat has had a longer coverage time; since then, a
new era in earth observations has begun, using moderate (60-metre) spatial resolution
imagery [24,25]. After 1982, Landsat sensors started to acquire data in higher (30-metre)
spatial resolution but with a lower (16-day) temporal resolution. However, since LULC
change is not noticeable over short periods (such as hours and days), Landsat is better
at detecting LULC change owing to its higher spatial resolution and its comprehensive
archive compared to the coarse resolution satellite data such as NASA’s MODIS. The Land-
sat archive is very valuable for estimating area changes over time; it allows the LULC
changes to be thoroughly assessed and statistically quantified [19]. Another advantage of
using Landsat data is the consistency of configurations of the various generation sensors
(TM, ETM+ and OLI) within visible to shortwave infrared bands, as well as their spatial
resolution (30 m), which allows us to use a continuous data set starting in 1984 [24]. Obtain-
ing information on LULC change based on RS has been used in many parts of the world to
address various environmental challenges [12,19,24]. RS data and field observations can
be combined to accomplish LULC classification and change detection. RS data provides
faster processing and is more cost-effective than traditional methods [26]. Many studies
conducted within the Vaal Dam Catchment area investigating water quality issues, few
of them have highlighted the impact of LULC owing to human activities on surrounding
water quality [18,27]. However, the studies conducted to date on LULC have lacked spatial
and temporal resolution for accurately characterising the impact of LULC on the large-scale
functioning of the ecosystem. The application of geospatial techniques can provide robust
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methods for studying the impacts of LULC on large catchment systems such as the Vaal
Dam Catchment [28]. The Vaal Dam Catchment is a primary water source for the Vaal Dam
Reservoir beside the Lesotho highland water project, from which Rand Water supplies
potable water to Gauteng province [29]. Many issues of water quality and ecosystem dete-
rioration have been discussed in the literature for this crucial area [30]; understanding the
LULC patterns and evaluating their effects on ecosystems and water quality are essential.
To understand their dynamics, there is a need to first carry out LULC classification and
then to detect respective changes in LULC. This will provide critical information that can be
used for effective and sustainable environmental restoration and management of resources
to avoid and minimise further deterioration in water quality and eco/aquatic systems. This
research aims to accurately characterise the LULC change in the Vaal Dam Catchment area
over recent decades (1986 to 2021) using NASA’s Landsat data. It is anticipated that this
could contribute towards evaluating requirements for better management of catchment.

2. Materials and Methods
2.1. Study Area

The Vaal Dam Catchment is located between 26.27◦ and 28.77◦ S, and 28.00◦ and
30.31◦ E, in the central plateau of South Africa. The annual rainfall generally ranges
between 600 and 800 mm/y and occurs mostly between October and March during the
summer season. In the south and southeastern part of the catchment, annual rainfall can
reach up to 1500 mm/y [16,31]. The catchment has an area of about 38,000 km2, with
an altitude ranging between 1300 and 1850 m.a.s.l. The Vaal Dam Catchment consists
of two main sub-catchments drained by two major river systems, the Vaal River and
Wilge River catchments (Figure 1). The two river systems are the main arteries for the
Vaal Dam Catchment that supplies fresh water to the Vaal Dam Reservoir, from which
water is supplied to Gauteng province and its surrounding areas. The southern and
southeastern parts of the catchment are mountainous areas, and they are the highest parts
of the catchments. In this part, the Wilge River rises from the northern slopes of Mont-aux-
Sources in the Drakensberg mountain range, whereas the northern and northeastern parts
of the catchment are relatively flat areas.

Geomatics 2023, 3, FOR PEER REVIEW 4 
 

 

 
Figure 1. The location map of the study area. 

2.2. Identification of LULC Types 
Historical Google Earth images and available South African National Land Cover 

(SANLC) classification schemes were used as guides for the identification of the major 
LULC types in the study area (SANLC data sets for 1990, 2013–2014 and the latest data 
(SANLC-2018). The data sets can be obtained from the Department of Forestry, Fisheries 
and the Environment website (https://egis.environment.gov.za/sa_national_land_cover_ 
datasets) accessed on 15 October 2020. 

The SANLC-2018 data set uses 20-metre resolution Sentinel-2 imagery. The study 
made use of seven major LULC classes, including agriculture, cleared fields, grassland, 
mining, settlements, water bodies and woody vegetation (Table 1). 

