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Abstract: Understanding the spatial spread pathways and connectivity of Land Use/Cover (LULC)
change within basins is critical to natural resources management. However, existing studies approach
LULC change as distinct patches but ignore the connectivity between them. It is crucial to investigate
approaches that can detect the spread pathways of LULC change to aid natural resource management
and decision-making. This study aims to evaluate the utility of the Circuit Theory to detect the spread
and connectivity of LULC change within the Okavango basin. Patches of LULC change sites that were
derived from change detection of LULC based on the Deep Neural Network (DNN) for the period
between 2004 and 2020 were used. The changed sites were categorized based on the nature of the
change of the classes, namely Category A (natural classes to artificial classes), Category B (artificial
classes to natural classes), and Category C (natural classes to natural classes). In order to generate the
resistance layer; an ensemble of machine learning algorithms was first calibrated with social-ecological
drivers of LULC change and centroids of LULC change patches to determine the susceptibility of the
landscape to LULC change. An inverse function was then applied to the susceptibility layer to derive
the resistance layer. In order to analyze the connectivity and potential spread pathways of LULC
change, the Circuit Theory (CT) model was built for each LULC change category. The CT model was
calibrated using the resistance layer and patches of LULC change in Circuitscape 4.0. The corridor
validation index was used to evaluate the performance of CT modeling. The use of the CT model
calibrated with a resistance layer (derived from susceptibility modeling) successfully established the
spread pathways and connectivity of LULC change for all the categories (validation index > 0.60).
Novel maps of LULC change spread pathways in the Okavango basin were generated. The spread
pathways were found to be concentrated in the northwestern, central, and southern parts of the
basin for Category A transitions. As for category B transitions, the spread pathways were mainly
concentrated in the northeastern and southern parts of the basin and along the major rivers. While for
Category C transitions were found to be spreading from the central towards the southern parts, mainly
in areas associated with semi-arid climatic conditions. A total of 186 pinch points (Category A: 57,
Category B: 71, Category C: 58) were detected. The pinch points can guide targeted management LULC
change through the setting up of conservation areas, forest restoration projects, drought monitoring,
and invasive species control programs. This study provides a new decision-making method for
targeted LULC change management in transboundary basins. The findings of this study provide
insights into underlying processes driving the spread of LULC change and enhanced indicators for the
evaluation of LULC spread in complex environments. Such information is crucial to inform land use
planning, monitoring, and sustainable natural resource management, particularly water resources.

Keywords: Circuit Theory; connectivity; remote sensing; land cover change; susceptibility modelling;
water resources; pinch point; Okavango basin
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1. Introduction

Anthropogenic-driven land use and land cover (LULC) change has been central to natu-
ral systems alterations in many environments globally [1–3]. According to Seybold et al. [3]
and Martin et al. [4], LULC changes affect climate processes, biogeochemical cycles, nutrient
loads, and water resources. Tracking the spatial, temporal, and likely pathways of LULC
changes is crucial for landscape management and ecosystem services assessments [5–7].
Owing to their complexity and role as key livelihood support systems for over 60% of the
world’s population, interest in how LULC changes within transboundary basins (TDBs) and
its effect on natural resources distribution is of high priority [8–12]. Most commonly, water
resources availability, quality, and distribution within TDBs constitute one of the major
contentions among neighboring nations [13–15]. The use of remote sensing and geospatial
techniques is entrenched in the detection of LULC change and drivers and for modeling
future changes. Hitherto, remote sensing techniques mainly treat LULC change as distinct
land patches. Considering LULC as isolated patches pose limitations to understanding the
likely pathways of spread for different land cover types. Connectivity-based LULC change
analysis frameworks will be beneficial for strategic land management at national, regional,
and TDB levels.

Although the spatial-temporal shift in LULC change is well reported, the mechanisms
underlying the spread pathways of LULC change across many landscapes remain poorly
understood. However, previous studies indicate that LULC is a self-organizing and path-
dependent phenomenon [16–19]. Owing to that, understanding the spatial spread pathways
followed by LULC change could assist in explaining the arrangement of LULC change
occurrences. One of the major advantages of spatial pathways is that they provide essential
information about the underlying mechanisms that determine the spread processes [13]. For
instance, reduced intensity of spread in a locality could indicate a hindering effect, whereas
the increased intensity of spread close to each other could suggest facilitative effects. The
use of geostatistical analyses that can quantify spread pathways could help understand
underlying processes that influence LULC patterns [14]. This would be an important step
toward revealing the underlying mechanisms that promote the spread of LULC change in
complex environments and identification of likely spread pinch points, which are crucial
for strategic management of LULC change expansion in large environments such as TDBs.

