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Abstract: With growing attention being devoted to autonomous vehicle (AV) safety, people have re-
cently attached importance to high-definition (HD) maps. HD maps are not limited by environmental
factors and can limit AVs driving in certain lanes. HD maps provide accurate auxiliary information on
factors such as road geometry, traffic sign placement, and traffic topology. Nowadays, most HD maps
are made from point clouds data, and this data contains accurate 3D position information. However,
the production costs associated with HD maps are substantial. This article proposes an algorithm that
reduces a great amount of time and human resource. The algorithm is divided into three phases, lane
lines’ extraction from point clouds, modelling lane lines with attributes, and building OpenDRIVE file.
The algorithm extracts lane lines resting on intensity value within the range of roads. Next, it models
lane lines by cubic spline interpolation with the result of first phase, and build the OpenDRIVE file
following the announcement of OpenDRIVE. The final result is compared with the verified HD map
from the mapping company to analyze the accuracy. The root mean square (RMSE) obtained were
0.069 and 0.079 m for 2D and 3D maps, respectively.

Keywords: HD maps; OpenDRIVE; extraction of road factors; lane lines; point clouds; auto-
mated modeling

1. Background

Maps such as Google Maps are designed for interpretation by humans and not au-
tonomous vehicles (AVs). A primary task related to high-definition (HD) maps is ensuring
that map information can be transferred to and be recognized by AVs such that these vehi-
cles can plan journeys similar to how humans do [1]. In HD maps, traffic information must
be precise to achieve AV safety [2]. Many HD map formats are available, with the main ones
being Autoware Vector Map, OpenDRIVE, Lanelet2, and Navigation Data Standard (NDS).
Autoware Vector Map contains many thematical comma-separated value (CSV) files, and 32
types of .csv file provide road information in Autoware Vector Map format [1]. OpenDRIVE
is mainly used for simulation-based applications; it is an open-source format organized in
a hierarchical structure and compiled in Extensible Markup Language (XML). OpenDRIVE
describes true road geometric properties and contains one reference line and lanes that
are built around the reference line [1]. The use of NDS is standard among automotive
companies, map data producers, and manufacturers of navigation devices, but it is not a
fully open-source format [1]. Lanelet2 maps use six primitives to describe all map data.
The utility of HD maps extends far beyond isolated applications such as localization or
motion planning [1]. A comparison of these four map formats is presented in Table 1, and
each format is rated according to different criteria [1]. Table 1. reveals that the best map
formats are NDS, Lanelet2, and OpenDRIVE.
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Table 1. Comparison of HD map formats based on various criteria which is adapted from [1].

Criteria OpenDRIVE Autoware Vector Map Lanelet2 NDS

Ease of Creation 1 3 4 2
Applications 4 3 3 4

Adoption of Format 4 1 2 5
Expressiveness 4 2 3 5

Accessibility 4 2 5 1
Total 17 11 17 17

According to [3] and the official NDS website, NDS is a standardized format for
automotive-grade navigation databases, but it is not an open-source format. Since its
use requires the purchase of a license, this format is not ideal for academic research.
As indicated in Table 1, NDS exhibits excellent performance in adoption and expressiveness.
It was originally created for use by major automotive companies; thus, it has the highest
level of integration of all map formats. However, due to NDS’s requirement that a license
is purchased, it is not widely used by laypersons.

Lanelet2 is an HD map format with high accessibility, as indicated in [3]. Lanelet2
format should be used for two simple reasons: it is an open-source format and can hold
more information than other formats. It describes road information based on various factors
and atomic lane sections and consists of different layers [4]. Lanelets, which are atomic
lane sections, are related to each other, and Lanelet2 presents lane topologies in a simple
manner. As indicated in [3], Lanelet2 divides the roads into a hierarchical structure of six
primitives, namely points, linestrings, polygons, lanelets, areas, and regulatory elements.
Lanelet2 provides different types of information through these six layers. The hierarchical
representation of abundant traffic information is efficient. Lanelet2 seems to be the most
suitable format for use by researchers and laypersons, but it was developed more recently
than other HD map formats. Moreover, some problems related to adoption must be solved;
therefore, this format was not the optimal choice for use in this study.