Table 1. Land cover classes used in this study. 

Class Description 
Agriculture Crop areas that were green at the time of imagery 
Cleared fields Cleared fields, bare lands and shaded agricultural fields (greenhouses) 
Grassland Sparsely wooded and natural grassland areas plus fellow land and old fields 
Mining Ash piles, dumps and slimes dams accumulated from coal and gold mining 
Settlements Residential, industrial, commercial and mixed urban build-up areas 
Water bodies Rivers, open water, lakes, ponds and reservoirs 
Woody vegetation Natural, planted forests and orchards 

2.3. Data and Methods 
2.3.1. Data Acquisition and Pre-Processing 

Level 1 imageries were acquired from the USGS earth explorer platform 
(http://earthexplorer.usgs.gov/) accessed on 13 June 2021. A total of 36 cloud-free or good-
quality images of Landsat 5 (TM), Landsat 7 (ETM+) and Landsat 8 (OLI) were obtained 
for the years 1986, 1993, 2000, 2007, 2014 and 2021 to produce 7-year-interval LULC maps. 
For each year, six scenes were required to cover the span of the Vaal Dam Catchment, and 
their respective paths/rows were specified (Table 2). 

Figure 1. The location map of the study area.



Geomatics 2023, 3 208

The study area was chosen since the Vaal Dam is one of the most important water
sources in South Africa and since there are considerable concerns regarding water quality
in the catchment over recent decades. Further, there is interest from the water authorities in
understanding the pattern of LULC changes in the catchment since this information will
assist them in better understanding potential threats to the water quality of the dam.

2.2. Identification of LULC Types

Historical Google Earth images and available South African National Land Cover
(SANLC) classification schemes were used as guides for the identification of the major LULC
types in the study area (SANLC data sets for 1990, 2013–2014 and the latest data (SANLC-
2018). The data sets can be obtained from the Department of Forestry, Fisheries and the
Environment website (https://egis.environment.gov.za/sa_national_land_cover_datasets)
accessed on 15 October 2020.

The SANLC-2018 data set uses 20-metre resolution Sentinel-2 imagery. The study
made use of seven major LULC classes, including agriculture, cleared fields, grassland,
mining, settlements, water bodies and woody vegetation (Table 1).

Table 1. Land cover classes used in this study.

Class Description

Agriculture Crop areas that were green at the time of imagery
Cleared fields Cleared fields, bare lands and shaded agricultural fields (greenhouses)
Grassland Sparsely wooded and natural grassland areas plus fellow land and old fields
Mining Ash piles, dumps and slimes dams accumulated from coal and gold mining
Settlements Residential, industrial, commercial and mixed urban build-up areas
Water bodies Rivers, open water, lakes, ponds and reservoirs
Woody vegetation Natural, planted forests and orchards

2.3. Data and Methods
2.3.1. Data Acquisition and Pre-Processing

Level 1 imageries were acquired from the USGS earth explorer platform (http://
earthexplorer.usgs.gov/) accessed on 13 June 2021. A total of 36 cloud-free or good-quality
images of Landsat 5 (TM), Landsat 7 (ETM+) and Landsat 8 (OLI) were obtained for the
years 1986, 1993, 2000, 2007, 2014 and 2021 to produce 7-year-interval LULC maps. For
each year, six scenes were required to cover the span of the Vaal Dam Catchment, and their
respective paths/rows were specified (Table 2).

Table 2. The Landsat satellite images used in the study.