Landscape connectivity is the degree to which the landscape facilitates or impedes
movement [15]. The expediency of connectivity has gained prominence in many ecological
and biological studies [16,17]. Unlike traditional techniques that predict phenomena as
distinct patches and probability of occurrence (susceptibility) maps, connectivity analysis
links the distinct patches and inverted probability of occurrence maps (resistance maps) to
predict potential spread pathways. In most cases, resistance maps are derived from spatial
data layers of factors that impede or facilitate the spread of phenomena. The spread path-
ways can indicate areas where spread pathways narrow (pinch points), which are crucial
for the targeted management of LULC change. For example, detected pinch points for the
spread of anthropogenic-related classes could guide the setting up of conservation projects
such as protected areas (game reserves and sanctuaries) and put in place measures to reduce
urban sprawl [18]. The robustness of connectivity analysis techniques has been proven to
be instrumental in the development of more strategic solutions to challenges [19,20]. De-
spite its tremendous potential to provide spatially explicit predictions on spread pathways
that are relevant to sustainable conservation, the application of connectivity analysis in
LULC studies remains scanty. Previous studies have been able to predict the distribution
and extent of LULC change in TDBs using spatially explicit models that stochastically
forecast locations of LULC change patches based on either potential-transition maps that
indicate the likelihood of a LULC transition or potential-occurrence maps that indicate the
spatial susceptibility of land-cover types [21–25]. Their outputs were mainly patch-based
projections of LULC change and the probability of LULC change maps. However, one
of their major limitations is that they did not show the interconnectedness of changed
land patches in space. In addition, those that were able to model the susceptibility of
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LULC failed to use the susceptibility layer in deriving the resistance layer that is required
when calibrating connectivity models of LULC change. The use of robust susceptibility
modelling techniques such as ensemble models to generate resistance layers could generate
more accurate linkages and spread pathways for LULC change in complex environments.
Accurate modelling of LULC change spread pathways will allow streamlining of resources
on both where change has occurred and the pathways the changes are likely to follow in the
long run [26]. Thus, the adoption of such techniques would be crucial to the development
of strategic land use plans.

The Circuit Theory (CT) is a recent connectivity modeling technique that has been
introduced to predict the dispersal or movement routes of the phenomenon based on
concepts and metrics from electrical Circuit Theory. Based on the CT, phenomena are
equated to electrons, the landscape as a grid of resistances, and the movement of phenom-
ena across a landscape as the current flowing through a circuit board [27,28]. According
to Thayn et al. [29], whereas modeling techniques such as the Least-Cost Path Analysis
(LCP) are premised on resistance to model connectivity, the CT presents a more advanced
approach to modeling connectivity. LCP is limited as it allows for a single spread path to be
detected and does not account for modification by spread features to adopt other potential
routes [30]. The strength of the CT is that it allows the detection of multiple pathways.
While LCP has been applied to animal movement and fire spread, for example, it may not
be applicable to LULC spread modeling owing to its single-path approach against LULC
change which is a multidirectional phenomenon. The CT has enabled the modeling of
reality much better in many areas of dispersal paths of organisms [31], fire behavior [32],
water flow [33], and ecosystem services [26]. For example, Peeler and Smithwick [34]
established invasion pathways and spread patterns for Cheatgrass (Bromus tectorum) in
the Greater Yellowstone using CT modeling. Howey [35] evaluated the past mobility to a
regionally significant ceremonial earthwork in the Northern Great Lakes during the Late
Prehistory using CT modeling. Wieringa et al. [36] applied CT modeling to successfully
predict the migration routes of migratory bats. Thayn [29] identified the most accurate
path, which was followed by Hernando de Soto as he crossed the Appalachian Mountains
(between Tennessee and North Carolina) using CT modelling. These studies managed to
successfully establish the spread pathways for organisms, fire and water. Similar to the
aforementioned phenomena, the CT maybe useful for modelling the spread mechanisms
of LULC change across a landscape [37]. Also, similar to modelling the spread of previ-
ously studied phenomena (organisms, fires and water), aspects that facilitate or impede
the spread of LULC can benefit from modeling using CT to detect the potential spread
pathways of LULC across the landscape. We believe that such dynamic modelling will go a
long way to reveal future patterns of landscape change thus enhancing management and
decision making.

Despite the increased appreciation of CT modeling’s potential to establish the spread
of phenomena across landscapes, to the best of the knowledge of the authors, no studies
have explored the utility of the CT theory in LULC changes studies. This is an important
gap that needs to be filled to generate spatially explicit information on the spread of LULC
change as a preamble to the development of strategic land-use plans. The CT requires
a resistance layer which is commonly derived from suitability layers in many ecological
studies [38–40]. This study exploits a LULC susceptibility (synonym to suitability) layer
generated based on an ensemble of machine learning (ML) in our previous study [41] to
compute a resistance layer for use in CT. Understanding the connectivity pathways of LULC
change would aid in the development of targeted measures to address the distribution and
allocation of resources, for example, water resources.

Using the Okavango basin as a test site, this study borrows ideas from ecological,
biological, and electrical research and uses CT modeling to assess the connectivity and
spread of LULC change. In order to aid the accomplishment of the aim of this investigation,
the following specific objectives were delineated: (1) to assess the value of LULC change
susceptibility in modeling spread and connectivity of LULC change, and (2) to model the
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spread pathways and pinch points of LULC based on CT. The results of the study are
envisaged to contribute to knowledge on geospatial landscape change modeling and are
interpreted in the context of advocating best practices for landscape management. This
would aid decision-making to enhance resource conservation, and optimization of resource
allocation to mitigate conflict, particularly for TDBs where access and use of resources
are contentious.

