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Abstract: The effect of climate prevails on a diverse time scale from days to seasons and decades.
Between 1993 and 2013, global warming appeared to have paused even though there was an increase in
atmospheric greenhouse gases. The variations in oceanographic variables, like current speed and sea
surface temperature (SST), under the influence of the global warming hiatus (1993–2013), have drawn
the attention of the global research community. However, the magnitude of ocean current and SST
characteristics oscillates and varies with their geographic locations. Consequently, investigating the
spatio-temporal changing aspects of oceanographic parameters in the backdrop of climate change is
essential, specifically in coastal regions along Kuroshio current (KC), where fisheries are predominant.
This study analyzes the trend of ocean current and SST induced mainly during the global warming
hiatus, before and till the recent time based on the daily ocean current data from 1993 to 2020 and
SST between 1982 and 2020. The Kuroshio extent is delineated from its surrounding water masses
using an aggregation of raster classification, stretching, equalization, and spatial filters such as edge
detection, convolution, and Laplacian. Finally, on the extracted Kuroshio extent, analyses such as time
series decomposition (additive) and statistical trend computation methods (Yue and Wang trend test
and Theil–Sen’s slope estimator) were applied to dissect and investigate the situations. An interesting
downward trend is observed in the KC between the East coast of Taiwan and Tokara Strait (Tau = −0.05,
S = −2430, Sen’s slope = −5.19 × 10−5, and Z = −2.61), whereas an upward trend from Tokara Strait to
Nagoya (Tau = 0.89, S = 4344, Sen’s slope = 8.4 × 10−5, and Z = 2.56). In contrast, a consistent increasing
SST in trend is visualized in the southern and mid-KC sections but with varying magnitude.

Keywords: Kuroshio; ocean current; SST; time series decomposition; Yue and Wang test; Sen’s slope
estimator; spatial filters

1. Introduction

The ocean and atmosphere are crucial elements of the Earth system. Therefore, the
thermo-physical properties of the oceans and their current speed are essential components in
oceanographic and climate studies. Sea surface temperature (SST), land surface temperature,
precipitation, wind pattern, ocean current, relative humidity, and their interactions lead to the
statistical mean variability of average weather from days to months or seasons and thousands
of decades [1,2]. As the solar radiation constantly heats the ocean surface between 23.5◦ N and
23.5◦ S. Kuroshio, a western boundary current, is vitally essential to transport and modulate
the surplus thermal content of the ocean from the tropics to poleward (north).

The heat and transport by Kuroshio extension (Kuroshio between 30◦ to 40◦ N and
140◦ to 180◦ E) appeared to have been enhanced by global warming during the past
100 years. Moreover, the analysis of multiyear SST and volume transport by the Kuroshio
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current (KC) was a vital challenge. However, diverse resources, for instance, cruise vessels,
models, satellite, and Argo providing high resolution multiple datasets for in-depth data
examination, revealed a shift in the path of Kuroshio extension [3]. Because of SST’s
connection to global warming, the rising sea temperature has received a lot of attention [4,5].
Since 1971, there has been a linear trend of 10.1 ◦C/decade in the global mean temperature
at a depth of 75 m [5,6]. Given that the surface ocean reacts immediately to atmospheric
warming, SST is one of the crucial elements in determining how warming occurs. Long-term
remote sensing data on SST are also accessible. However, SST warming is not regionally
uniform, which is significant. Previous research has found that the western boundary
currents are particularly quickly warming [3,7]. Understanding the causes behind this
rapid warming is crucial to comprehending climate change [8,9]. The atmosphere is
significantly impacted by SST fluctuation in the East China Sea [10–13]. The SST pattern of
the East China Sea is the subject of several research [3,14–16].

The East Asian monsoons influence KC’s kinetic energy (magnitude of current) on a
seasonal scale. On the other hand, the impact of extreme weather events (El Nino and La
Nina) lasts on an inter-annual scale [17]. These seasonal and inter-annual climatic variations
direct to regional scale modifications of surface winds at 10 m over the North Pacific. This
further influences KC water masses’ southward and northward transportation in the deep
ocean and western boundary, respectively [17]. Likewise, a decadal scale rise in eastward
transport of the KC in the south of Japan was also documented [18]. Miller et al. [19]
diagnosed and verified these decadal scale deviations of KC. Most of the research on
Kuroshio intensity used hydrography data collected from cruise ships, KC transport, ocean
circulation models, or sea surface height differences to quantify the strength of KC [3,17–19].
An increasing KC trend would benefit us more in a perfect scenario by moving more heat
poleward. At the same time, the decreasing trend in KC would impact the regional scale
weather of Taiwan, the Philippines, and Japan. In addition, global analysis to understand
past and co-occurring climate change has attracted significant attention [20]. Despite the
fact that the levels of greenhouse gases in the atmosphere have risen, the global warming
rate has slowed down or paused, or hiatus since the late 1990s [21,22].