Year Satellite Sensor Path/Row Resolution (m) Acquisition Date

1986
Landsat 5 TM 169/078, 169/079, 169/080 30 20.05.1986
Landsat 5 TM 170/078, 170/079, 170/080 30 11.05.1986

1993
Landsat 5 TM 169/078, 169/079, 169/080 30 24.06.1993
Landsat 5 TM 170/078,170/079, 170/080 30 30.05.1993

2000
Landsat 7 ETM+ 169/078, 169/079, 169/080 30 22.08.2000
Landsat 7 ETM+ 170/078, 170/079, 170/080 30 28.07.2000

2007
Landsat 5 ETM+ 169/078, 169/079, 169/080 30 06.05.2007
Landsat 5 ETM+ 170/078, 170/079, 170/080 30 29.05.2007

2014
Landsat 8 OLI 169/078, 169/079, 169/080 30 17.05.2014
Landsat 8 OLI 170/078, 170/079, 170/080 30 24.05.2014

2021
Landsat 8 OLI 169/078, 169/079, 169/080 30 04. 05.2021
Landsat 8 OLI 170/078, 170/079, 170/079 30 11.05.2021

https://egis.environment.gov.za/sa_national_land_cover_datasets
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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Radiometric calibration was applied to each scene, followed by atmospheric correction
using Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) module
in ENVI (v5.4). The scenes of each year were mosaicked together using a seamless mosaic
in ENVI to produce a single image for each year before cropping them to the study area
boundaries using a shape file that had been prepared for this purpose by digitising the
watershed boundary following the water divide based on stream network of the watershed.

The gap-fill module attached to ArcGIS was used to fill the gaps from Landsat 7 ETM+
scan line corrector failure. Images were then ready for LULC classification.

2.3.2. Reference Data

The reference dataset was obtained through visual interpretation of the pre-processed
Landsat data sets. Well-distributed training areas were selected to ensure adequate repre-
sentation of each class within the entire image extension. Point features with class labels for
all classes were digitised on all the mosaicked images using ArcGIS. The point features of
each year’s image were then loaded on historical high-resolution Google Earth Pro imagery
(http://earth.google.com/) accessed on 23 November 2021 and the temporal data was
used to assess consistency. Points that fell in the area of inconsistent LULC were excluded
from the analysis. Then, pixel values were extracted using the feature extraction tool in
ArcGIS. An approximately equal number (100) of sample points was obtained for all classes,
and, for the poorly separated classes, more representative point samples were added. The
extracted pixel values of each class were randomly divided into training and validation
data sets, 70% as the training data set used to train the classifier and 30% as the validation
data set to test the classification accuracy. Table 3 shows the number of extracted reference
data sets of each year used in the classification.

Table 3. The reference data numbers used in this study. Training data (Tr), test data (Te) and total
number of data points (To).

LULC Class 1986 1993 2000 2007 2014 2021
Tr Te To Tr Te To Tr Te To Tr Te To Tr Te To Tr Te To

Agriculture 67 28 95 70 30 100 70 30 100 63 27 90 70 30 100 70 30 100

Cleared field 182 78 260 108 46 154 192 81 273 132 56 188 160 68 228 140 60 200

Grassland 70 30 100 70 30 100 72 30 102 70 30 100 70 30 100 70 30 100

Mining 70 30 100 70 30 100 56 24 80 50 21 71 70 30 100 70 30 100

Settlements 70 30 100 70 30 100 70 29 99 70 30 100 70 30 100 70 30 100

Water bodies 87 37 124 70 30 100 70 30 100 70 30 100 70 30 100 70 30 100

Woody vegetation 70 30 100 70 30 100 67 28 95 70 30 100 70 30 100 70 30 100

2.3.3. Image Classification

In this study, the random forest (RF) model was used as the LULC classifier. The model
is an ensemble-based classification algorithm suggested by Breiman in 2001 to improve
the performance of classification and regression trees (CART) [32]. It combines a large set
of decision trees. The algorithm uses bagging and random selection techniques to build
several binary classification trees (ntree) by using bootstrap samples with replacements
driven from the original training data sets (each bootstrap sample produces a tree, and ntree
is grown from bootstrap samples) [33]. Then, each predicted classification tree contributes
a single vote to assign the most frequent class for the input data. The classifier output
is determined by the majority of tree votes. If a separate test data set is not available,
the out-of-bag (OOB) method can be used; around one-third of the samples are left out
randomly for each newly generated training data set, called OOB samples. The OOB
samples are used to measure the variable importance and estimate the misclassification
errors [34,35]. In RF classification algorithm, two parameters need to be defined, mtry

http://earth.google.com/
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(the number of variables to split at each node) and ntree (the number of trees to grow). A
given number of input variables (mtry) at each node are randomly chosen from a random
feature subset and the best split is then calculated using only this subset of input features.
However, to ensure lower similarity between individual trees and thus a low bias, the tree
is allowed to grow fully without pruning [36]. RF parameters (mtry and ntree) have to be
optimised to improve the classification accuracy [35,37]. Using the algorithm, the default
number of decision trees (ntree) is set to 500, while the default value of the variables number
(mtry) corresponds to the square root of the total number of predictor variables (spectral
bands) used in the study [38,39]. Based on several studies, the RF algorithm is regarded
as a robust machine-learning LULC classifier with higher performance [34,36,40–42]. RF
has many advantages over other machine learning classifiers, in that it is less sensitive to
outliers, noise and overtraining; it can also handle large data sets and gives estimations of
the important variables in the classification, along with internal generalisation error (OOB
error) estimates, in an unbiased fashion [34,40,43].