Study Area

This study was conducted in a transboundary basin, the Okavango basin, in southern
Africa (see Figure 1). The basin is situated on a longitude range between 16◦ E and 24◦ E
and a latitude range between 12◦ S and 21◦ S. The basin is shared between three countries,
namely Botswana, Angola, and Namibia. The Okavango basin has the fourth longest river
system in Southern Africa, which starts in Angola with its two main tributaries (Cuito
and Cubango rivers) and ends in Botswana at the renowned Okavango Delta [42]. The
river system is one of the key livelihood sources for communities living in the Okavango
basin [43].
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Figure 1. Study area map showing the location of the Okavango basin.

The climate of the Okavango basin is semi-arid and seasonal, marked by an annual
mean temperature of 20 ◦C [44]. High temperatures are commonly experienced during
the dry summer season, which poses thermal stress to some flora and fauna. The basin
receives unimodal summer rainfall rains that are received between November and April
and are commonly associated with mid-season dry spells [45]. Some dry days can extend
for a long period resulting in droughts.

Modeling connectivity using the CT theory requires data to be encoded as resistance.
LULC data for 2004, 2013, and 2020 and social-ecological drivers of LULC change were
used to generate resistance layers. The preprocessing and analysis of data based on CT are
explained below.
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2. Methods

The study was designed to assess the value of the CT in assessing the spread and
connectivity of LULC change and evaluate the distribution pattern of the LULC change
site in the Okavango basin. CT modeling was run on Circuitscape 4.0. The workflow of the
study design is depicted in Figure 2.
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This study builds from our previous work [41,46]. In Kavhu et al. [46], we found
that post-feature selected and climate-based regionalization improved the accuracy of
LULC classification for both Machine Learning and Deep learning techniques within the
Okavango, a transboundary basin. The most accurate LULC product was based on the
Deep neural network (DNN) classification. For Kavhu et al. [41], the utility of machine
learning techniques and ensemble modeling to explain the social-ecological drivers of
LULC within the Okavango basin was investigated. Social-ecological drivers of LULC were
characterized. The most accurate LULC product and the social-ecological drivers generated
in previous studies are used in this study. For more detailed descriptions of methods for
LULC classification, change detection, and the characterization of social-ecological drivers,
readers should refer to Kavhu et al. [46] and Kavhu et al. [41].

2.1. LULC Classification and Change Detection

In order to determine the LULC classifications, Landsat 5 and Landsat 8 OLI images
captured during June for the years 2004, 2013, and 2020 in the Okavango basin were
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used. The images were supplemented with spectral features, which comprised Orthogonal
and Ratio-based spectral indices. Sample points for eight LULC classes, namely bare
land, built-up land, bushland, forest/woodland, grassland, cultivated land, water, and
wetland to train the spectral datasets were sourced from the Okavango River Basin Water
Commission (OKACOM) geodatabase and National Geographic Okavango and Wilderness
Project (NGOWP). Additional samples were generated from digitizing high-resolution
satellite imagery from Google Earth. Climate-based regionalization of the study site and
feature selection based on the Random Forest-based Recursive feature elimination were
implemented to enhance LULC change accuracy. The Deep neural network (DNN was
used for LULC classification in R statistics (See Supplementary Figure S1 for LULC change
results). Details of how the DNN was parameterized and the study site was segmented are
found in Kavhu et al. [46].

The post-classification change analysis was performed through an overlay analysis
of two-time steps ((2004–2013) and (2013–2020)) to detect changed sites [1]. Based on the
overlay analysis transition matrix for the intersection of each pair of land cover maps was
generated. Centroids of LULC transitions were determined and categorized into three
based on the initial class and final class: Category A—transitions (from natural classes to
artificial classes); Category B—transitions (from artificial classes to natural classes); and
Category C—transitions (from natural classes to another natural class). In this study, the
cultivated class was considered to be an artificial class. The rationale for the categorization
of LULC transitions is to present transitions in a way that is manageable to practitioners.
LULC Categories, transitions, and the number of centroid points for each transition are
summarized in Table 1.

Table 1. Shows a summary of categories of LULC transitions based on initial class and final class
where Category A have transitions from natural classes to artificial classes, Category B have transitions
from artificial classes to natural classes, and Category C have transitions from natural classes to
another natural class—adopted from Kavhu et al. [41].

Category Transition ID Transition Number of Centroid Points
A1 Water to Cultivated 299
A2 Woodland to built-up 508
A3 Woodland to cultivated 23,972
A4 Grassland to built-up 142
A5 Grassland to cultivated 7720
A6 Shrubland to cultivated 453

A

A7 Wetland to cultivated 56
B1 Cultivated to built-up 1909
B2 Cultivated to woodland 236
B3 Cultivated to grassland 4816B

B4 Cultivated to shrubland 463
C1 Water to woodland 438
C2 Water to grassland 70
C3 Woodland to grassland 66,658
C4 Woodland to shrubland 12,784
C5 Grassland to water 1042
C6 Grassland to shrubland 34,238
C7 Grassland to wetland 21
C8 Shrubland to woodland 10,037
C9 Shrubland to grassland 34,654

C10 Shrubland to wetland 18
C11 Wetland to woodland 72
C12 Wetland to grassland 56

