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Abstract: Traditional interpolation methods, such as IDW, kriging, radial basis functions, and regu-
larized splines, are commonly used to generate digital elevation models (DEM). All of these methods
have strong statistical and analytical foundations (such as the assumption of randomly distributed
data points from a gaussian correlated stochastic surface); however, when data are acquired non-
homogeneously (e.g., along transects) all of them show over/under-smoothing of the interpolated
surface depending on local point density. As a result, actual information is lost in high point density
areas (caused by over-smoothing) or artifacts appear around uneven density areas (“pimple” or “tran-
sect” effects). In this paper, we introduce a simple but robust multigrid/multiresolution interpolation
(MMI) method which adapts to the spatial resolution available, being an exact interpolator where
data exist and a smoothing generalizer where data are missing, but always fulfilling the statistical
requirement that surface height mathematical expectation at the proper working resolution equals the
mean height of the data at that same scale. The MMI is efficient enough to use K-fold cross-validation
to estimate local errors. We also introduce a fractal extrapolation that simulates the elevation in
data-depleted areas (rendering a visually realistic surface and also realistic error estimations). In this
work, MMI is applied to reconstruct a real DEM, thus testing its accuracy and local error estimation
capabilities under different sampling strategies (random points and transects). It is also applied to
compute the bathymetry of Gulf of San Jorge (Argentina) from multisource data of different origins
and sampling qualities. The results show visually realistic surfaces with estimated local validation
errors that are within the bounds of direct DEM comparison, in the case of the simulation, and within
the 10% of the bathymetric surface typical deviation in the real calculation.

Keywords: multiresolution interpolation; bathymetry; SRTM; Gulf of San Jorge; Patagonia; Argentina;
Atlantic Ocean

1. Introduction

Digital elevation models (DEM) are important tools to study the Earth surface and
model the processes taking place over it; hazard mapping, climate impact studies, geo-
logical and environmental modeling, atmospheric and marine flow simulations including
tide prediction, are just a few of their current applications [1–4]. A grid DEM represents
the continuous surface interpolated through (discrete) points where elevation has been
measured and recorded, and is usually represented as an image whose pixels contain
elevation data. High resolution DEMs (∼1 m) appearing in the late 1990s allowed geo-
morphological exploration with unprecedented detail, both by visual analysis of shaded
DEM (e.g., that provides an easy inspection of features at various scales) [5] and through
geomorphological indices quantified from the raster image [6,7]. Finding the best DEM
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generalization (i.e., interpolation) for the scale of topographical features of interest is a key
element for multiscale analysis of structural topographic features [5,8,9].

Assessing the accuracy of DEMs is a pending issue, especially for the submerged part
of the Earth, where both density and distribution of acoustic bathymetric measurements [10]
and spatial resolution (either of interpolation or of indirect gravimetric inversion) are lim-
ited. Furthermore, DEM quality is also affected by characteristics of the surface or terrain
roughness, cell size or spatial resolution, and the chosen interpolation method (and deci-
sions made about its parameters) [11,12].

Currently, there are different open access global DEMs of the emerged Earth with
moderate resolution such as the shuttle radar telemetry model (SRTM, 1 arc second, approx-
imately 30 m horizontal, and 16 m vertical resolution) [13], the ASTER global DEM (GDEM
v3, 2.4 arc seconds, approximately 90 m horizontal, and 12 m vertical resolution) [14,15],
the Japan Aerospace Exploration Agency (JAXA) AW3D high-resolution global digital
surface model (5 m horizontal and 6.5 m vertical resolution) [16], and the ICESat GLAH14
(6 m horizontal and 15 cm vertical resolution) [17,18].

Mapping the submerged bottom of the seas and oceans has required more work. The
best known example of open-source bathymetric DEM is the General Bathymetric Chart
of the Oceans (GEBCO) [19,20]. Elaborating this DEM involves cleaning and harmonizing
data sources and then interpolating them into a surface. Often, this is an iterative process as
source data cleaning (and, sometimes, harmonization) cannot be done without an estimated
DEM. The acquisition of acoustic data over large areas is very expensive (for a given spatial
resolution, it grows with the square of the area), so crowdsourcing strategies are being used
to build large databases of bathymetric information [21], being GEBCO one of the most
successful ones in terms of integration from multiple sources.

Interpolation methods can be grossly grouped into deterministic, geostatistical and
machine learning methods (see the reviews [22–24] for more details):

• Deterministic interpolation methods include nearest (natural) neighbour (NN) [25],
inverse distance weighting (IDW) [26], or trend surface mapping (TS) [27]. These
methods often work better with homogeneous distributions of data points. There
are also models, as ANUDEM a.k.a. ArcGIS TOPO2GRID [28] that are designed to
interpolate data along curves (e.g., isolines or river basins).

• Geostatistical interpolation is commonly known as kriging which estimates elevation
using the best linear unbiased predictor, under the assumption of certain stationarity
assumptions [29,30]. There are many variants that overcome some limitations about
those statistical assumptions (such as indicator kriging), or improve prediction based
on co-variables (co-kriging).

• Machine learning interpolation methods apply interpolation/classification methods
to group “likewise” measurements thus enhancing their efficiency by using previous
results. Despite the widespread use of machine learning, its use applied to spatial data
is still a field of research; dealing with spatial heterogeneity and the problem of scale
are areas in which these techniques can excel (see [31,32]). These methods are also
showing their great potential when dealing with multi-source multi-quality data [33].