In this study, the classifications were separately performed using stacked images
containing bands from 1 to 6 of TM/ETM+ images, and bands from 1 to 7 of OLI images.
The mtry and ntree were kept as default values, the mtry was set to the number of variables
which were the number of bands of each stacked image (6 for TM and ETM+ images
and 7 for OLI images) and ntree was set to 500, and a repeated 10-fold cross-validation
was used to obtain the parameters of RF optimisation using the training data set only.
The RF algorithm was run using the caret package in R statistical software, and the best
combination of mtry and ntree was obtained based on the lowest OOB error (Table 4).

Table 4. The combination of mtry and ntree used to train the model for image classification.

Year mtry ntree Best Performance

1986 2 2500 0.08

1993 5 500 0.07

2000 5 500 0.08

2007 4 5500 0.06

2014 2 500 0.09

2021 4 1500 0.07

2.3.4. Accuracy Assessment

To evaluate the quality of the thematic LULC maps developed from Landsat images
using RF classifier, accuracy measures were calculated for each year using an independent
set of data obtained from the reference data.

A confusion matrix was generated for each classified image using the test data set
to quantify the classification accuracy of the RF performance based on the kappa index,
overall accuracy (OA), producer accuracy (PA) and user accuracy (UA). The kappa index
is a measure of how the classification results compare to values assigned by chance. Its
values are between 0 and 1. If the kappa coefficient equals 0, it means no agreement
between the classified image and the reference image. If the kappa coefficient equals 1,
then the classified image and the reference image are identical. Thus, the higher the kappa
coefficient is, the more accurate the classification. OA represents the percentages between
the total of pixels correctly classified for all classes and the total number of pixels used
in the data set. While PA is the number of correctly identified pixels divided by the total
number of pixels in the reference image, UA is the number of the correctly identified pixels
of a class, divided by the total number of pixels of the class in the classified image.

The flowchart below (Figure 2) outlines the steps of the classification method and
change detection.
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Figure 2. The methodology flow chart for the study to outline the classification and change detec-
tion steps.

3. Results
3.1. Spatial Pattern of LULC Classes (1986 to 2021)

Seven LULC classes were extracted from the processed images of the study area.
Referring to Figure 3 below, the spatial distribution of the LULC classes from 1986 to 2021
was as follows: the grassland land cover type was generally dominant in the study area
throughout the study period. This was followed by the lands used for crop cultivation
activities, with land uses including cleared fields and agricultural land cover types. The
grasslands covered between 52.0 per cent in 2007 to 56.9 per cent of the total study area
in 2021, followed by cleared fields ranging between 28.6 in 2021 and 41.8 per cent in 1986.
Agriculture was 1.41 per cent in 1986 and ranged to 10.0 per cent in 2021. The remaining
classes covered small portions of the total area. Mining ranged between 0.14 in 1986 and
0.39 in 2021, settlements varied between 0.87 in 1986 and 1.43 in 2021, while water bodies
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ranged from 0.65 in 1986 to 2.10 in 2007, and woody vegetation was at 2.66 in 1986 and
decreased to 0.29 in 2000.
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The LULC classifications based on six different images were obtained based on the
best combination of mtry and ntree parameters in RF. Table 4 above shows the selected
combinations of the two input parameters used to train the classifier for each year according
to their best performance. Table 5 summarises the class areas in hectares LULC patterns for
1986, 1993, 2000, 2007, 2014 and 2021.

Table 5. The LULC class areas in hectares and their relative proportions, based on the total area.