C

C13 Wetland to shrubland 46

2.2. Modelling Susceptibility of LULC Change

To model the susceptibility of LULC change in the Okavango basin, we used an
ensemble of machine learning models based on centroids of change transitions and already
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established social-ecological drivers of LULC change in the Okavango basin. Ensemble
models for the three LULC change categories were separately built from a set of singular
machine learning models that include Random Forest (RF), Classification Tree Analysis
(CTA), Maximum Entropy (MaxENT), Gradient Boosting Model (GBM), and the Artificial
Neural Network (ANN). Ensembles of machine learning were considered as they were
found to have high predictive accuracy and are capable of effectively deducing patterns
from big data [47]. In this study, the ensemble model was built in R statistics using the
BIOMOD2 package [48]. The final LULC susceptibility map shows values that range from
0 to 1, where areas with a susceptibility of 0 are not susceptible to LULC change, and
those with 1 are highly susceptible. Full details of how the model was parameterized
were described in Kavhu et al. [41]. Below are LULC change susceptibility maps for the
Okavango basin per category (See Figure 3).
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were; (a) transition from natural to artificial, (b) transition from artificial to natural, (c) transition from
natural-to-natural classes.

2.3. Mapping LULC Change Resistance Surface—An Input to Circuit Theory Modelling

The CT model requires a landscape resistance surface layer that describes the cost of
moving phenomena through each grid cell as input [17]. In this study, the LULC change
susceptibility layer was considered to be synonymous with LULC change permeability.
Hence, the inverse function was applied to the LULC change susceptibility layer to derive
LULC change resistance following recommendations by McRae et al. [15]. In other words,
areas that are highly susceptible to LULC change were considered to present low resistance
values and vice versa. This linear transformation is based on the notion that factors that
facilitate movement have a direct inverse relationship with those that are resistant to
movement [49,50]. Below are the LULC change resistance maps for the three categories of
transitions that were used to encode resistance layers for CT modeling in this study (see
Figure 4).
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were; (a) transition from natural to artificial, (b) transition from artificial to natural, (c) transition from
natural-to-natural classes.

2.4. Connectivity Modelling Based on the Circuit Theory

Connectivity between LULC change patches was modeled using CT modeling based
on Circuitscape 4.0 [15,27]. CT modeling equates the concept of the flow of charge through
a circuit board to the spread of LULC change in a landscape. It applies Ohms law which
states that when voltage is applied to a resistor, the amount of current that passes through
the resistor depends on applied voltage and resistance. In simple terms, the lower the
resistance, the greater the conductance (current). As is the case with an electrical circuit,
the CT model treats a circuit as a network consisting of nodes and resistors. It also applies
the basic concepts of resistance, conductance, current, and voltage. Table 2 provides the
definitions of the electrical terminologies and their related explanation in LULC change
studies [51].

Table 2. LULC change spread explanation of electrical terminology.

Electrical Terminology LULC Change Studies Explanation When
Using CT Modelling

Resistance—the opposition that resistors offer
to the flow of electrical current

The opposition that landscape offers to the
spread of LULC change

Conductance—inverse of resistance, which
describes the resistance’s ability to pass current Synonymous with LULC change permeability

Current—the rate of flow of electric charge past
a node or resistance The rate of LULC change past a landscape

Voltage—the difference in electric potential
between two nodes

The probability of LULC change leaving one
location spreading to a certain location before
another location

In Circuitscape, the CT model runs on the resistance layer, using the Markovian
random walk functionality to calculate the total resistance and its opposite current between
pairs of LULC change patches at different locations. The areas of least resistance across
the landscape are the most probable areas for LULC spread. The CT model produces a
resultant map with multiple paths of cumulative current that shows the potential intensity
of LULC change flow at each pixel. Grid cells with high current values represent the spread
pathways for LULC change, while those with lower values show areas with low potential
for LULC change spread [34].
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In order to model the connectivity of LULC change in Circuitscape, two input data
layers are required, namely the surface resistance layer and locations of LULC change sites.
In this study, patches of LULC change served as locations of LULC change sites, and the
LULC change surface resistance layer described in Section 2.3 served as the resistance input.
Prior to modeling, LULC change patches that belong to the same category were merged
using Qgis 2.4 (www.qgis.org, accessed on 12 July 2020) (See Supplementary Figure S2
for the distribution of patches of LULC change). Patches of LULC changes for each
category were randomly split, of which 80% were used for training and 20% for validation.
Centroids of validation patches were determined to generate validation points in Qgis 2.4.
Circuitscape produces a cumulative current layer which shows the connectivity flow of
phenomena in a landscape. In order to enhance visualization of cumulative current values
together with other features, contours of cumulative current values were extracted from
grid layers in Arcmap.

To map the pinch points for LULC change spread, we used the circuit theory-based
Linkage Mapper 2.0.0 (https://linkagemapper.org, accessed on 7 March 2022). The pinch
point helps to identify locations of spread that are crucial to the spread of a LULC in the
basin. Such locations are useful for researchers and land managers to develop targeted
measures to manage LULC change.