The downshift in global warming resembles the renowned Pacific Decadal oscillation’s
negative phase in many ways [23]. However, it may not be a perfect match because the for-
mer may also be influenced by feeble solar activity [24], reduced stratospheric moisture [25],
enhanced volcanic outbursts [26], surged stratospheric aerosols [27], increased ocean ther-
mal storage capacity [28], and cooling of the central-eastern tropical Pacific [22,29,30]. The
negative Pacific Decadal oscillation and the simultaneous strengthening of prevailing winds
(trades) in or around the end of the 1990s are primarily cited as significant dual contributors
to these advancements, despite their diversity. In actuality, the Kuroshio strength was more
influenced by the wind stress curl, and Pacific Decadal oscillation, than by the net thermal
intake made things more difficult. The Kuroshio modifies the climate by transferring extra
heat from the tropics to the poles. Additionally, it impacts typhoons’ growth, the fishing
industry’s profitability, and ocean circulation in nearby marginal areas like the East and
the South China Sea. As a result, the Kuroshio had higher incursion occurrences when it
weakened and had a more significant influence [31–36].

The Kuroshio front was generally identified by researchers in the conventional rect-
angular or square domain. The two-dimensional histogram, in conjunction with the SST
and chlorophyll-a ranges, was used by Takahashi and Kawamura to analyze the seasonal
fluctuation of Kuroshio [37,38]. However, the objective technique [39] is capable of spatially
detecting ocean fronts. The abrupt gradient regions, also known as edges, originated due to
the diverse physical processes such as open ocean mixing, upwelling, and convergence are
detected during spatial mapping using an objective spatial filter approach. However, due
to homogeneous surface heating, the traditional technique employing isotherms outlined
above did not function effectively during the summer.

Similarly, extracting features by just specifying an array of values refrains from defining
the precise border of Kuroshio [38]. Boundary identification, cluster shadow method, and
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entropic approach are the most efficient and functional techniques for separating a feature
from its surroundings. In addition to objective gradient filters, image classification algorithms,
especially the standard deviation and Jenks procedure, are repeatedly employed in remote
sensing. These image processing approaches to spatially identify a feature precisely in remote
sensing satellite data are incomprehensible to recognize. In a similar vein, the histogram
equalization and gradient detection filter are two extensively used techniques because of their
robustness, sufficient global validation, simplicity, and ease of use [38].

Evaluating SST and ocean current trends across time and space is crucial for planning
marine resources and regional decisions [40,41]. In considerable studies, numerous investi-
gations followed through to find the geographical and time-dependent variations [42–44].

Many statistical techniques, such as the Mann–Kendall (MK) test, Hamed and Rao
modified MK test, and Yue and Wang Modified MK Test, have been devised and used by
several studies to analyze the trend [45]. A swift research of these methods has shown that
parametric and non-parametric approaches frequently remain available to identify mean-
ingful patterns from multiyear data [46,47]. Only a few time-series change detection/ trend
analysis techniques have been developed for remote sensing data despite the fact that the
importance of satellite multiyear and seasonal images to identify the changes in land-use
classes has been well-recognized [48].

Two significant obstacles while examining satellite data are discovering variations
within the entire multiyear time-series data and simultaneously considering seasonal shifts
into account; therefore, suitable methodologies must first be developed. Since time series
contains seasonal, steady, and sudden shifts, in addition to residuals originating through
relic geometric/dimensional errors, air dispersion, and cloud coverage/effects, quantifying
the change from remotely sensed data are not straightforward [49]. The long-term series
decomposition analysis techniques separate the signal from the noise based on temporal
features. Still, they also entail some adjustments intended to focus on the primary sources of
fluctuation in the multi-temporal spectral space over years of imaging [50]. The MK test is
considerably employed without relying on preconceptions for spotting strong unmodulated
patterns in time series. The hypothesis for this test signifies an increasing or a decreasing
tendency based on a one/two-sided test, but the null hypothesis indicates no trend [51].