Interpolated DEMs often present “pimple” artifacts. These are typical of exact inter-
polation methods, where they appear around sampling points (quite common in IDW),
but also appear in approximate (e.g., geostatistical) methods, and are usually removed by
filtering the resulting DEM or by increasing the search window. This may cause; however,
oversmoothing if the estimated correlation length is larger than the details available in par-
ticular areas with higher sampling density; this has been addressed by variance correction
methods [34,35]. Another common artifact in DEMs are “transect” artifacts, very common
in bathymetric DEMs, that appear where data density is higher (along transects) in contrast
with the rest of the raster which is generalized. Some statistical resampling methods have
also been devised to address this problem [36,37]. The non-uniform sampling of terrain
data can be also caused by selection bias in topographic data (e.g., limited to easily accessi-
ble areas), leading to scarcely sampled areas compared with other highly sampled ones.
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High accuracy surface modeling methods have been proposed which attempt to overcome
this limitation by imposing differential geometry constraints that preserve the expected
topographical continuity [38] or introducing pre-interpolated features (e.g., isolines) in the
interpolation [36]. Of course, the alternative is to increase sampling effort in undersampled
areas; however, this is not always feasible.

The spatial resolution required from a DEM depends largely on the focus of our study
interest. For example, a continental DEM or an ocean-wide bathymetry do not require
resolving details smaller than several kilometers. On the other hand, the study of coastal
tidal dynamics or coastal geomorphometry, or lake or water dam bathymetry may require
resolving details of tens of meters or even meters [4,39–42]. When dealing with large areas
involving continental scale features data size grows rapidly making it almost impossible
to efficiently estimate elevation at points where data are not available, hence techniques
are required that are able to efficiently handle large data sets. This interest in multiple
scales across large geographical areas has led naturally to multiscale algorithms, either to
improve computation of traditional geostatistical interpolations [43], to get advantage of
wavelet interpolation algorithms [44], to complete information (especially in bathymetries)
by “superresolution” (techniques inherited from digital image inpainting) [45,46], to store
and get access to scale-dependent information [47], to analyze scale-dependent geomor-
phological features [5,9], or even to extrapolate the topography to finer resolutions than
available from the data in what is called geostatistical simulation [48,49].

Spatial interpolation methods, either multiscale or not, usually make assumptions
about the sampling process (e.g., random independent point-wise sampling), surface sta-
tistical properties (e.g., gaussian height distribution, functional form of the variogram),
neighborhood shape and extension (e.g., triangulation, look-up distance, look-up directions
or quadrants), smoothness penalization or other parameters (curvature constraints, wavelet
family, etc.). This makes the choice difficult in common working conditions, statistical
assumptions difficult to test, and algorithm parameters difficult to adjust, being the “desir-
able visual aspect” the most used heuristic criterion in choosing the interpolation, and the
software availability and computer memory and processing time the other criteria. The
latter are very dependent on the number of points to be interpolated, which again calls for
efficient multiresolution approaches.

The goal of this article is to describe multigrid/multiresolution interpolation (MMI)
based on simple (if not simplistic) hypotheses about the data, and which is able to solve
many of the problems other interpolation methods have, while being fast and extensible.
For that we will first introduce a top-down multigrid/multiscale method which meets
them while making the simplest hypotheses about the input data or about the interpolated
surface (Section 2.1). Then we will show how to use it for surface extrapolation (assuming
a self-affine multi-fractal terrain model, in Section 2.3), and cross-validation later used
for data filtering and outlier detection (Section 2.4). We will apply this algorithm to two
case studies in the area of the Gulf of San Jorge (in Argentina’s Patagonia, described in
Section 1): one based on synthetic data extracted from the SRTM DEM of the coastal
area (Section 3.1), and another based on actual multi-source bathymetric data in order to
compute the bathymetric surface of the Gulf (Section 3.2). We will discuss our proposal
based on these case studies, and on the current bibliography (Section 4) and, finally, draw
some conclusions.

2. Method

Mathematically speaking, interpolation means filling in the gaps of our information
about a function based on the information we have about that function, especially but
not limited to, the values that function takes at some known points. In what follows, we
will construct a multigrid/multiresolution interpolation (MMI) method keeping in mind
the geometrical relationships, and properties of exactness, regularity and smoothing, and
statistical expectation of the methods described in the introduction. We will also focus on
surface interpolation, i.e., interpolation of a real valued function f defined on an interval
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I = [a, b] × [b, c] ∈ R2; without loss of generality, we will assume that interval to be
I = [0, 1]× [0, 1].

2.1. Top-Down Multigrid/Multiresolution Algorithm

Although some interpolation methods aim at providing a grand final mathematical
formula to approximate function f at any point x ∈ I, often that formula is not used, but an
iterative method estimates the value of f at x from its values f (xi) at the observation points
xi ∈ I. In addition, in practice, we are often interested in obtaining the average value of the
function in some neighborhood B ⊂ I of x, being the precise value at x often inaccessible
experimentally. Based on these two practical approximations, we formulate our multigrid
method as follows:

1. Start with a partition of I in 2n0 × 2n0 intervals of the form

Bij =
[
i× 2−(n+1), (i + 1)× 2−(n+1)

]
×
[

j× 2−(n+1), (j + 1)× 2−(n+1)
]

with n = n0 ∈ N and i, j = 0, 1, . . . , 2n − 1. Thus the sidelength of each Bij is equal to
2−(n+1), being the sidelength of I equal to 1.

2. Chose those Bij such that for some k there is some observation point xk ∈ Bij. Let us
call Nij the number of those observation points inside Bij and estimate the average
value of f in Bij to be

f̂ (Bij) = 〈 f (xk)〉xk∈Iij
=

1
Nij

∑
xk∈Bij

f (xk) (1)

This means that our estimation of f in Bij is the most likely one (maximum likelihood)
given by the arithmetic mean of the Nij measured points inside Bij.