2. Introduction

Besides NDS and Lanelet2, OpenDRIVE is the most common HD map format. Owing
to the restriction of NDS and Lanelet2, the requirement of license in NDS and low adop-
tion of Lanelet2, OpenDRIVE is selected HD map format in this study. OpenDRIVE has
advantages in application, adoption, expressiveness, and accessibility, as shown in Table 1.
As long as people can deal with the complexity of creation, OpenDRIVE will likely become
the most common HD map format.

A standard format should be created to increase the convenience for the exchange of
information using different HD map formats. According to [5], OpenDRIVE should be the
standard HD map format used. OpenDRIVE describes the physical relationships between
road networks and road objects. It emphasizes the geometric properties of reference lines
and the topologies of lanes. Furthermore, road objects, such as traffic signs, barriers, and
sidewalks, are individually described in detail. OpenDRIVE maps can be easily checked
and editing, which enhances its interoperability. One advantage of this format is that it can
be easily converted to other HD map formats such as Autoware Vector Map and Lanelet2 [6].
Due to these benefits, OpenDRIVE is the most appropriate HD map format for investigation
in this study. The structure of this format is illustrated in Figure 1. OpenDRIVE is compiled
using XML, and anyone can edit such maps or even create a fictious HD map using this
format. The main components are the header, road elements, controller, junction, and
station construct [7]. The OpenDRIVE format is as shown below—Figure 1 illustrates the
predefined hierarchy of each main component in OpenDRIVE [8]. This study focused on
the establishment of a road segment, and it only retained planView, elevationProfile, lane
parts without links (connections), and lateral profiles and signals.
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Figure 1. Structure of OpenDRIVE format which is adapted from [7].

The first component, namely header, describes basic information, such as the pro-
duction date of OpenDRIVE file, the name of the database and companies, the version of
OpenDRIVE, and coordinate projection information [7]. This component provides back-
ground information that does not markedly affect map operations; such information can be
easily edited.

Road elements, which are the main focus of this study, mainly describe the structure of
roads based on reference lines, lanes, and features. OpenDRIVE maps are constructed using
reference lines, which present the shapes of roads. These reference lines are coordinates in
a reference line system (s and t coordinates), and the s coordinate represents the distance
along with the reference line in meters. The t coordinate represents a lane and determines
which side of the road it is on. For example, if the t coordinate is negative, the related
vehicle is in the right lane.

Four types of geometries are used for simulating reference lines that fit various road
scenes, namely line, spiral, arc, and paramPoly3, (parametric cubic curves); another geome-
try type is used, namely poly3 (cubic polynomial), as illustrated in [8]. Further details are
provided in the Methodology section. A pertinent issue related to HD maps is elevation;
OpenDRIVE uses a cubic polynomial to fit the elevation of a reference line. Some residuals
remain in the cubic polynomial; therefore, it cannot truly represent vertical information.

The width, ID, and attribute of lanes were considered, but the connections between
lanes were ignored in this study. Lane ID is based on a t coordinate. Lane ID is an integer,
and the shorter the distance is between a reference line and a lane, the lower the absolute
lane ID value is. Lane width is represented as a cubic polynomial. Residuals may persist
due to the existence of diverse lane shapes; therefore, a lane is divided into sections. This
strategy can reduce the residuals in distinct lane shapes within one lane.