In contrast, a study investigating the practicality of MK’s approach to identifying the
declination of software performance. Using the computer metrics indicated the MK as an
insignificant test; on the other hand, the experimental findings pointed out that using the MK
trend analysis to notice the aging of software is favorably revealed, initiating false positives [52].
Nevertheless, other research has utilized the MK’s approach to evaluate temporal and regional
trends, such as those conducted in Iran, Kansas, the United States, and is employed in non-
parametric tests globally to identify unmodulated patterns in a series of climate data [53,54].
These non-parametric techniques have many advantages in processing time series with
missing data, but with few hypotheses and the freedom of data dispersal [55–57].

However, the main drawback is the influence of auto-correlation on the test signifi-
cance of the data. Several researchers have proposed modifying these tests to eliminate
auto-correlation using diverse methodologies. One of the most popular assessments is
to adjust bias before pre-whitening [58–60]. Thus, the MK test is mainly preferred to ex-
amine the time series of climatic data considering that its statistical analysis refrains from
following the normal distribution.

Ideally, the MK statistical test is a standard method for determining the significance
of a trend in time series datasets. However, sample data must be serially independent in
order to pass the test. The capacity of the MK test to accurately determine the significance
of the trend will be affected by the existence of serial correlation in time series and when
sample data are serially correlated. Serial correlation often has an impact while analyzing
trends on time series data. Therefore, modified MK tests should be used for trend detection
in circumstances when the time series is not random and has been influenced by auto-
correlation. Yue and Wang suggested a procedure to correct variance during trend analysis
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of serially correlated data. First, adequate specimen length is specified using the coefficients
of significant serial correlation after eliminating the trend from multiyear time series [61].

Another non-parametric technique frequently employed to specify the amplitude of a
trend is the Theil–Sen slope estimator approach. However, characterizing a notable trend
in a time series is crucial in trend identification and investigations. Consequently, Sen’s
slope estimates the intercept and the gradient [62]. These tests are favored over other tests
due to their effectiveness in processing multiyear data, disobeying the statistical dispersion.
They are well-reported in the numerous results of time-series studies as an applicable trend
test for efficacious investigation of periodic and year-long trends in climate data. Several
applications for the time series patterns have been identified using the MK trend analysis,
demonstrating inter/intra-annual variability [63]. However, few studies examined extreme
temperature, precipitation trends, and their statistical significance using both MK and Sen’s
slope estimator over the land as well as the Mediterranean and Black Sea [64–71].

The primary objective of this study is to analyze the trend of SST and ocean currents
of Kuroshio extent under global warming hiatus. Based on the data availability, the inves-
tigation was extended till 2020. As the SST data are available from 1982, we investigated
the trend before, during hiatus, and until recently. On the other hand, the ocean current
provided by the Copernicus-GlobCurrent database is from 1993, so the trend analysis
was done from 1993 to 2020. Foremost, we employ SST and Ocean current multi-sensor
satellite-driven datasets and image processing spatial filters to demarcate the Kuroshio
from its surrounding water masses. Then, regarding the Kuroshio extent, the time series
decomposition was employed, followed by investigating the trend of SST and Ocean cur-
rent incorporates comprehension of temperature and magnitude tendencies. Next, the
variability was examined using the Yue and Wang Modified MK Test to investigate the
unmodulated patterns and, finally, the Sen’s slope estimator to quantify their magnitude.
Apprehending the unpredictability corresponding with SST and current patterns will
provide an understanding of Kuroshio’s strength and associated wind patterns.

2. Data and Methods
2.1. Study Area

The Kuroshio regulates climate by carrying surplus heat from the tropic to the pole.
By advecting a significant quantity of heat from the tropics to the northern mid-latitudes,
KC plays a crucial role in the north Pacific circulation, moving seawater with a volume
equal to 6000 big rivers. The study area is between 18◦ to 35◦ N and 115◦ to 138◦ E, where
KC streams alongside the eastern Taiwan nearshore towards the continental shelf. Then,
Kuroshio transits the Tokara Strait, advancing along Nagoya contouring at a depth of 200 m
to 2000 m, transporting 16–26 ◦C skin SST range by 0.22 and 1.05 m/s ocean current time
series data. Therefore, any change in KC’s trajectory or its velocity can have an impact on
large- or small-scale climatic changes (Figure 1).

2.2. Data

The input comes from the daily data collected by several satellite missions. Again,
however, only data spanning the research region have been used; all datasets given have a
global geographic resolution.

2.2.1. Ocean Currents

Copernicus-GlobCurrent Level-4 three hourly, daily, and monthly mean geostrophic
and the Ekman current products are used to generate the regional and global surface
currents products, which are delivered on 0.25◦× 0.25◦ and produced over the 1993 to 2020
(https://resources.marine.copernicus.eu/, accessed on 2 May 2022).