3. Let us now focus on some B∗ij such that there is no xk ∈ B∗ij. Let us consider its neighbor

intervals, of the form Bi±{0,1} j±{0,1}, such that the value of f̂ could be computed in
them; let us denote that set of neighbor intervals Nij. Then, we will interpolate

f̂ (B∗ij) =
∑B∈Nij

wB f̂ (B)

∑B∈Nij
wB

(2)

where the wB are weights assigned to intervals B ∈ Nij. The simplest weight assign-
ment would be the number of points inside B, that is wBkl = Nkl , meaning that we

take B∗ij as a part of the larger set B̄ij = B∗ij ∪
(
∪B∈Nij B

)
and then we estimate f̂ as the

average of f over the points measure in that enlarged set B̄ij. Under this assumption,
we can also interpolate the number of expected measurement points in B∗ij (e.g., after
a new statistically independent measurement of the function) as

N∗ij =
∑B∈Nij

wBNB

∑B∈Nij
wB

(3)

equating NBij = Nij in subindices notation.

Remark 1. For a partition of I with n > n0, the expression “such that the value of f̂ could
be computed in them” will also include the rough estimation of f̂ (and of N∗B, B ∈ Nij) from
the previous partition n− 1 given by (4) below.

4. Now, we will refine the partition of I by defining, for each Bij four subintervals
(quadtree structure), B′ij,kl with k, l = 0, 1. If our partition of I was made in 2n × 2n

intervals, then this one will be in 2n+1 × 2n+1 intervals of the form
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B′ij,kl =
[
(2i + k)× 2−(n+2), (2i + k + 1)× 2−(n+2)

]
×
[
(2j + l)× 2−(n+2), (2j + l + 1)× 2−(n+2)

]
and assign to each of these subintervals the following values of f̂ and N′ij,kl (until a
better approximation is made)

f̂ (B′ij,kl) = f̂ (Bij) (4)

N′ij,kl =
1
4

Nij

5. At this point, we have for the partition of I in 2n+1× 2n+1 intervals a rough estimation
of f̂ , N′ij,kl in each of its subintervals. Then, we can relabel those B′ij,kl subintervals
applying the substitution (ij, kl)→ (2i + k, 2j + l) and go back to step 2 to calculate
an improved interpolation on a new n + 1→ n partition in new updated intervals Bij
of side-length 2−n.

The multigrid quadtree refinement structure of the algorithm makes it to reach a
spatial resolution of r (i.e., r is the sidelength of any of the Bij intervals in the last iteration)
in − log2(r)− n0 + 1 iterations of the previous 5 steps. We only run through the scales in
one direction, top-down, hence the title of this section.

2.2. Some Properties of the Algorithm

Exactness: The method is an exact interpolator meaning that, for any partition of I in
2n × 2n subintervals, the interpolated f̂ (Bij) is the mean of observed values of f at
points within Bij ⊂ I, in particular for Bij containing one single point (that is the
usual meaning of exact interpolation method).

Smoothing: Smoothing of the surface is done during the down-scaling process, applying a
nearest neighbors weighted averaging (2) and (3). The neighborhood can be extended
to only first-neighbors or to second-neighbors or can be weighted unevenly (e.g.,
assigning 0.614 weight to second neighbors, assuming octogonal symmetry). In order
to get smoother surfaces, the application of Equation (1) can be stopped at some
resolution ns, applying from there on only the generalization operation; then, the
method will not be exact at the highest resolution (i.e., pointwise).

Statistical expectation: At every resolution level n, pixels containing data points are
asigned the average value of elevation, which is an unbiased estimator of the mean.
However, pixels not containing data points are estimated from their surrounding
pixels either at that resolution, n, if they contain data points, or at the previous resolu-
tion, n− 1, if they do not. Equations (2) and (3), when used to estimate f̂ (B∗ij) and N∗ij
using as wB the Nij known up to that level, operate as unbiased estimators acting on
unbiased estimations, and then will provide the unbiased expected value of f (Bij)
when averaged over all possible data samplings. As for the case of ordinary kriging,
the underlying hypothesis is that f is “locally constant”, hence the neighborhood
averaging.

Sensitivity to outliers: As long as the method is based on data averages (or estimated
averages), outliers will have their effect on the results. They cannot be safely removed
unless strong statistical assumptions (for instance, based on asymptotic standard
error of the mean) are made scale-wide, because the same error correction should
be applied at all scales. This will be assessed using K-fold cross-validation (see
Section 2.4 below).

2.3. Fractal Extrapolation

Geological surfaces, and particularly bathymetric surfaces, are known to evolve
through some of these scale-independent transformations and have often been charac-
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terized as self-affine fractals [50] or multifractals [51–54] whose Hurst exponent or multi-
fractality spectrum can be related to their geophysical evolution [6,53].

The well known “middle point displacement” method [55] has been used to construct
visually realistic ladscape surfaces, and it applies a simple rule to succesively refine a
triangulated surface (with some degree of randomness). Although there are variants to
this method (among others, to generate multifractal surfaces [56]), the key idea is to make
a refinement of the triangulated surface by inserting a new point inside each of its faces
(e.g., at the center of the triangles) and assigning to it a height equal to some average of
the previous triangle vertices heights plus a randomly distributed zero-mean displacement
with variance σ2 proportional to L2H , being L the side-length of the triangle. The new
points, once included in the triangulation, multiply the number of triangles by 3, and
the new triangulated surface is transformed by applying the same rule until the required
spatial resolution (defined by the triangle side-length L) is achieved.

Given the similarities of this “middle point displacement” construction with our
interpolation method, we will adopt it to modify Equation (2) in order to allow for a fractal
simulation (or extrapolation) of f̂ in those intervals B∗ij without actual measurements xk. So
we will just estimate

f̂ (B∗ij) =
∑B∈Nij

wB f̂ (B)

∑B∈Nij
wB

+
1√
12

sn × η

where η is a uniformly distributed random variable in [−1, 1] and sn is the roughness of
the surface (typical deviation) at the scale L = 2−(n+1), given by

sn = σr × (L/r)H

where r is the reference resolution (usually, the final interpolated map resolution), σr is
the estimated roughness at that resolution r (i.e., the root mean square difference between
surface heights measured at that resolution) and H is the Hurst exponent.