2.5. Validation of Connectivity Models

In order to validate the connectivity outputs, the corridor score validation index was
used following Lalechère and Bergès [52]. The index is based on the hypothesis that
locations of validation patches concentrate close to predicted connectivity corridors. In
this study, the connectivity corridors were generated from thresholding of the cumulative
current output. A quantile threshold approach was used at different levels, namely the
55th, 65th, and 75th quantiles, following Lalechère and Bergès [52]. The quantile with the
highest validation index was adopted and vectorized for further analysis. The formula
below was used to derive the validation index.

Validation index =
1
N ∑N

n=1

(
Drandomi − Dobserved

Drandomi

)
(1)

where N is the number of random validations draw i, Drandomi is the average euclidean
distance to corridors from randomly selected points in the landscape for draw i, and
Dobserved is the average euclidean distance to the predicted corridors from the validation
points. A validation index value of close to 1 indicates that the validation points are
close to the corridor in terms of resistance distance, and the corridor concentrates the
predicted connectivity flows. While a validation index of 0 denotes that the corridor does
not concentrate on the predicted connectivity flows. A negative index means that the
matrix, not the connectivity corridor, concentrates the potential dispersal flows [52].

3. Results

Figures 5–10 show the results for cumulative current maps for transition categories A,
B, and C. High cumulative current values (current range between 0.74 to 4.5) are observed
mainly in the north, central, and southern parts of the Okavango basin for Category A
transitions (Refer to Figures 5 and 6). These areas cover parts of Angola, Namibia, and
Botswana. In the northern part, high cumulative values seem to be mainly spreading
towards the west and north-western directions connecting areas between Menongue and
Chitembo at a latitude range between 12◦ S and 15◦ S (Figures 5A and 6). In the south, an
interesting pattern is observed where high cumulative current values (ranging between 0.74
to 3.33) spread from the central parts towards the southern parts of the basin connecting
areas between Rundu and Maun at a longitude range of 18 ◦E to 24 ◦E via the edges of the
Okavango delta (Refer to Figures 5B,C and 6). A total of 57 pinch points were detected
in this category, and their distribution seems to follow the distribution patterns of high
cumulative current values (See Figure 5A1–C1). It can be seen that high cumulative current

www.qgis.org
https://linkagemapper.org
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values are radiating from towns and rivers on which current values abruptly increase in
their environs (from current of 0.37 to 3.33) (See Figure 6). This indicates how anthropogenic
classes will likely spread at the expense of natural vegetation in the Okavango basin. On the
other hand, low cumulative current values (less than 0.37) are observed in this category on
the north-eastern parts, a large portion of the central part, and portions of the south-central
and south-eastern parts (see Figures 5A and 6). The spread pathways of Category A seem
to be fairly connected throughout the basin (Figure 5). The validation index of connectivity
in this category is 0.72, which indicates that the connectivity model is accurate.

In general, it appears that Category A transitions will most likely spread in the
northwestern and north-eastern parts of the northern part of the basin. This transition
will also spread from the mid-southern part of the basin to the southeastern parts. The
pinch points are fairly spread out along major spread pathways. The spread pathways
and distribution patterns of pinch points of this category seem to be mainly aligned with
proximity to towns and rivers.
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Figure 9. The map shows the cumulative current map and pinch points for Category C transitions
(from natural-to-natural classes). The subfigures (A,B) highlight areas of the basin with high cumula-
tive current density and subfigures (A1,B1) indicate locations of selected pinch points overlaid on
satellite images to show how pinch points appear on the ground.
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Figure 10. The map shows contours of cumulative current for Category C transitions (from natural-
to-natural classes) in relation to towns and rivers and protected areas. The subfigures highlight how
current ranges are influenced by the locations of selected towns and rivers in the basin.

With regards to Category B transitions, high cumulative current values are mainly
found in the north and southern parts of the basin (current range from 0.74 to 4.44), covering
parts of Angola and Botswana (Refer to Figures 7 and 8). In the north, high cumulative
values (current range 0.74 to 4.07) seem to be spreading in the northeastern direction
connecting areas between Menongue and Cuito Cuanavale between a longitude range of
17◦ E to 19◦ E (Refer to Figure 7A). In the south, another pattern is observed where high
current values appear to be spreading following the western edges of the Okavango Delta
panhandle towards the southern parts (Refer to Figures 7C and 8). A total of 71 pinch
points were detected in this category. Such as the spread pathways, locations of pinch
points are mainly concentrated in the north and southern parts of the basin. It can be seen
that the spread pathways seem to align with the locations of towns and rivers both in
the northern and southern parts (Refer to Figure 7). The spread patterns for Category B
show how natural vegetation will recuperate from cultivated land. Low cumulative current
values (less than 0.74) were observed in the central parts of the basin, mainly in parts of
Namibia between a latitude range of 15◦ S to 17◦ S. Areas of low cumulative values seem
to be aligned to the limited availability of river channels. As seen by a large area with a low
cumulative current in the middle portion of the basin, the spread pathways in the northern
part appear to be completely disconnected from the ones in the southern part of the basin
(Figure 6). The spread of Category B transition in the southern part is highly connected (see
Figure 8). A validation index of 0.68 for Category B transitions is observed, which shows
that the model is fairly accurate.