The geostrophic, Ekman, tidal, and Stokes drift currents are shown in the global
perspective at 0 and 15 m of depth. The sum of the geostrophic and Ekman currents equals
the total current at 15 m of depth given by:

https://resources.marine.copernicus.eu/product-detail/MULTIOBS_GLO_PHY_REP_015_004/INFORMATION
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Ucombined (z = 15 m) = Eastwardgeostrophic + EastwardEkman (z = 15 m)

Vcombined (z = 15 m) = Northwardgeostsrtopic + NorthwardEkman (z = 15 m)
(1)

The resultant (
√

U2 + V2) of zonal (U = Eastwardcombined) and meridional
(V = Northwardcombined) current components of ocean currents products at 15 m depth
are employed in the present analysis, even though the mere addition of geostrophic and
Ekman current does not yield the surface current [72–74].
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Figure 1. Area of interest, mean KC velocity at 15 m depth overlaid on bathymetry map merged with
SST contour (◦C in red) illustrating KC’s course in the faded blue spectrum. The broken yellow streak
distinguishes the location of Tokara strait, where KC streams in the ‘U’ pattern.

2.2.2. SST

This research employed high-resolution skin SST of the sea surface water from 1982
to 2020 daily averaged version 2.1 of Optimum Interpolation SST (OISST) data with a
spatial resolution of 0.25◦ latitude by 0.25◦ longitude grids (https://www.ncei.noaa.gov/,
accessed on 2 May 2022). It combines in-situ (buoy, Argo float, and ship) with Advanced
Very High-Resolution Radiometer (AVHRR) SST. In order to obtain worldwide coverage,
the optimum interpolation method fills gaps in geographical data [75–78].

2.2.3. Ocean Vector Winds

Data from QuikSCAT, ASCAT scatterometer, moored buoy, radiometer, model Vari-
ational Analysis Method (VAM), and ERA-Interim winds are merged as Level-3 cross-
calibrated multi-platform (CCMP) ocean vector wind of daily resolution with 0.25 degree
gridded vector winds between 1993 to 2020 are used in this study (https://www.remss.com/,
accessed on 2 May 2022).

Investigating the physical phenomenon between large-scale air and sea moreover their
influence on the atmosphere and the ocean requires high-quality ocean surface wind data
without gaps with finer temporal and geographical resolution. In addition, ocean vector
wind data must be collected for a sufficient amount of time to resolve wind-induced patterns

https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://www.remss.com/measurements/ccmp
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like the El Nino-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO).
Ocean winds are dynamic and frequently vary over concise time intervals. Therefore,
it is challenging to produce global, gridded, gap-free wind fields due to this property,
specifically at temporal and spatial scales lower than common wind characteristics [79–81].

2.3. Methods

Figure 2 represents the across-the-board method using an assorted spatial filter and the
raster classification method used in this research to delineate Kuroshio from its surrounding
water masses. Moreover, this section explains the convoluted methodology with substantial
raster pre-processing [82,83], followed by the trend analysis in this research.

Daily mean is utilized to map the relationship of the aforementioned data sets across
KC in the research region and was used to calculate the monthly climatologies. We used a
multi-variate proposal to detect Kuroshio. First, the augmentation of spatial signatures at
fronts connected to the feature is disclosed by employing contextual filters and data classi-
fication techniques for remote sensing images. Next, edge detection is used to delineate the
KC from remote sensing images. Then, all the images must have been digitally examined
and combined with filters to minimize noise while maintaining the features and finally
analyzing the trend, followed by exploring the wind pattern over the Kuroshio; Figure 2
shows the hierarchy of data processing methods.

2.3.1. Delineation of Kuroshio

We initially chose the datasets on the first day they were made available. The remainder
is filtered to exclude those that do not begin in January and terminate in December. Thus,
all datasets have been completed in 12 months while computing monthly climatology.

A convolution and Laplacian filters are fit to process the SST climatological datasets in
assortments to extract the KC. These operations execute filtering on a pixel ground to sharpen the
feature and detect the edges within a satellite image. Our filters’ primary ingenious technique is
that they evaluate a 3 × 3 pixel kernel at a time within a larger, more thorough pixel window.
The edges of the features are preserved and enhanced while erroneous data are removed using
the overlapping kernel of the convolution filter with 3 × 3 window [84].