Usually, H will not be known beforehand, so it can be estimated:

Globally: from the globally mean roughness at the smallest scale (one pixel of the final
interpolated map) computed from neighbor height differences ∆ f between intervals
containing observation points. If there are such K pairs of neighboring intervals, then
σ2

r = s2
N = 1

K ∑K
k=1(∆ f )2. The value of H is estimated from the previous resolution

roughness, sn−1 which is already known: H = log(sn−1/sN)/ log(2L/r). Going
global, maximizes the number K, thus the estimation is improved, however local
roughness could vary from part to part of the domain.

Locally: in this strategy a value is estimated for σ2
r in each interval, using only the neighbor

height differences ∆ f of observation points within that n-th resolution interval (of size
L). However, whenever there are no pairs of neighboring points within that interval,
σ2

r is estimated from the previous resolution (of size 2L) by the same interpolation
method used to estimate f̂ . This implies that not only f̂ (Bij) has to be interpolated,
but also σ̂r(Bij) using the same algorithm.

We will use the local approach in this article.

Remark 2. Notice that the global estimation of H would play the role of the covariance structure
estimation used in ordinary kriging, assuming a power law semivariogram model for the entire
area, i.e., assuming a stationary covariance structure. The local approximation would allow for a
non-stationary process similar to universal kriging, and also results in multifractal structures. The
main difference here is that, as long as possible, the fractal structure is computed as close to the
actual scale as possible from measured data, only applying the simulation where necessary, i.e., on
intervals with no data for estimation.
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2.4. Surface Validation and Error Estimation

We would like to know how accurate the surface estimation is given a random sam-
ple of measurement points (xi, f (xi)). The common method to assess goodness of fit is
validation, that is, using a part of the points not used to fit the function f to compute the
distance between the estimated values of f̂ at those points and those actually measured
values. However, this method only provides a pointwise (at each xi) or a global (e.g., the
mean square error) estimation of error. A bootstrap cross-validation, on the other limit,
would repeat the interpolation a large number of times K using each time an independent
random sample (extracted “with repetition”) of meaurement points, and then estimating
the local interpolation error from the distribution of interpolation replicas { f̂ (k)}k=1...K.

In this article, we use a more modest and realizable estimation process, based on
K-fold cross-validation. Interpolation will be repeated K times, leaving each time 1/K-th of
the data out. Then, instead of only testing the accuracy of the interpolation with respect
to that 1/K-th of the data, we will estimate the local interpolation standard error ∆ f̂CV(x)
from the set of K interpolation replicas { f̂ (k)}k=1...K as:

∆ f̂ 2
CV(x) =

K

∑
p=1

[
f̂ (p)(x)− f̂CV(x)

]2

where

f̂CV(x) =
1
K

K

∑
q=1

f̂ (q)(x)

is the mean cross-validation surface.

Remark 3. Apart from the obvious problem of computing a large number of interpolations posed
by bootstrap, the condition of independent random samples poses a problem when measurement data
are inherently correlated, as is the case with sampling transects. To address the problem of spatial
correlation of points along a transect, we will adopt an “object oriented” K-fold partition of the data.
We will subset each transect in smaller sub-transects of equal length (25 km was a practical choice
for the case studies below), randomly assigning each of them to one of the K partitions of the data.
We will use K = 10, which is a common choice in the literature [57].

3. Case Studies

In this section we will apply our interpolation method to reconstruct and assess the
quality of two surfaces interpolated from sampled data. First, we will sample data from
an area of the SRTM digital elevation model, and test the accuracy of our interpolation
both from the sampled data (using the K-fold error estimation) and from comparison with
the actual model. Then, we will use bathymetric measurements acquired over an area
equivalent in size, and compute the accuracy of our interpolation from those sampled data;
in this case, we do not have a more accurate (i.e., computed from more extensive data)
bathymetric model than our result, hence the interest of the first one.

Our study cases are located in the Gulf of San Jorge (GSJ) and its adjacent coastal
area. The GSJ is is the largest gulf of the Argentinian Patagonian shelf, with an extension
of 39,340 km2 and a mouth of nearly 250 km, located between 45◦ S (Cape Dos Bahías)
and 47◦ S (Cape Tres Puntas) (Figure 1). This gulf is a semi-open basin mainly covered
by silt with coarse granulometric fractions to the north and south ends of the gulf [58,59],
that reaches about 100 m of depth in its center, and having in its mouth depths ranging
from about 90 m on the north and center, to 50–60 m on the south end, where the basin is
demarcated from the adjacent shelf by a pronounced sill. The tidal regime in the GSJ is
semidiurnal, with tidal amplitudes ranging between 3–5 m [60,61].

The continental vicinity of the GSJ forms part of the hydrocarbon-producing GSJ basin
surrounded by the North Patagonian Massif (north), Deseado Massif (south), and the Andes
(west) [62]. These massifs appear in the GSJ as Jurassic rhyolitic volcanic rock outcrops,
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the larger one located in the northeast (close to Cape Dos Bahías). The GSJ basin plateau
is mainly covered by Eocene-Miocene sedimentary rocks of the Sarmiento and Patagonia
Formations [63], as well as Quaternary fluvio-glacial deposits (“Rodados Patagónicos”; [64]).
This plateau reaches the coast as cliffs or gravel/sand beach-ridges [60].