Year 1986 1993 2000 2007 2014 2021

LULC Area (Hectare) Area % Area % Area % Area % Area % Area %

Agriculture 54,605.88 1.41 111,290.7 2.88 176,796.5 4.58 133,960.9 3.46 166,057.5 4.29 387,083.0 9.98
Cleared fields 1,618,476 41.75 1,442,757 37.28 1,411,707 36.5 1,566,830 40.48 1,480,856 38.3 1,107,549.3 28.6
Grasslands 2,035,750 52.52 2,186,781 56.51 2,151,995 55.7 2,014,450 52.04 2,058,324 53.2 2,206,309.3 56.9
Mining 5545.08 0.14 10,179 0.26 8687.07 0.22 12,219.12 0.32 7,996.32 0.21 14,996.07 0.39
Settlements 33,539.67 0.87 34,252.31 0.89 44,498.25 1.15 48,234.87 1.25 50,107.77 1.29 55,361.52 1.43
Water bodies 25,198.56 0.65 34,653.87 0.9 58,830.57 1.52 81,455.49 2.10 50,914.08 1.32 55,778.85 1.44
Woody vegetation 103,116.5 2.66 49,653.36 1.28 11,214 0.29 13,881.78 0.36 56,395.35 1.46 52,673.22 1.36
Total 3,876,232 100 3,869,568 100 3,863,728 100 3,871,032 100 3,870,651 100 3,879,751 100
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3.2. The Accuracy Assessment

The accuracy assessment for RF classifier was performed to evaluate the predicted
performance of the trained model using the test data set; this was determined to be 30% of
each data set. A confusion matrix for each classified image was then driven. The results
of LULC classification indicated that the overall LULC classification accuracies (OA) for
the six different date-classified images ranged from 87% in the 2014 classified image to
95% in the 2007 image, with kappa agreement indices ranging between 0.79 in 2014 and
0.92 for 2007. The user accuracy (UA) and producer accuracy (PA) are shown in Table 6.
The performance of the internal classifier was good, with low OOB errors ranging between
3.75% and 8.98%. All classes had high user and producer accuracies ranging between
80 and 100, except for the settlement classes in 1986 and 2014; the UAs were 79% and 66%,
respectively, and, in 2014 and 2021, the PAs were 59% and 63%, respectively. However,
the nature of some classes and the different date-stacked images from neighbouring paths
made it challenging to separate features in some classes owing to their similarity in their
spectral signatures. For example, there was confusion between settlements and the shaded
fields (greenhouses), with both containing spectrally similar features. This is also the case
between settlement areas surrounded by trees and the woody vegetation class. The kappa
values of the six classification results are sufficient for the study area because they satisfy
the minimum 85% accuracy.

Table 6. The producer accuracies (PAs) and user accuracies (UAs) of the LULC classifications for the
Vaal Dam.

1986 1993 2000 2007 2014 2021

LULC PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% PA% UA%

Agriculture 89 93 87 93 90 93 93 88 93 100 93 90

Cleared fields 86 91 91 91 96 92 80 89 85 80 94 84

Grassland 93 93 93 88 93 93 100 100 97 88 91 91

Mining 93 80 90 100 96 92 97 97 80 89 88 88

Settlement 87 79 97 97 86 96 97 100 59 66 63 86

Water 96 100 100 100 100 100 100 100 100 100 100 100

Woody vegetation 93 97 100 91 93 96 100 100 100 97 93 97

The RF classifier generally performs well in obtaining the seven determined classes in
the Vaal Dam Catchment, as shown in the OA above. These results are the bases for the
subsequent analysis of LULC change detections.

3.3. LULC Changes (1986 to 2021)

The ratio of each LULC class to the total area within the catchment varies per LULC
class, with both increasing and decreasing trends being seen. Table 7 shows the pattern of
LULC changes during the period studied (1986 to 2021).

The agriculture class showed an increasing pattern, except for the area change between
2000 and 2007. At the same time, cleared fields showed a decreasing pattern except between
2000 and 2007. The sum of the agriculture and cleared field areas indicates that the areas
used in crop cultivation activities covered around 41 per cent +/−3% of the total study area.

The grassland areas show different patterns of increasing and decreasing in the size
of their relative area. In general, they did not show a significant change, and grassland
consistently remained the dominant class with little variation in extent in the study area.
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Table 7. Area and percentage changes of the land use land cover (LULC) in the Vaal Dam Catchment
for 1986, 1993, 2000, 2007, 2014 and 2021 images.