By predicting the weighted pixels in their neighborhood, convolution filters work. In
oceanography, the foremost contextual approach of filtering was applied to validate large-
scale climatological records gathered from the North Pacific Ocean and categorize vertical
profiles [85,86]. Without respect to edge direction, a second derivative of the Laplacian
filter is further used to improve the detection of KC.

The climatological pixels (I) on the (x) and (y) axes were filtered through the Laplacian
filter (L) [87] given by:

L(X, Y) =
∂2 I
∂ X2 +

∂2 I
∂ Y2 (2)

Using a pixel window with a high center value that is often surrounded by zeros at
the corners and negative odd pixel window weights in the north–south and east–west
pixel directions:

∇ =

0 1 0
1 −4 1
0 1 0

 (3)

Similar to contrast stretching, histogram equalization uses additional repetitive values
to portray more contrast. As a result, it describes the regions with the highest frequency of
pixel values. As a consequence, the SST spectral signature of pixels in KC, where values
occur less often, is improved more than those in the original histogram.
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Figure 2. Overall methodology, employed in this study to delineate KC followed by Time series
decomposition and Trend analysis [38].
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Depending on the data type, a different categorization technique is employed; min-max
stretch and Jenks classification (natural break) are used to process sea surface current data.
Additionally, we chose the clusters to ensure the dispersion properties of the raw input
images are preserved and can be accurately stated using Osaragi’s approaches [88].

The Natural Breaks categorization separates the breakpoints by looking for groupings
and patterns in the data. This is the most well-known technique for reducing variance
within the data class in spatial analysis. Finally, in order to radiometrically enhance
the satellite images and make Kuroshio visible to the human eye, attributes including
brightness, contrast, and gamma are adjusted using the minimum-maximum and histogram
equalized stretches’ functions. The initial lower and upper limits of the original data are
allocated to 0 and 255 on display in the min-max, which is a linear contrast stretch. In
some datasets, the vast majority of pixels lie between upper and lower bounds. Thus, we
eliminated the extreme values.

2.3.2. Trend Analysis

The term “trend” refers to the long-term shift in the dependent variable over a sig-
nificant amount of time or the overall movement of a series over a substantial amount
of time [89]. For the importance of the trend of SST and ocean current, statistical tech-
niques like regression analysis and the coefficient of determination are applied. In addition,
Jan et al. suggested an additive time series decomposition method to suit models of linear
and seasonal trends to apply to climate data [50].

Time Series Datat = Trendt + Seasonalityt + Remaindert

t = 1, ........, n
(4)

The remaining data deviation outside of seasonality and trend makes up the remainder
component [90]. The intercept and slope of successive linear representatives, αj and β j, can
emanate the extent and direction of the sudden change and the gradient of the step-by-step
transition between perceived breakpoints, where the Trendt is:

Trendt = αj + β j t (5)

and the magnitude is represented as:

Magnitude o f abrupt change = (αj−1 − αj) + (β j−1 − β j) t (6)

In addition, β j−1 and β j are the gradients of the progressive shift, respectively [91].

2.3.3. Yue and Wang Modified MK Test

The MK test maintains the fundamental condition that the data must be independent
despite being reasonably practical and resilient. In other words, serial correlation, which
might be statistically influential in some hydrological and climatic time series data, is not
robustly noticed by the MK test.

On the other hand, the data’s positive serial correlation will cause the null hypothesis—that
there is no trend to be overly rejected, including long-been debated and well-documented.
Involving pretreatment of the data and modifying the MK test to report for serial correla-
tion are the two primary strategies that have been recommended to reduce the effect of
serial correlation.

Yue and Wang proposed an effective variance correction method for evaluating the
data, such as ocean current and SST, with the nature of serial autocorrelation employed in
this research. Hence, this research employs a correction method for evaluating the data
with the nature of serial autocorrelation [61].
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2.3.4. Theil–Sen’s Slope Estimator

Sen’s slope estimator is a technique for simple linear regression in non-parametric
statistics by picking the median of all line gradients across tandems of points. Sev-
eral publications have used the Sen slope to specify trends’ extent and movement (up-
ward/downward).

The main benefit of the Thiel–Sen slope is that it can be computed quickly and is not
affected by deviation. Compared to weak basic least squares, it can be a lot more precise
for skewed and heteroskedastic data; moreover, it can rival least squares even for properly
dispersed data in terms of statistical power [92,93]. This determines the slope of lines using:

Slope = median

{
yi − yj

xi − xj

}
f or all i 6= j (7)

2.3.5. Wind Climatology

Finally, this research used monthly climatological CCMP winds from 1993 to 2020.
First, the long-term trend of ocean surface winds presents the synoptic perspective of wind
magnitude and velocity over the KC on regional and seasonal peculiarities. Then, the
relationship between wind speed and KC’s path and velocity is presented with connections
for the investigation of global climate change. The surface-relative wind speeds from the
satellite and combined datasets were neutral, comparable, and calibrated to a recommended
10 m level. However, the approximation of wind speed might differ more than was essential
for precise aiming, relying on the equilibrium of the atmosphere and the ocean currents [94].