The GSJ is a very interesting and complex case of management since several interests
coexist in it [65]. On the one hand, GSJ is one of the most relevant areas of Argentina
coast in terms of biodiversity and productivity with relevant areas for marine conservation
because of the presence of reproductive aggregations and foraging grounds of many marine
birds and mammals. Moreover, it houses major fisheries targeting valuable shrimp, hake,
scallops and king crab stocks [66,67]. On the other hand, its hydrocarbon-producing
geology makes it ground of offshore oil platforms [62]. Since each of these processes and
activities (oceanographic, fisheries, oil platforms, etc.) extend beyond the limits of the Gulf,
we have included in our study the adjacent areas, limited to the north by 44◦20′ S (Cabo
Raso), south by 48◦05′ S (Punta Buque) and east meridian 64◦W (Figure 1).

Figure 1. The area of Gulf of San Jorge with the delimitation of the land and ocean regions where the
MMI algorithm has been tested.

3.1. SRTM Digital Elevation Model Sample Reconstruction

We selected the area between 69◦6 and 65◦7 W and between 48◦1 and 44◦2 S shown in
Figure 1 (solid line rectangle) for our experiments. The SRTM30 tiles corresponding to this
area were merged, resampled and reprojected onto a 90 m UTM grid (zone 19 S); the area
includes a total surface of 84,400 km2 in the emerged zone. Data samples were extracted
using two different sampling strategies:

1. random point subsampling;
2. transect subsampling with 25 km long straight parallel transects.

Sampling density, that is the fraction of land points of the grid included in these
samples was set to p = 2−n, with n = 4, 5, 6, 7, 8 (that is, from p ' 0.004 to 0.063).
From those samples, a digital elevation model was interpolated with and without fractal
extrapolation. For every sampling strategy and density, the average interpolation bias

∆ f̂ = 〈 f̂CV − f 〉

root mean square error

∆ f̂rms =
√
〈(∆ f̂ )2〉
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the 50% and 90% interquantile ranges of ∆ f̂ , denoted IQ50%∆ f̂ and IQ90%∆ f̂ , and the corre-
lation coefficient between f̂CV and f , cor( f̂CV, f ), were computed by direct comparison of
the estimated f̂ with the full SRTM data f . The K-fold cross-validation mean square errors

∆ f̂CVrms =
√
〈∆ f̂ 2

CV〉

are also included in Tables 1 and 2. The K-fold cross-validation estimated standard error
∆ f̂CV(x), as well as the standard error map of the interpolated surface, from which table
values were computed, are shown in Figure 2. The sampling density of the highlighted
column, p = 2−6 ' 0.0156, is the closest one to the sampling density of our case in
Section 3.2, p = 0.0181.

Figure 2. (A) Random points used to sample SRTM90 with with p = 0.0156; (B) Interpolated DEM
( f̂CV) from point samples; (C) K-fold cross-validation standard error ∆ f̂CV. (D–F) Same meaning,
respectively, but using transect sampling.
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Table 1. K-fold and other statistics of interpolated DEM using simulated data extracted from SRTM
at randomly distributed points (p denotes point density per pixel). MMI was applied without and
with fractal extrapolation. The SRTM90 column contains an assessment of SRTM resampling error
based on the original 30 m resolution SRTM (using K-fold cross-validation) for comparison. Values
are in meters.

Simple Interpolation Fractal Extrapolation
SRTM90

p = 2−8 2−7 2−6 2−5 2−4 2−8 2−7 2−6 2−5 2−4

z̄ 308.6 308.7 308.7 308.6 308.6 308.6 308.7 308.6 308.6 308.6 308.4
σz 184.2 185.1 185.6 185.9 186.2 184.2 185.1 185.7 186.0 186.2 187.2

∆ f̂CVrms 12.55 10.15 8.23 6.65 5.40 19.33 16.47 15.18 14.58 15.75 2.50
∆ f̂ 0.044 0.152 0.087 0.045 0.065 0.052 0.182 0.115 0.023 0.088 −0.007

∆ f̂rms 20.23 16.22 13.11 10.54 8.48 20.85 16.80 13.78 11.44 9.90 0.85
IQ50%∆ f̂ 8.00 6.53 5.10 4.01 3.13 12.72 10.34 8.58 7.32 7.02 1.25
IQ90%∆ f̂ 26.45 21.28 17.24 13.86 11.14 37.88 32.33 28.95 26.51 27.35 5.10
cor( f̂CV, f ) 0.9945 0.9965 0.9975 0.9985 0.9990 0.9944 0.9964 0.9973 0.9984 0.9989 1.000

Table 2. K-fold and other statistics of interpolated DEM using simulated data extracted from SRTM
along random 25 km transects; p denotes the fraction of the raster sampled by the transects. MMI
was applied without and with fractal extrapolation. The SRTM90 column shows SRTM resampling
error (see Table 1). Values are in meters.

Simple Interpolation Fractal Extrapolation
SRTM90

p = 2−8 2−7 2−6 2−5 2−4 2−8 2−7 2−6 2−5 2−4

z̄ 298.5 311.0 310.9 307.9 307.8 299.4 311.3 310.9 307.9 307.8 308.4
σz 140.0 170.6 180.7 178.4 182.6 139.7 170.2 180.8 178.2 182.5 187.2

∆ f̂CVrms 73.33 53.39 52.70 31.49 23.98 136.55 109.22 88.23 61.90 44.72 2.50
∆ f̂ −9.992 2.467 2.355 −0.616 −0.698 −9.168 2.775 2.403 −0.684 −0.708 −0.007

Var∆ f̂ 105.56 79.76 55.92 40.38 28.05 111.59 85.59 60.45 43.97 30.68 0.85
IQ50%∆ f̂ 49.02 42.17 32.34 20.42 14.99 89.00 78.49 66.26 44.98 31.60 1.25
IQ90%∆ f̂ 153.37 108.89 106.08 66.91 50.70 247.59 196.91 172.97 126.35 92.25 5.10
cor( f̂CV, f ) 0.8430 0.9113 0.9589 0.9787 0.9899 0.8398 0.9082 0.9582 0.9780 0.9895 1.000