The main purpose of this study was to generate HD maps of roads using point cloud
data; the result of lane line extraction would determine the accuracy of such maps. The
first goal was to determine the road region; ground points had to be retained, and road
surface characteristics had to be identified. Some methods were available for achieving such
goals, and the mainstream road surface extraction method was based on curb structure,
which revealed the height difference between sidewalks and roads [9]. A method for
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distinguishing road surface regions based on the removal of nonground points and road
edge detection was proposed in [10]. For the removal of nonground points, a voxel-based
upward growing algorithm was used to define nonground points and remove them. In road
edge detection, data were segmented, curbs were detected, and finally, road edges were
refined by random sample consensus to obtain road surface information. However, the
experimental field did not contain curb structures, as indicated in Figure 2. Instead, curbs
were adopted as a road extraction condition; therefore, alternative extraction methods for
the range of roads were applied. A method for overcoming the problem of an environment
not having a curb structure was developed in [11]. Three steps were applied for road
surface extraction, namely local road patch extraction, GPBM-based local road surface
model estimation, and clustering-based false detection filtering. According to [12], the
difference in intensity between point cloud of roads and sidewalks was used to extract
road edge information; however, if road boundaries contained material such as dirt, some
mistakes may have been made during extraction.
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According to [13], a cubic spline could be fitted to a series of points through data inter-
polation. This approach is useful for approximating a smooth equation, as in Equation (1)
the adoption of cubic spline fitting for modeling is a reasonable approach.

fi(x) = ai(x − xi)3 + bi(x − xi)2 + ci(x − xi) + di (1)

with the modelling of lane lines, the next step was to analyze how polyline data can be
modeled in OpenDRIVE format. As indicated in [14], a road could be separated into several
segments by using four types of geometry employed in OpenDRIVE, namely lines, spirals,
arcs, and polynomials. Moreover, the approach for identifying each type of geometry was
the same as that in [14], which was based on curvature features. The main differences
between the present study and that study related to measurement data and the represen-
tation of the polynomial functions. The measurement data in [14] were obtained from
OpenStreetMap, and only horizontal information was retained. As a result, 3D information
could not be implemented for elevationProfile and crossfall parts in OpenDRIVE. In addi-
tion, in an OpenDRIVE version update, the cubic polynomial was replaced with parametric
cubic curves to represent the polynomial function.

3. Materials and Methods

The study is divided into three parts, namely lane line extraction using point clouds,
polyline modeling from extraction, and road modeling in OpenDRIVE.

3.1. Lane Line Extraction Using Point Clouds

The methodology described herein improves the detection of road edges through a
region growing algorithm; the study flowchart is presented in Figure 3. In the flowchart,
the blue parts represent imported data, the green parts represent the algorithm used, the
yellow parts represent the results after one phase, and the final results are presented in
the orange box. Unprocessed point cloud data are imported, and the trajectory of MLS
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is used as supporting data. To reduce the capacity required for data processing, absolute
coordinates were translated to local coordinates, and down-sampling was applied. After
preprocessing, a cloth simulation filter (CSF) was introduced to obtain the ground point
clouds in the extraction algorithm. The filter can simulate a ground surface to filter out
nonground points not meeting a certain height threshold. The remaining data, namely
ground points, are divided into low- and high-intensity data sets by the intensity filter,
which clusters the point cloud by intensity value. In the high-intensity data set, point clouds
of sidewalks are retained, and it cannot recognize road markings from a high-intensity data
set using only an intensity filter.
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Figure 3. Flowchart of the extraction algorithm.

Road edge extraction is essential for the performance of lane lines extraction. Owing
to the lack of a curb structure in the experimental field, region growing was used for road
surface clustering to obtain road edge information. In the low-intensity data set containing
road surface data, the algorithm takes height value as a condition for region growing.
After the extraction of road edges, the road surface region is obtained using a statistical
outlier removal filter and the simulated ground surface to identify the point cloud of road
markings. The point clouds of these road markings are in disorder; therefore, they are
classified as stop lines, arrows, and lane lines through Euclidean distance and oriented
bounding box classification. In this study, only the production of lane lines was addressed;
the point clouds of lane lines were refined to be imported in the study model.