3. Results
3.1. Detection of KC Front

The chosen datasets from the very first day that they were made available were filtered
to exclude those that do not begin in January and terminate in December. As a result, all
datasets included in the climatology (monthly) computation have a full year of data. Last
but not least, we evaluated the algorithms in the range of 18◦ to 35◦ N and 120◦ to 140◦ E.

Initially, we employed the methodology of using a combination of spatial domain
filters [38] to delineate Kuroshio current from its neighboring water masses as the method
recommended by Wang [95]. Liu and Hou [96] did not effectively unveil Kuroshio in both
x- and y-directions and as well as in summer due to uniform heating. Still, they can be used
in detecting the tongue of KC. From each delineated Kuroshio extent for ocean current and
SST, the study area is subdivided into two (i.e., from the East coast of Taiwan to Tokara
Strait and from Tokara Strait to Nagoya, Japan) (Figure 3).

The KC extent from daily data converted to monthly climatology of ocean current at
15 m between 1993 and 2020 (Figure 3a,b) and skin SST from 1982 to 2020 is illustrated
in (Figure 3c,d) using close to 9855 and 13,870 NetCDF images, respectively. The mean
climatological skin SST is around 23.6 ◦C, and the 27 years’ mean climatological current
velocity at 15 m depth in the KC extent is between 0.1 to 1.05 ms−1.

The combination of spatial filters, raster algorithms for classification, queries, delin-
eation strategies, and digital image analysis methods can effectively map seasonal and
climatology SST and ocean currents of 38 and 27 years, respectively.

3.2. Time Series Decomposition

We employed an additive time series decomposition model to the NetCDF datasets
of SST and ocean current provided in combination with remote sensing, buoy, ships, and
as well by algorithms to yield time series to analogize and glimpsed modification with a
spatial validation. Table 1 depicts the statistical dispersion of SST and ocean current in the
different segments of KC.

The decomposition model yields information on the numeral, temporal stamps, sea-
sonality, extent, and direction of changes in the trend component. Our primary emphasis is
on the significant changes occurring within the trend. Last but not least, the residual com-
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ponent can be utilized for prediction and forecasting using machine learning algorithms.
The decomposition model fits different time series of SST and ocean current components to
precisely estimate the magnitude and trend. The seasonality is decomposed from the raw
data using the asymmetric Gaussian function [97].

Figure 3. Kuroshio extent, (a) KC and (c) SST, Taiwan to Tokara Strait; (b) KC and (d) SST, Tokara Strait
to Nagoya.

From Table 1, it can be inferred that, for the auto-correlated datasets, the observed
values of mean and 50% of percentile are pretty close. (Figure 4a,b) Moreover, Figure 4c,d
illustrate the additive time series decomposition of ocean current and SST between the east
coast of Taiwan to Tokara Strait and Tokara Strait to Nagoya, respectively.

Table 1. Overview of observed, seasonality, trend, and residual statistics of ocean current and SST for
each segment of KC.

Candidates Mean Standard
Deviation Minimum Maximum 50% Percentile

Observed: ocean current
(Taiwan to Tokara Strait) 0.47 0.05 0.29 0.63 0.47

Seasonal: ocean current
(Taiwan to Tokara Strait) −2.22× 10−20 4.08 × 10−2 −5.8 × 10−2 7.5 × 10−2 −1.5 × 10−3

Trend: ocean current
(Taiwan to Tokara Strait) 0.47 0.02 0.42 0.51 0.47

Residual: ocean current
(Taiwan to Tokara Strait) 0.0008 0.03 −0.08 0.10 0.002
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Table 1. Cont.