Year 1986–1993 1993–2000 2000–2007 2007–2014 2014–2021

LULC Change
(In Hectares) Area % Area % Area % Area % Area %

Agriculture 56,684.82 +1.46 65,505.8 +1.69 −42,835.6 −1.11 32,096.6 +0.83 221,025.5 +5.71
Cleared Fields −175,719 −4.53 −31,050 −0.80 155,123 +4.01 −85,974 −2.22 −423307 −10.94
Grassland 151,031 +3.90 −34,786 −0.90 −137,545 −3.56 +43,874 +1.13 197,985.6 +5.11
Mining 4633.92 +0.12 −1491.93 −0.04 3532.05 +0.09 −4222.8 −0.11 6999.75 +0.18
Settlements 712.64 +0.02 10,245.94 +0.26 3736.62 +0.10 +1872.9 +0.05 5253.75 +0.14
Water Bodies 9455.31 +0.24 24,176.7 +0.62 22624.92 +0.59 −30,541.41 −0.79 4864.77 +0.13
Woody Vegetation −53,463.14 −1.38 −38,439.36 −0.99 2667.78 +0.07 +42,513.57 +1.10 −3722.13 −0.10

The settlement area showed expansion in the Vaal Dam Catchment from 1986 to 2021
Figure 4.
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Figure 4. Settlement area changes between 1986 and 2021, as a percentage of the total area.

Figure 5 shows a sample of settlement expansion in eMbalenhle township from 1986 to
2021. There are many settlements within the catchment, with differing rates of expansion
during the study period.

Regarding the remaining classes (mining, water body and woody vegetation), there
were different trends in area changes; for example, there was a noticeable increase in the
mining area, except for the periods 1993–2000 and 2007–2014. The change detection did not
show any trends for the water body class, but it showed that the woody vegetation areas
decreased from 1986 to 2000 and expanded from 2000 to 2014 before it decreased again in
2021 (see Figure 6 and Table 7). The woody vegetation class was particularly noticeable in
the mountainous parts on the east and southeastern boundaries of the catchment.
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Figure 6. Land use land cover (LULC) change for 1986, 1993, 2000, 2007, 2014 and 2021 in the Vaal
Dam Catchment.

4. Discussion

The LULC classification results showed the domination of the grassland class (in-
cluding the land used for cattle and sheep grazing farms and pastures) in the study area,
followed by the land used for agricultural activities (that is, the summation of agriculture
and cleared field classes). The changing pattern of these two categories showed different
rates of increase and decrease, but, contrary to what was expected, no significant ongoing
increase was noticed for land used for agricultural activities. Although the settlement
area class consists of only a relatively small proportion of the total study area, it showed
continuous expansion from 1986 to 2021. In contrast, the mining land cover class showed
varying patterns of increase and decrease, and varying patterns were also noticed for the
remaining classes.

The study successfully achieved its aim, in that it mapped the changes and patterns in
LULC and associated dynamics for this strategically important area of South Africa over
the 35 years ending in 2021. The most important land cover change within the catchment
was the expansion of settlement areas related to the economic activities within the area
in recent decades. Many gold and coal mines [16], as well as synthetic fuel complexes,
were constructed and operated in the late 1970s [18]. This economic growth significantly
increased the expansion of towns associated with these developments (see Figure 4 and
Table 7). Figure 5 focused on eMbalenhle township and is a sample of this settlement
expansion. The latter township was established in 1978 to increase accommodation needs
for the people working for the synthetic fuel manufacturing plant at Sasol. The expansion
of many settlement areas within the catchment owing to population growth and their need
to grow more food, the construction of houses and industries, etc., have contributed both
directly and indirectly to environmental, ecosystem and water quality degradation. In most
of the previous studies conducted, water quality and ecosystem degradation have been
identified as the most concerning problems within the catchment [16,18,27,30].