3.2. Polyline Extraction Model

After refined lane line–related point clouds are imported and noise is removed, the
algorithm applies cubic spline fitting to generate lane lines with a distance of approximately
10 cm between each point. The algorithm for modeling polylines, as presented in Figure 4,
can automatically model lane lines. Classification was applied for data extraction, and the
results were assessed, as illustrated in Figure 5.
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The first step of modeling polylines after preprocessing is to classify extracted lane
lines. The relevant data sets have not been defined with attributes for determining which
lanes belonging to. Consequently, the extracted lane lines are first translated into a reference
line system, and the original point is the first point of each segmental trajectory; the
classification approach is mainly based on such trajectories. In a reference line system
(s and t coordinates), the algorithm compares the mean value of the t coordinate from the
first to fifth point of each data set to search for the lane line farthest to the right of roads.
All data sets are placed in different t coordinate clusters through density-based spatial
clustering of applications with noise (DBSCAN). The reason for using DBSCAN is that we
cannot confirm the number of lane lines; one advantage of DBSCAN is that unlike K-means
clustering, it does not need to define the number of clusters. The minimum cluster is set
as the lane line on the far right within these clusters. Afterwards, we must reveal which
data sets represent the lane line on the far right, and cubic spline fitting is then applied to
fit these data sets.

If the lane line on the far right is derived successfully, the remaining data sets can be
classified into the different lane lines to which they belong through Euclidean distance.
In accordance with traffic-based logic, all points on each lane line should be the same
distance from the lane line on the far right. When this is ensured, DBSCAN is used to
classify the points again. The algorithm applies cubic spine fitting to each lane line with a
distance of approximately 10 cm between each point. Roads that meet at a junction must
be modeled through b-spline fitting as the centroid of intersection due to the lack of lane
lines at junctions. Since road marking extraction data are not available at junctions, the
modeled lane lines are not as accurate as those for general roads. The resulting maps were
compared with the HD maps of reputable mapping companies.

Through Euclidean distance calculation, the algorithm calculates the shortest distance
from each point in the results to the points on verified HD maps to analyze the results of
polyline modeling.

3.3. Road Modeling Using OpenDRIVE
3.3.1. Geometric Parameters of Reference Lines

The primary goal of analyzing the geometries in the study was to obtain the curvature
of each reference line and define each reference line’s geometric properties. The functions
of curvature calculations and the intervals of i and j are presented in Equations (2) and (3).
curv(i) represents the curvature of every three points, and curv(j) is the mean value of every
three curvatures. Averaging was conducted using Equation (3) to avoid the effects of out-
liers and decrease the model’s computational complexity without losing the characteristics
of reference lines after the three-curvature approach was applied.

curv(i) =

..
⇀
γ ×

.
⇀
γ

.
⇀

|γ|3
=

x′′ y′ − x′y′′(
x′2 + y′2

) 3
2

i = 1 : (numbes o f points in re f erence line)− 2 (2)

curv(j) = ∑3
n=1 curv(4× j− n)

3
j = 1 : (i÷ 4) (3)

As long as the curvatures are calculated, the reference lines can be segmented into
four geometry types based on curvature features. The following section describes the
characteristics and the XML structure of each geometry type. The jointly owned geometric
parameters of each geometry type are s coordinates (m) at the start position of a road, the
start position of x (m) and y (m) in inertial coordinates, the start orientation (hdg) (rad) in
inertial coordinates, and the length (m) of segmented reference lines [8]. The definition of s
coordinate is that the direction is the tangent of the reference line, and the first s-value is 0.
The x and y coordinates are the positions of the first point, and hdg is obtained from the
arctangent value of the first two points in inertial coordinates.
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1. Line: The curvature of a line is 0. A line may lose this characteristic if a segment
of a reference line is presented as a line in OpenDRIVE format. Consequently, this
geometry has to be thoroughly examined if the segment belongs to a line part. A re-
lated example is presented as follows: The threshold of a line’s curvature is 0.001,
which means that a particular geometry is a line if its curvature value is lower than
0.001. The length of each curvature is approximately 0.4 (m), and the radius of the
line is at least 1000 (m); therefore, this threshold is sufficient to rely on due to the huge
disparity of the radius of line definition in this part and the length of each curvature.
This huge disparity allows ignoring the loss of characteristic.