Overall, Category B transitions reveal two centers of spread pathways, one situated in
the northern side of the basin while the other is within the mid-south and south-eastern
sections of the basin. The two areas of spread are completely disconnected. It appears
that Category B transitions on the northern part will spread in the northwestern and
north-eastern directions. The distribution of pinch points is in tandem with that of spread
pathways. Category B spread in the mid-southern and south-eastern portions of the basin
are highly linked. There are some areas in the mid-southern and south-eastern parts where
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Category B seems restricted from expanding, as evidenced by low cumulative current
values (Figure 7) and the absence of cumulative contours (Figure 8). These areas seem to
be associated with low river density when compared to the north and southern parts of
the basin.

As can be seen in Figures 9 and 10, Category C transitions spread is restricted to the
mid-southern part of the Okavango basin. This spread will most likely move towards
the southeastern portion of the basin and only be restricted by the delta (Figure 10). It
seems that there is little chance for Category C to spread to the northern part of the basin.
The spread of LULC change of this category seems to cover mainly parts of Botswana
and Namibia. It can be seen that the high cumulative values in this category dominate
in areas with low anthropogenic activities and are associated with protected areas (see
Figure 10). Areas with how cumulative current values indicate how natural vegetation
will change from one class to another as a result of natural processes such as droughts,
floods, and invasion. A total of 58 pinch points were observed in this category, and these
can be used for targeted management of the natural processes that drive LULC change.
Low cumulative current values (less than 0.67) are recorded in the due north and southern
areas of the Okavango basin, covering major parts of Angola and Botswana, respectively.
Low cumulative values areas appear to be associated with permanently established towns
and wetlands (Okavango delta) (Figure 10). The validation index for this category is 0.66,
which indicates that the connectivity model is accurate.

4. Discussion

Using susceptibility maps of LULC change, this study revealed that CT modeling
could successfully detect the spread and connectivity between LULC change patches. This
is so because it consistently established the spread and connectivity of three different
categories of LULC change transitions. These transitions are Category A (transition from
natural to artificial); Category B (from artificial to natural); and Category C (from natural-
to-natural classes). In addition, observations at selected validation sites confirmed the
occurrence of change along predicted connectivity areas, as evidenced by validation index
values higher than 0.5. Moreover, the predicted spread patterns in this study pass through
locations of LULC change identified in previous work that predicted the distribution of
LULC in the basin [41]. While previous studies were successful in predicting future LULC
change, their results were based on discrete patches of LULC change which promotes
a piecemeal approach to LULC change management. Other studies have successfully
used spatially explicit models based on different sets of environmental factors to predict
the probability of occurrence (susceptibility) of LULC change [24,25,53]. However, one
of the shortcomings of these studies is that they could not deduce the spread pathways
of LULC change and strategic pinch points for intervention. The novelty of this study
rests in that it combines LULC change patches and susceptibility maps to establish the
spread pathways and connectivity of LULC change patches. The advantage of connectivity
analysis is that it provides explicit spatial information on the links (multi-paths) that exist
between distinct change patches and provides predictions of potential spread direction and
pathways based on factors that impede or facilitate the spread of LULC change. It also
helps to identify points where spread pathways narrow (pinch-points), and such points are
crucial for targeted intervention when monitoring LULC change. This information would
be beneficial for developing strategic measures to address challenges associated with the
change in LULC, both on where change has occurred and the likely pathways changes it
would follow in the future, particularly in situations where LULC change is contagious.

The usefulness of CT modeling has already been explored when evaluating the spread
and movement pathways of phenomena in ecology, hydrology, and archaeology. For
example, Gray and Dickson [32] used CT to model landscape-scale fire connectivity for
resource and fire management in the Sonoran Desert in the USA. They used data for
large fires, wind speed, and wind direction to compute a conductance layer for use in
CT. They established that the spread of the fire was higher in lower elevations and areas
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with lower slopes and topographic roughness. Brennan et al. [54] used the CT and GPS
data from six species to evaluate connectivity at multiple scales within the Kavango-
Zambezi transforntier conservation landscape in southern Africa. They evaluated the
effects of linear barriers, natural habitat types, and anthropogenic land use on animal
movement. They modeled landscape resistance using step selection functions to compare
habitat characteristics at ‘used’ and ‘available’ steps to quantify an animal’s selection and
avoidance of landscape attributes during movement. They established that there were many
intact areas across the landscape with diffuse current flow and that fences, rivers, roads,
and areas of anthropogenic land use acted as barriers to animal movement. The current
study used a LULC susceptibility layer to compute a resistance (for use in CT) derived
from an ensemble of machine learning models based on centroids of change transitions and
social-ecological drivers of LULC change in the Okavango basin. No studies that applied
the LULC change susceptibility and CT modeling to evaluate LULC change spread were
found in the literature.