The relative area used for agricultural activities showed no significant changes, even
though it was expected to expand during the study period to meet population growth
and their increasing needs for food. In fact, according to Biggs (2002), privately owned
farms occupy around 68% of South Africa’s land area [44]. This indicates that the extent
of privately owned farmland remains relatively stable [44], and only limited areas are
available for agricultural expansion [32]. Nevertheless, increasing productivity using
modern techniques and soil fertilisers may have been applied to increase the productivity
per unit hectare [44].
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The results of LULC classification using RF classifier [45] showed good accuracy in
mapping the Vaal Dam Catchment. It has provided much more useful details for the
study area than those already published on global land cover patterns (https://lcviewer.
vito.be/download, http://maps.elie.ucl.ac.be/CCI/viewer/download.php and http://
www.globallandcover.com/home) accessed on 8 January 2023. The settlement class was
clearly detected with all classification schemes; they showed high similarity between them
when comparing same-year maps. The remaining classes appeared more generalised in
the published global schemes while they were well-detected in this study. Results of this
comparison confirm that the method used in this study gives reliable, highly accurate LULC
classification results and can be adopted in other regions. However, this methodology has
some limitations in some land cover categories, such as the mining class. The detected
mining class in this study represents rock and ash dumps and piles from gold and coal
mining; only highly reflective materials of those dumps and piles were detected, while
many of the mining sites contained small dams and materials for which the colours could
not be detected. They may thus have been misclassified. Furthermore, acid mine drainage
within or around the study area from abandoned and active mine sites potentially is causing
severe water quality and environmental issues but this could not necessarily be detected in
this study [20,22]. With the Landsat data (30-m spatial resolution) methodology applied,
it is not easy to detect the narrow surface drainage ditches carrying acid mine effluences.
The same limitation can be considered regarding mapping the uncontrolled seepage and
flooding of sewage in some settlement areas within the catchment. This situation poses
risks to public health, ecosystems and water quality and has received extensive coverage
by media channels in recent years (https://www.groundup.org.za/article/sewage-seeps-
into-vaal-dam-as-mpumalanga-water-treatment-plants-fail/) accessed 27 September 2022.
Another concerning issue is that the water-body areas detected included wastewater storage
dams (such as Leewpan near to eMbalenhle) [18]. Consideration should be given to the
possibility of such dams contaminating nearby water resources.

The chosen study area is characterised by relative homogeneity of its dominant land
cover classes; this made it possible to map the area with RF classifier using only a small
but representative training data sample (see Section 2.3.3). As shown by Ebrahimy et al.
(2021), the RF approach is successful in land cover mapping with limited reference sample
data [46].

5. Conclusions

This study used Landsat data series to assess LULC changes in the Vaal Dam Catch-
ment area over 7-year intervals for the period 1986–2021. A random forest classifier method
consisting of 500 trees was used owing to its advantages over most of the other classi-
fiers in LULC detecting. It was used to classify six mosaicked images covering the study
area in seven land cover classes: namely, agriculture, cleared fields, grassland, mining,
settlements, water bodies and woody vegetation. The results of the classification reveal
the following percentage composition for the total study area for the period investigated:
grasslands covered between 52.0% and 56.9%, cleared fields ranged between 28.6% to
41.8%, agriculture covered 1.4% to 10.0%, mining ranged between 0.14% and 0.39%, settle-
ments covered between 0.87% and 1.43%, water bodies ranged between 0.65% and 2.10%
and woody vegetation ranged between 0.29% and 2.66%. The results showed varying
patterns of change in LULC (both increases and decreases) observed in most of the classes
except for the settlements class. The latter showed a clear increasing trend from 1986 to
2021 resulting from economic development within the area in the last few decades. The
OA of the classification of the various LULC types ranged between 91% and 97%. The RF
models reported an average OOB error that ranges from 3.75% to 8.98%. The area was
dominated by the grassland class for the study period, followed by cultivation land use
(which includes the agriculture and cleared field classes). The generated maps provide
spatial and temporal patterns of land cover and the changes for the periods studied. An
ongoing rapid increase in population growth will have even more significant effects on

https://lcviewer.vito.be/download
https://lcviewer.vito.be/download
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://www.globallandcover.com/home
http://www.globallandcover.com/home
https://www.groundup.org.za/article/sewage-seeps-into-vaal-dam-as-mpumalanga-water-treatment-plants-fail/
https://www.groundup.org.za/article/sewage-seeps-into-vaal-dam-as-mpumalanga-water-treatment-plants-fail/
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the region’s environment and economic spheres. Therefore, it is of prime importance that
these developments be carefully considered in this important catchment as it is one of the
primary sources of water for the Vaal Dam, which supplies more than 13 million people
in the Gauteng and Mpumalanga provinces. Such studies can support efforts to protect
ecosystem functioning and water resources from further deterioration in water quality.
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