3.2. Gulf of San Jorge Bathymetry Interpolation

Now our area is comprehended between 67◦7 and 64◦0 W and between 48◦1 and
44◦2 S as shown in Figure 1 (dashed line rectangle), enclosing a marine area of 85,600 km2.
We used a number of data sources with different spatial sampling strategies (along transects
and pointwise), densities, depth reference levels, etc.:

1. Acoustic data from single and split-beam echosounders (SBES): This type of data is
distributed in transects, within which there is a very high density of sounding points
(depending on the vessel speed and the ping rate, but not greater than one sounding
point every ten meters). In addition, the vertical resolution, although dependent on
the working frequency, is usually less than 50 cm. In our study case we have several
sources of this bathymetric information:

• The bathymetric data repository published by the National Institute for Fisheries
Research and Development (INIDEP) of Argentina, which regularly conducts
stock assessment surveys. This repository has a horizontal resolution of one
sounding point every 5 m (see details in [68]). In our study area, there were
85085 sounding points, with depths between 11.5 and 123.1 m. These data are
distributed in transects located mainly in the northern and southern areas of the
GSJ, with less density in the central area.

• Data from oceanographic campaigns collected in the framework of research
project PICT 2016-0218, from the analysis of oceanographic and fishing cam-
paigns carried out by different Argentine intitutions. This database consisted of
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147, 755 bathymetric points, with depths between 4.2 and 146.7 m. These data are
distributed throughout the study area in transects with a mostly NW-SE orientation.

• Data from coastal campaigns. There were 4281 bathymetric points, with depth
values between −2 (negative means above low-tide level, that is, the intertidal
area) and 71.6 m, all of them acquired with portable echosounders from small
vessels. These data are in areas very close to the coast, in the north of the GSJ.

Considering the tidal amplitude ranges in the GSJ, in order to refer all measured
depths to a reference low-tide level, a tide correction was applied using the open OSU
Tide Prediction Software (OTPS, available from https://www.tpxo.net/otps; access
date 17 June 2022) [69].

2. Acoustic data from Multibeam (MBES) and Interferometric Sidescan Sonar (ISSS),
which are acoustic sounders that, unlike SBES, provide wide swath coverage, at very
high vertical and horizontal resolutions (up to a few centimeters). For our study
area, these data come from three acoustic surveys in coastal areas (north of the GSJ),
two with MBES and one with ISSS. For this work, the bathymetric surfaces were
subsampled onto a 50 m grid. In total, 11, 305 bathymetric points were included, with
depth values between 5.2 and 121.3 m.

3. Data from nautical charts: the basic source of bathymetric information are always
nautical charts, in this case developed and maintained by the Naval Hydrography
Services (Servicio de Hidrografía Naval) of Argentina. For our study area, data from
six nautical charts were used; one of these charts, covered the entire area, while the
other five cover smaller coastal areas, located to the north and west of the gulf, with
higher detail. In total, 3522 bathymetric points were used, with depths between
0.3 and 119 m deep.

4. Data from the citicen-science project “Observadores a bordo” (on-board observers,
POBCh). Most of the GSJ waters are under the jurisdiction of the province of Chubut,
whose Fisheries Secretariat developed the program POBCh for years to control fish-
eries. In this program, along with fishing data, depth data were taken at those places
where fishing sets were made (along with information of date and time). After this
database depuration, we used 38,249 bathymetric points in our study area, with
depths between 2.8 and 123 m and distributed throughout the entire GSJ except for
the SW quadrant, which is under the jurisdiction of another province. Depth data were
also corrected using OTPS based on observers annotated coordinates and local time.

5. Coastline. The 0 m isoline of the SRTM30 model was used as the union limit between
the emerged and submerged areas. Points were generated along this line, that also
includes islands, separated by 20–30 m (a second of arc, corresponding to the SRTM
resolution) and with a depth value of 0 m. For the study area, 59,128 points were
included from Santa Elena Bay, to the north, to Punta Buque. Coastline is used as a
boundary condition and thus not included in the cross-validation process (i.e., it is
always included in the interpolation) [36].

In order to harmonize the data, they were subsampled to take one point every 50 m
along every transect (to reduce importance bias caused by larger sounding densities) and
projected onto a 90 m UTM grid (zone 20 S). Whenever a new data source was projected
onto this grid, its depth measurements were corrected to agree on average with the already
projected data sources; as a reference, nautic charts were added second, just after the coast
line data. The total number of data points within the study area was 248,443.

Remark 4. Although in some sense this variety of bathymetric sources can be seen as crowdsourced
data, all of the data sets were acquired in the context of scientific research programs, and had
been previously curated and applied quality tests to remove erroneous data. For example, SBES
acoustic data transects were tested for false bottom detections and missing echoes. Similarly, POBCh
were checked for the existence of points far off their neighbor depths (usually erroneous manual
annotations), and those points were removed from the dataset.

https://www.tpxo.net/otps
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Outlier Detection

Input data contained a number of points that cross-validation revealed as far-off the
mean interpolated surface, sensibly farther than the local standard error ∆ f̂CV(xi). To detect
them and remove them from the input data we applied the algorithm known as Tukey
fences [70] to measurement errors f̂CV(xi)− f (xi). The algorithm consists in calculating the
interquartile interval of all these measurement errors and removing those points departing
from either interval bound more than kTuck times its length. That is, only observation points
such that

Q25%∆ f̂CV − kTuck × IQ50%∆ f̂CV < f̂CV(xi)− f (xi) < Q75%∆ f̂CV + kTuck × IQ50%∆ f̂CV (5)

are kept. According to [70] a value kTuck = 1.5 does detect outliers, and a value of kTuck = 3
detects “far off” points; we have used kTuck = 2 here. We also removed points where
∆ f̂CV(xi)/ f̂CV(xi) > 0.5, that is, the cross-validation relative standard error was above
50%; those points did not clearly contribute any information to the interpolation. In total
18, 080 points were removed based on these criteria from interpolation in the study area.