2. Spiral: A spiral is a clothoid geometry that describes a part of a reference line with
a linear curvature; as such, ∆curvature in Equation (4) is a constant. A spiral is
characterized by curvature at the first (curvStart) and last (curvEnd) points.

∆curvature = curvature(j + 1) − curvature(j) (4)

3. Arc: An arc exhibits a constant curvature. We do not take arcs to represent all segments
of reference lines since the resulting file would be too large to conveniently transfer if
all curvatures were presented. Furthermore, achieving an extremely high accuracy of
approximately 0.1 cm in the final results is unnecessary.

4. Polynomial: For polynomials, parametric cubic curves are used to fit a part of a
reference line. If no regulations are applied to curvatures, the related segment is
defined as a polynomial. The structure of a polynomial in OpenDRIVE is presented as
follows. The first step of generating roads in a polynomial is to convert related data
from an inertial coordinate (x/y coordinate) to a local coordinate (u/v coordinate). The
u coordinate is the axis along the start point of a reference line, and the v coordinate is
the axis of lateral deviation from the first point of the reference line. According to the
OpenDRIVE V1.6.1 User Guide published in 2021, to generate roads with parametric
cubic curves, only x and y coordinates are required [8]. For consistency related to
cubic polynomials, x and y coordinates may be calculated simultaneously as cubic
polynomials by using local u and v coordinates, and cubic fitting may be applied to
u and v coordinates with interpolation parameter p, which ranges from 0 to 1. The
concept of a parametric cubic polynomial is expressed in Equations (5) and (6). and
illustrated in Figure 6.

u(p) = aU + bU × p + cU × p2 + dU × p3 (5)

v(p) = aV + bV × p + cV × p2 + dV × p3 (6)
Geomatics 2022, 2 9 
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After the related geometric parameters were obtained, a parameter remained that had
not been calculated: elevationProfile. In OpenDRIVE format, elevationProfile is presented
as a cubic polynomial that fits all elevation values from the start point to the end point.
A constant term is represented as “a”, and “d” represents a cubic term; this parameter is
widely used in OpenDRIVE format if one parameter is presented as a cubic polynomial.

3.3.2. Length of Each Geometry

In OpenDRIVE, length is divided into three functions, and each geometry as a specific
length function.

1. Line: As previously indicated, the length of a line can be calculated using the Euclidean
distance from the first point to the last point of a line. The relevant equation is
as follows:

LengthL =

√
(xn − x1)

2 + (yn − y1)
2 (7)

2. Arc: The circumference function is used for arc geometries, and the radius of an arc (R)
is the reciprocal of its curvature. The relevant equation is presented as follows, where
L is the Euclidean distance from the start point to the end point in an arc geometry.

LengthR = 2× π × 1
curvature

×
sin−1

(
L
2
R

)
× 2

360◦
(8)

3. Polynomial and Spiral: No particular functions are used for polynomials and spi-
rals; therefore, their lengths are calculated based on the sum of the distances within
each interpolation.

3.3.3. Attributes in Lanes

In the lane part of OpenDRIVE, which is presented in this section, two major attributes
determine lane information: lane ID, which determines whether the lane is to the left or
right, and lane width. The first task is to correctly identify lane attributes in OpenDRIVE.
The approach used is almost the same as that for the classification and modeling of polylines
after extraction; this approach also requires the translation of x and y coordinates to s and t
coordinates. After coordinate translation, the algorithm compares the t coordinate for the
first point of each lane line and then provides the relative ID for each lane. The relative
ID depends on the direction of the reference line. A rightmost lane is used as an example.
If a road is a two-way road with two lanes for each direction, the ID of the rightmost
lane with a t coordinate has a minimum value of −2; the ID for the leftmost lane with a t
coordinate has a maximum value of 2. In OpenDRIVE, lane width is a cubic polynomial,
and the expression is by cubic fitting the shortest distance of all points from reference lines
to lane lines. Thus, some features related to lane width might be ignored; users must decide
whether separating lanes into different sections is necessary.