Candidates Mean Standard
Deviation Minimum Maximum 50% Percentile

Observed: ocean current
(Tokara Strait to Nagoya ) 0.49 0.05 0.38 0.65 0.49

Seasonal: ocean current
(Tokara Strait to Nagoya ) −2.7 × 10−20 2.3 × 10−2 −2.9 × 10−2 4.9 × 10−2 −9.42 × 10−4

Trend: ocean current
(Tokara Strait to Nagoya ) 0.49 0.03 0.43 0.59 0.49

Residual: ocean current
(Tokara Strait to Nagoya ) −0.00007 0.03 −0.11 0.08 0.001

Observed: SST
(Taiwan to Tokara Strait ) 25.63 2.29 21.44 30.02 25.66

Seasonal: SST
(Taiwan to Tokara Strait ) 2.92 × 10−16 2.24 −3.18 3.19 6.14 × 10−2

Trend: SST
(Taiwan to Tokara Strait ) 25.63 0.32 24.94 26.40 25.64

Residual: SST
(Taiwan to Tokara Strait ) 0.002 0.35 −1.04 0.89 0.023

Observed: SST
(Tokara Strait to Nagoya ) 23.17 3.16 17.6 29.37 3.16

Seasonal: SST
(Tokara Strait to Nagoya ) 2.7 × 10−18 3.11 −3.99 4.87 −0.34

Trend: SST
(Tokara Strait to Nagoya ) 23.18 0.34 22.5 24 23.23

Residual: SST
(Tokara Strait to Nagoya ) −0.00028 0.38 −1.37 1.11 −0.017

The model decomposed the time series data in seasonality, trend, and residual, as the
primary focus of this research is to examine the trend. The trend component is statistically
analyzed further.

3.3. Trend Computation Using Yue and Wang Modified MK Test and Theil–Sen’s Slope Estimator

The trend component of SST is examined using 38 years of skin SST data from between
Taiwan to Tokara Strait and Tokara Strait to Nagoya (1982–2020), along with 27 years of
ocean current at 15 m depth of similar spatial extent (1993–2020). In addition, Yue and
Wang’s approach and Theil–Sen’s estimator have been employed to confine the SST and
current trends. Figure 5a,b illustrates the comparison of the trend component of ocean
current between the two sections of KC.

On the other hand, Figure 5c,d show the trend of SST for the same geographic extent.
The positive ‘Z’ value of ocean current between Tokara Strait to Nagoya indicates an
increasing and upward trend over time. This also suggests a considerable increase in the
direction at a 5% significance (Table 2). The ‘Z’ value of the Taiwan to Tokara Strait for
ocean currents reveals a decreasing trend. However, the SST in both sections displays a
positive trend.
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Figure 4. Data, Trend, Seasonality and Residual, (a) KC and (c) SST: Taiwan to Tokara Strait; (b) KC and
(d) SST: Tokara Strait to Nagoya.

Table 2. Statistical results of trend analysis using the Yue and Wang modified MK test and
Theil–Sen’s estimator.

Candidates Trend Tau S Sen’s Slope Z

Ocean current (Taiwan to Tokara Strait) decreasing −0.05 −2430 −5.2 × 10−5 −2.61
Ocean current (Tokara Strait to Nagoya) increasing 0.89 4344 8.4 × 10−5 2.56
SST (Taiwan to Tokara Strait) increasing 0.088 9681 0.002 14.22
SST (Tokara Strait to Nagoya) increasing 0.070 7740 0.002 7.89

4. Discussion

This research aims to unveil the Kuroshio by using a combination of spatial domain
filters, testing the additive time series decomposition approach on the simulated time series
data of the ocean current at 15 m depth and skin SST. Table 2 depicts the properties of
the trend line. For example, Tau represents the presence and significance of a trend, and
whether the trend is increasing or decreasing is represented by the ’S’ value. The increasing
trend is indicated by ‘+’ve S and vice versa. Figure 4 illustrates the iterative disintegration
of time series data into components such as seasonality and trend.
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Furthermore, altering the seasonality in time series simplifies the detection of a shift in the
trend. From Figure 6, minor seasonal breaks are observed in the ocean current time series data
and could be described by the attribute that seasonality influences SST significantly.

Figure 5. Comparison of trend components, (a) KC and (c) SST: Taiwan to Tokara Strait; (b) KC and
(d) SST: Tokara Strait to Nagoya. The blue shaded years represent the hiatus period.

Interestingly, it is also inferred that these components are not affected by the amplitude
of seasonality and by more minor residuals. Thus, it made it possible to accurately detect
both sudden and step-by-step changes in the trend component Figure 5. As a result, the
whole multiyear series can be evaluated beyond the need to just choose data from certain
seasons or without normalizing reflectance values for individual types of land classes to
reduce seasonal fluctuation. Time series with daily data for a prolonged period could
improve the precision of detecting seasonal influence. Moreover, the residuals could be
used in machine learning approaches for forecasting and prediction.