After this, another interpolation was carried out again giving the results summarized
in Figure 3 and Table 3.

Figure 3. (A) Bathymetric acoustic sounding points and transects in the Gulf of San Jorge; (B) MMI
interpolated bathymetry ( f̂CV); (C) Cross-validation local standard error ∆ f̂CV. (D) and (E) have,
respectively, the same meaning but including fractal extrapolation in the algorithm.
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Table 3. Statistics of interpolated bathymetry with real data from the Gulf of San Jorge using the MMI
interpolation without and with fractal extrapolation. Values are in meters.

p = 0.0181 Simple Interpolation Fractal Extrapolation

z̄ 81.32 81.24
σz 24.06 24.20

∆ f̂CVrms 2.02 9.65
IQ50%∆ f̂CV 1.28 4.77
IQ90%∆ f̂CV 4.08 22.87

4. Discussion

Above, we presented and tested a multigrid/multiresolution interpolation (MMI)
method with four good qualities: fast, with relatively low RAM requirements (in its simplest
version), extensible, based on the fewest possible statistical hypotheses, and locally exact
(i.e., at each pixel scale interpolated values concide with the average measured data).

4.1. Asessment of the Interpolations

The potential of MMI is shown in the study cases above. One (Figure 2), in an emerged
topography with very different reliefs: from mountains in the north-west (nearing the
Andes mountain range) to the southern plains of Patagonian steppe; in addition, a hilly
structure runs almost parallel to the coast, from the city of Comodoro (at the midpoint of the
GSJ) to the north which, although not having high altitudes, stands out of the sorrounding
plains. The other one (Figure 3), in a submerged area combining sandy (south) and rocky
(north) coasts, island chains (north), flat sedimentary bottoms (center), basin delimiting sill
(east), etc. In both cases, the interpolated surface follows in the larger scales the topography,
but also in the smaller ones, if enough data are available, with no appreciable oversmoothig.
This is numerically shown in the close values of mean and standard deviation of the original
SRTM and interpolated DEMs, with differences below 3% for the mean, and below 10% for
the standard deviation and reasonable sampling density (even for transect sampling).

Regarding the interpolation using SRTM sampled data, statistical analysis shows
how interpolation cross-validation errors depend strongly on both sampling density and
sampling strategy (see Tables 1 and 2): random sampling gives rms standard errors ranging
from about 8.5 m (p = 0.062) to 20 m (p = 0.004), while transect sampling ranges from
28 m (p = 0.062) to 105 m (p = 0.004), i.e., 4 to 5 times larger; this shows graphically the
loss of accuracy far from the transects. The relationship between cross-validation ∆ f̂CVrms
and standard interpolation error ∆ f̂rms is approximately linear in this range of sampling
densities, with ∆ f̂CVrms slightly underestimating error computed from direct comparison
with the original SRTM; nevertheless ∆ f̂CVrms lays within the 50% and 90% interquantile
errors. The inclusion of fractal extrapolation adds to these errors, as expected, but not
an statistically significant amount. We can draw from this in order to analyse the GSJ
interpolation (Figure 3 and Table 3).

Visually, the GSJ interpolated surface does not show any marked transect artifacts.
However “pimple” effects are slightly visible in that interpolation, especially at points
from the POBCh data source, and especially in the northern rocky shores (which are
naturally irregular) and in the flat sedimentary plateau; it is remarkable that Tukey fences
did not remove these points as outliers thus these “pimples” could be just showing real
bottom roughness or the need for more sampling in the voids around them. When fractal
extrapolation is applied, both effects are masked to some degree by the artificial fractal
roughness. A clear case is observed in front of Cape Tres Puntas, where data is scarce and
yet the surface is rough, attenuating also the effect of south-leading oceanographic survey
transects (but, in turn, increasing the estimated cross-validation error). On the contrary, in
the western part of the Gulf the interpolated surface shows a flat bottom with and without
fractal extrapolation; this agrees with the known features of the sedimentary seabed in this
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zone, also confirmed by the relatively low cross-validation error in that area, although in
other areas it could result from lack of data there or nearby.

4.2. Assessment of the Method

The idea of multigrid methods appeared in computational mathematics [71] as a
way to speedup the solution of partial differential equations and has been interpreted
as a preconditioner of the resulting system of linear equations. This not only makes
their resolution faster but also numerically more accurate. That was also the goal of
using hierarchical basis and wavelets in interpolation methods [44]. Other multiscale
methods, either Laplacian/Gaussian pyramid methods in image processing [72], or other
wavelet based methods have either been focused on image information representation
or compression or on feature analysis [5,44]. In some sense our MMI could be related to
some of them, as it uses multiple scale grids (the quadtree structure) that could be formally
related to the simple Haar wavelet basis; however, it is difficult to relate those previous
works with the interpolation we perform in this work, with randomly distributed point
and transect samples, and mean surface estimation at each resolution.