This investigation yielded important results of likely pathways of spread of different
LULC transitions and their pinch points (186) using the CT. The findings of the study show
that LULC change spread pathways for Category A were widely connected across the
basin with relatively high current values diffusing from existing towns (See Figure 6). This
is consistent with previous studies which reported that anthropogenic activities such as
the expansion of built-up areas and agricultural areas occur close to urban centers [55–58].
This is so due to the main drivers of these activities being attracted to areas with the
most preferred resources, such as access to jobs, development, and market for agricultural
produce [59]. The results of this study contest those of Woldesemayat and Genovese [60],
who recorded the isolation of patches of urban expansion in Addis Abba, Ethiopia. This can
be attributed to the unplanned allocation of land for the city’s key development projects,
which resulted in isolated urban patches in Addis Abba, as observed by Terfa et al. [61].
Unlike in Addis Abba, where there are uncontrolled urbanization and development projects,
the Okavango basin has controlled anthropogenic developments that are ensured by the
Okavango River Basin Commission (OKACOM) [62–65]. Future studies should compare
patterns of LULC change distribution in areas with contrasting land management regimes.

The spread of high cumulative current values for Category A transitions was found to
be concentrated in the northwestern, central, and southern parts of the basin. These areas
are most likely going to experience an increased intensity of the spread of LULC change
linked to the expansion of anthropogenic activities such as urban and cultivated areas. Most
of the spread pathways in this category were found to be radiating from major urban centers,
namely Mentogue in the north, Chitembo in the northwest, Rundu in the central parts, and
Maun in the south. Pinch points for the spread of LULC transitions in this category were
located close to established urban centers and existing cultivated fields. Locations of pinch
points can be used for setting conservation areas, ecovillages, and urban boundaries [66].
Kgathi et al. [43] assert that access to jobs, development, and markets for agricultural
produce drive occupation of land situated close to towns. Hence management strategies
to curb this, such as the redevelopment of inner core regions and urban consolidation
in towns situated close to pinch points, can be put in place [67,68]. The north-western
and north-eastern spread pathways are highly connected and expansive. This will most
likely have a significant impact on water consumption for domestic, agriculture, and for
industries, leading to less water for the southern parts of the basin. Natural vegetation,
including wetlands, will most probably be impacted by this spread due to the possible
expansion of fields, which may impact water quality. Predicted spread pathways in this
study are in line with the distribution of expansion in anthropogenic activities in the
Okavango basin described in previous studies. For instance, Andersson [69] conducted a
study that found that expansions will likely occur in and around Rundu, Menongue, and
Cuito Canavale. Our study provides spread pathways through other districts that were not
previously reported in the literature. This study is unique in that it yielded LULC change
connectivity based on exhaustive and recent data. Furthermore, this study covered the
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entire Okavango basin using satellite imagery of the period between 2004 and 2020. In
contrast, Andersson [69] only covered the northern part of the basin using satellite imagery
from 1973 to 2001. For Category A, low cumulative current values were observed in areas
situated in the northeastern, central, and southwestern parts of the basin (Figure 5). This is
likely due to the presence of landmines in the northeastern districts such as Mexico, which
restricts anthropogenic activities [70]. According to Finchk et al. [71], there are hunting
concessions in areas close to the central parts of the basin and wildlife management areas
in the southwestern part of the basin, such as Chobe National Park. This study’s findings
of low to medium cumulative current values (less than 0.37) in these areas are indicative of
barriers to anthropogenic activities due to these protected areas (see Figure 10).

With regards to Category B transitions, we observed connectivity of LULC changes
mainly in the northern and the mid-south and south-eastern parts of the basin. The
two centers of connectivity seem to be disconnected from each other, as observed by a
large area of low cumulative current in the middle portion of the basin. The transitions
which are found in this category are that of previously cultivated classes that changed to
natural classes. Hence, the observed distribution pattern could be a reflection of the past
distribution of cultivated fields that were abandoned in the Okavango basin. Cultivated
fields often cluster in areas characterized by viable lands that are suitable for agricultural
production and often close to major water sources such as Cuito and Cubango in the
basin [72,73]. In the Okavango basin, most rural communities migrated to towns during
the post-Angolan war period [43,74]. Rural out-migration often leads to a decrease in
rural populations, low demand for agricultural space, and limited workforce hence the
abandonment of cultivated fields [75]. Owing to that, the abandoned cultivated lands in
the Okavango basin will likely maintain the same connected pattern of formerly cultivated
lands. A total of 71 pinch points that were found in this study are potential targets for
vegetation restoration projects by ecologists and land managers. Woods and Elliot [76]
proposed direct seeding for forest restoration as a strategy to promote ecosystem recovery
in abandoned fields. Hence, adopting such techniques at pinch points and other spread
pathways that are situated close to rivers would be helpful to enhance ecological integrity
of the Okavango basin. Category B spread also appears to move into the pan handle of the
delta (see Figure 8). This is most likely due to people shifting from one field to another
due to soil degrading over time or moving into areas that were previously under water
as water recedes during drier years [77]. This area constantly experiences droughts and
flooding [78]. So, some fields will be inaccessible during periods of flooding and vice
versa. Setting up of alternative livelihood strategies such as ecotourism and apiculture
projects for communities living along spread pathways adjacent to the panhandle and other
floodplains could assist in promoting recuperation of former cultivated lands [79,80]. Our
findings supplement a growing body work reporting on management of abandonment of
cultivated fields.