The model is adequate for long-time data and yields the slope and intercept. Table 2
depicts that a significantly increased positive ‘S’ indicates a positive upward trend in SST
and ocean current (Tokara Strait to Nagoya), and a predominantly negative value implies a
negative downward trend in the KC between Taiwan to Tokara Strait. The existence of a
statistically influential pattern is assessed using the ‘Z’ value in both SST and ocean current.
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The global warming hiatus can be well explained in the circumstance of the Pacific
Decadal Oscillation. The global warming pause has seen several prominent oscillations in
atmospheric circulation and surface winds. Therefore, one might anticipate weaker and
stronger westerlies and easterlies, accompanied by a warmer and a cooler KC and the
equatorial Pacific Ocean, during the Pacific Decadal Oscillation, which has been surfacing
roughly in a weakening trend from increasing to decreasing since the mid 1990s [3,98].

A weakened KC is not stopping warmth from moving northward. Figures 4 and 5
show this somewhat unexpected outcome in which the weakening of Kuroshio is illustrated
in blueish-grey Figure 7e on the East coast of Taiwan. A similar weakening pattern is
observed in the south of Japan but only in the coastal region, whereas most oceanic KC
illustrates an increasing trend. Wu et al. also reported the decreased trend of KC using KC
transport data collected during the cruise [3,98].

Figure 6. Amplitude of Seasonal component, (a) KC and (c) SST: Taiwan to Tokara Strait; (b) KC and
(d) SST: Tokara Strait to Nagoya.
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Figure 7. Wind patter: 1993–2020, (a) Winter, (b) Spring, (c) Summer, (d) Fall, and (e) Trend of wind
and ocean current. Black vectors represent the seasonal wind magnitude (a–e) and the colored vectors
showing the linear trend in wind magnitude (e). The bright shaded region except blue spectrum
(a–e) depicts Kuroshio extent and the faded colored spectrum; (e) illustrates the linear trend of
ocean current.

During a negative Pacific Decadal Oscillation, the westerlies weakened, and the
easterlies strengthened Figure 7e, suggesting that the Pacific Decadal Oscillation and the
hiatus may have been closely tied. In addition, the western equatorial Pacific is displaying
a strengthening of the trade winds, which can be ascribed to the hiatus in global warming.
According to a research, the rise in SST is causing KC to transport the under global warming
on a more significant time scale [99]. Therefore, the vertical cross-sectional profile of KC
indicates a substantial baroclinic evolution, which leads to strengthening in the surface
and decline in the sub-surface. The KC strengthens as global warming dominates; the
acceleration of the surface carried on by SST warming on the surface is more significant
than the slowing down of KC conveyed by modifications in wind stress.

5. Conclusions

Our results confirm that the path of KC is uniformly warming, and it further warms
the pacific warm pool upstream from the Tokara strait to Nagoya. Even during the global
warming hiatus period from 1993 to 2013, more heat was injected into the KC, which can be
clearly seen from the S = 9681, 7740 and Z = 14.22, 7.89 from Table 2, and the trend of SST is
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also higher in the Taiwan to Tokara Strait. The southern portion of the Kuroshio from the
east coast of Taiwan to the Tokara Strait is losing strength even while the rising trend in
SST brings more heat into the region. While variations in seasonality reflect phenological
changes, shifts in the trend imply both gradual and rapid change. Regardless of the current
velocity, temperature, and wind parameters, it plays a vital role in modeling Taiwan’s
weather and climate.

The weakening of westerlies (Figure 7e) and cyclonic tendencies of wind stress curl
on the basin scale are to blame for the declining trend of KC despite rising SST. Figure 7
illustrates the long-time seasonal variation of wind between 1993 to 2020. For example,
Figure 7b depicts the magnitude of slighter wind during spring from Taiwan to Tokara Strait.
We employed a generic time series decomposition model and trend analysis techniques
in this study. However, employing advanced methodologies such as Empirical Mode
Decomposition (EMD), Innovative Trend Analysis (ITA), and Breaks For Additive Seasonal
and Trend (BFAST) could give more detailed insight into the nature of data. Moreover,
we divided our area of interest into two sections, but slicing it into more sections can
help us better understand the time series variations. It was uncovered that our method
is unsusceptible to noise and is unruffled by shifts in the amplitude of the seasonality
by decomposing time series with diverse levels of seasonal components and residuals,
and adding sudden shifts at various time stamps and magnitudes demonstrated that the
approach could involve various time series, contemplating various datasets with varying
residual levels and seasonal amplitudes.
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