Our MMI method is more easy to compare with other common interpolation methods
such as IDW or kriging. It has in common with them that interpolated values are computed
as convex linear combinations (i.e., weighted averages) of measured data, without imposing
further conditions on the resulting surface. Contrary to kriging, MMI does not require
computation of the semivariogram or the stationarity assumptions, which makes it, on
the one hand, a (more) parameter free method and, on the other hand, more adaptable to
extended areas with subareas of very different elevation profiles. Like these two methods,
it is a convex method: interpolated elevations will be weighted averages of measured ones,
thus it cannot predict a crest or a valley unless these features were captured by the sampling
of the elevation or bathymetric surface (however, see below further improvements that
can be included along these lines). MMI, whose underlying idea is just the simple spatial
averaging of measuremens inside a tile, is easy to interpret, at least locally; this it has in
common with OK which is the best linear unbiased predictor, that is, an estimator of the
expected mean elevation based on correlated nearby measurements. The difference here is
that MMI assumes measurements to be reliable and aims at interpolating the surface which
contains these points, instead of the surface which is the estimated mean of the stochastic
surface to which measured points belong.

However, MMI lacks the predictive capabilities of machine learning methods that
can predict based on the geophysical features in the area, and are not limited to linear
combinations of observations [73]. Contrary to these methods, it can only detect outliers
from an statistical assessment of the interpolated bathymetry as we performed in the
GSJ bathymetry, although as with any statistical assessment it is not a risk-free decission.
Anyway, performing this statistical assessment of the final interpolated surface, using
K-fold cross validation as in this work, has other advantages as the spatialization of the
estimated error, which is very important in cases with inhomogeneous surfaces, as in
the SRTM simulation, or inhomogeneous sampling, as in the GSJ bathymetry [74]. Other
potential weakness is related with using data from different sources, but not taking into
account their different levels of accuracy. In our approach we took into account these
accuracy levels only regarding the vertical reference in the harmonization step (shifting
each data set reference to match, on average, the previously more reliable datasets at their
cross points). From there on, we applied the common method of rejecting those points far
off the general surface trend [21]. Other approaches such as reweighting the data depending
on their distance to the average surface (taking into account, or not, local cross-validation
error), would have been against our goal of an interpolation method with the least number
of assumptions.

Computationally speaking, MMI has also a number of advantages. First, interpo-
lation time is mostly independent of the number of points as the algorithm runs on the
quadtree raster pyramid; hence only final raster size determines that time (roughly mul-
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tiplying it by 4 with every halving of the pixel size). This also means that it will be
advantageous when interpolating a large number of data points such as in our bathymetry
example: a 3346× 4928 raster interpolation of 339,874 bathymetric points (padded to
4096× 8192 pixels for computation) took on average 17 min on an Intel(R) Core(TM) i7-
8750H CPU @ 2.20 GHz; the fractal extrapolation took longer: 120 min. Also, being based
on raster local operations, it can be adapted to GPU parallel computation (something we
have not addressed in our simulations). The fractal extrapolation extension, is not so
time-efficient nor so easy to parallelize in the GPU; first, it involves estimating the (multi)
fractal distribution parameters, and after that, it requires the use of random numbers for
the simulation (which is an issue that has been addressed in other areas such as Monte
Carlo simulations [75], but nevertheless increases the complexity of the GPU operations).

Our fractal extrapolation is based on the widely explored characterization of the Earth
topography as multifractal [51,53,54]. It takes especially advantage of transect sampling
that has been exploited in the past for fractal characterization [76]. It can be seen as a
particular approach to geostatistical simulation, that attempts to include complex fine-scale
features into (or onto) coarse resolution DEMs, taking into account larger scale spatial height
distribution to estimate smaller ones [48]; our estimation method is parametric as it assumes
a fractal model. Keeping surface roughness, even if it is simulated, helps to perform terrain
classification and regionalization based on geomorphological features computed usually as
focal statistics of elevation distribution [7,9], and then terrain classification based on feature
distribution across the study area [39,77]; smooth interpolated areas would appear as
unreal separate classes, otherwise. From the most basic interest in DEM assessment, fractal
extrapolation provides a more realistic estimation of error: in areas where interpolated
DEM is totally determined by distant measurements, error can be underestimated based on
error propagation (assuming or not a underlying convex formula and gaussian process), or
on cross-validation. However, simulating an stochastic surface with the same properties
observed in measured areas, will give a more conservative error estimation. Although
our method gets this, it is true that some of the simulated features are too random (due to
isotropy) and do not prolong the natural trends observed in the area (see, for example, the
southern area in front of Cape Tres Puntas in Figure 3).

Future improvements of the MMI algorithm may include extending the generalization
window to perform a least squares approximation of the curved surface, weakening the
current assumption of a locally flat surface and allowing the inclusion of anysotropy in the
fractal extrapolation. This would render more realistic groove and ridge-like features in
continuity with the known elevation data [51].

5. Conclusions

In this article, we introduced a multigrid/multiresolution interpolation (MMI) method.
The goal of the method is simplicity, both in implementation and in statistical and other
assumptions, and scalability to efficiently interpolate large datasets. The quadtree multigrid
raster approach makes the method fast and memory efficient. This allows the use of K-fold
cross-validation methods to compute local interpolation standard errors, which not only
inform about the interpolation quality, but also, helps assess input data quality using outlier
detection; this is important when working with heterogeneous data as in our Gulf of San
Jorge bathymetry case study.

The (multi)fractal extrapolation method simulates natural roughness in areas with
no data (e.g., between transects). On the one hand, this simulates a roughness with the
same scale and statistical topographical properties observed in the data (especially in
transect data) and, on the other hand, it provides a more realistic asessment of the DEM
K-fold cross-validation uncertainty based on the well established multifractal nature of the
Earth relief.

We have applied the MMI to synthetic (SRTM elevation model) and real (Gulf of San
Jorge bathymetry) DEM interpolation problems, showing how errors depend on sampling
strategy and density, and how K-fold cross-validation does a reasonably good job assessing
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local and global errors. The results show visually realistic surfaces with varying levels
of detail, i.e., no oversmoothing, while also reducing transect and “bump” artifacts to a
minimum, across a geomorphologically rich area.
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