The connectivity of Category C transitions (natural to natural classes) was found to be
restricted to the mid-southern part of the basin. This category displays a very low chance of
moving to the northern part of the basin. Moreover, it seems to be restricted to moving into
the delta. This could be due to the localized nature of driving factors of this transition that
could be perpetuated by existing climatic conditions. Literature is replete with evidence of
the conversion of one natural vegetation cover to another as a consequence of localized
factors such as fire, invasion, and climate variability in the Okavango basin. For instance,
Heinl [81] found that woody species were lost to shrubs and grasses due to frequent fires
in the basin. Forno and Smith [82] established that the extent of wetlands in the basin was
reduced due to invasion by alien aquatic weeds, such as Salvinia molesta (salvinia) and
Eichhornia crassipes (water hyacinth). Ringrose et al. [83] found that drought conditions
have caused island woody vegetation cover invading wetlands to form clusters of dense
woodlands. According to Heinl [81], most transitions that involve the loss of wetland areas
(for example, C1, C2, C11, C12, C13) are a result of highly frequent fires, which tend to affect
certain localities in a landscape. The area that is concentrated by spread pathways for this
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transition primarily falls within the Hot semi-arid (Bsh) Koppen climate zone and does not
go beyond this zone to the north. The semi-arid regions are renowned to be associated with
the aforementioned drivers of this LULC transition (namely droughts, natural fires and
invasion) [84–86]. Promoting research on targeted invasive species monitoring and allowing
communities to collect thatch grass at pinch points, particularly those situated in protected
areas, to reduce fuel load could be helpful in reducing species invasion and wildfires in
the basin. Moreover, sustainable water management strategies (for example, introducing a
water quota) in the upstream areas would ensure continual supply downstream to reduce
the chances of drought conditions which promote spread of Category A transitions [87].
For example, this study found that spread of Category A transitions in the southern part
is bound by the Okavango delta which is a demonstration of how lots of water facilitates
maintenance of habitats for vegetation species that are endemic to this area [88]. Findings
of this study aid insight into the interaction between climate, natural events, water systems
and ecological integrity.

As can be observed in Figures 5, 7 and 9, the extent of spread for transitions from
natural to anthropogenic classes (Category A) generally looks larger compared to the
other transitions (Category B and C). This is in line with other studies that reported the
dominance of anthropogenic activities in driving LULC change [89–91]. Anthropogenic
activities are often rapid and tend to affect large tracts of land when compared to natu-
ral processes [5,92–94]. This study is novel in the sense that it yielded spatially explicit
information on the extent of LULC change spread, including detecting likely pathways of
the spread for the different categories investigated. We are convinced that this study lays
a good foundation for future investigations on LULC change, detecting likely pathways,
pinch points, and landscape modeling. Such information is crucial to inform land use
planning, monitoring, and decision-making.

Though findings from this study provide important contributions to improving the
mapping and monitoring of LULC change in TDBs, it should be noted that there are some
limitations associated with this study. The study did not incorporate in the generation
of the resistance surface layer other drivers of LULC change, such as landmines that
remained during the war in Angola due to data unavailability. This is also the first time
that a resistance layer derived from LULC susceptibility modeling has been used in LULC
connectivity modeling. This study exploited the success of a previous study where we
created a LULC susceptibility layer using social-ecological data based on an ensemble of
Machine Learning. Other authors may use different datasets and spatial resolutions for
such purposes. Future studies may benefit from including landmine distribution data when
generating surface resistance data for connectivity of LULC change in the Okavango basin.
This study was conducted at a regional scale which tends to generalize other predictors
which could be influencing the connectivity of LULC change at a local scale. Future studies
conducted on smaller scales may help reveal local trends that could not be discerned by
this investigation as it was conducted at a regional scale.

5. Conclusions

This study aimed to investigate the value of the CT to detect the connectivity and
distribution of LULC changes in the Okavango basin. The specific objectives were to:

(1) assess the role of LULC change susceptibility in modeling spread and connectivity of
LULC change, and

(2) model the spread pathways of LULC based on CT.

The study found that:

(a) CT and connectivity modeling provides a new decision-making technique for predict-
ing the spread pathways of LULC change.

(b) there is a connectivity of LULC change observations for all categories of LULC change
in the Okavango basin, which is a testament that LULC change has a facilitative effect.
Hence, management focus should not only be given to patches of LULC change sites
but also to potential spread pathways.
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(c) A total of 186 pinch points (57 for Category A, 71 for Category B, and 58 for Category C)
were detected. The pinch points can be used for targeted management LULC change
through the setting up of conservation areas, forest restoration projects, drought
monitoring, and invasive species control.

We conclude that the application of CT modelling is crucial to targeted management
of LULC change in complex and transboundary systems. Unlike traditional methods,
CT modeling provides a novel approach to establishing reliable spread pathways and
strategic pinch points of LULC change. While the spread of anthropogenic-related change
transitions is widespread across the basin, natural change transitions are mainly restricted
to semi-arid climatic zones. The predicted spread of anthropogenic-related LULC change
in the northern parts of the basin will likely impact the quality and availability of water
downstream of the Okavango river.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/geomatics2040028/s1, Figure S1: Land use/cover classification
outputs during the years 2004 (a), 2013 (b), and 2020 (c) in the Okavango basin. Figure S2: Map shows
the LULC change patches for different LULC change transitions were; (a) transition from natural to
artificial, (b) transition from artificial to natural, (c) transition from natural-to-natural classes.
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