4. Case Study

The experimental field in this study was the Taiwan CAR Lab, Tainan, Taiwan; this
is an official test site for autonomous vehicles in Taiwan. It provides 13 traffic scenarios,
as depicted in Figure 7. Five road segments (A, B, C, D, and E) were chosen to generate
test data, as illustrated in Figure 8. Each segment has different characteristics, and the
selection approach involved checking whether the proposed algorithm worked for various
road types. Due to the test field limitations, some lane lines were missing; as such, related
observations were lost in data extraction. The lost lane lines were the leftmost lane lines of
A, C, and E and the top part of B; the results related to these sections are missing.
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Figure 8. Satellite image of the Taiwan CAR Lab (from Google Maps). The parts marked in red are
the road sections that were chosen for testing to generate data. “A” is a corner section, and the other
parts are straight roads with different numbers and directions of lanes. The non-English fonts are the
description of Taiwan High Speed Rail.

The sensors in the commercial mobile laser scanning (MLS) system contain a GNSS
receiver, an IMU, cameras, laser scanners, a distance measurement instrument (DMI), and
a ladybug. The specifications of the aforementioned sensors are presented in Table 2 and
Figure 9.

Since the previous trajectory provided by the mapping company deviates from true
paths, some sections of the trajectory are on sidewalks. We observed these sections again
using a higher-quality sensor. The specifications of this sensor (iMAR iNAV-RQH-10018)
are presented in Table 3. An IMU and NovAtel PwrPak 7D-E2 were used as the GNSS
receiver. iMAR iNAV-RQH-10018 is a navigation-grade INS, and its observational precision
is sufficient for use in research contexts. We used NovAtel Inertial Explorer software to
obtain new and reliable trajectory data.

https://www.carture.com.tw/topic/article/5663
https://www.carture.com.tw/topic/article/5663
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Table 2. Specifications of sensors.

GNSS/IMU/DMI

Positioning (absolute) 20~50 (mm)
Positioning (relative) 10 (mm)

Scanners—VQ250

Laser pulse rate (PRR) 600 (kHz) (Max.)
Scan Rate Up to 200 LPS
Accuracy 10 (mm)
Precision 5 (mm)

Cameras—CS6

Resolution 2452 × 2056
Pixel Size 3.45 × 3.45 (µm2)

Field of View 80◦ × 65◦ (H × V)
Exposure 38 (µs)~60 (s)
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Table 3. Specifications of iMAR iNAV-RQH-10018.

Gyroscope Accelerometer

Bias Instability <0.002◦/h <10 µg
Random Walk Noise <0.0015

◦
/
√

h <8 µg/
√

Hz

The datasets in this case involve point cloud data and trajectories which passed
through all lanes on five road segments as mentioned before in this experiment field. The
quality of these datasets can be realized as above tables. The requirement of point cloud
data is that the density of point cloud should be higher. Therefore, the authors pre-process
the measurements from MLS system by point cloud registration. As for the trajectory data,
it is required to pass through all lanes. When we need to classify the right-most lane line,
it only needs trajectory data in one lane. When we need to define the center lane line,
trajectories in all lanes are required. The definition the center lane line is that the directions
of trajectories are different at both sides of lane line, and this lane line is defined as the
center lane line.

5. Result and Discussion

The polylines modeled using the proposed algorithm were evaluated using an HD
map of Taiwan that was produced by a mapping company and certified by an HD map
research center in Taiwan. The comparison of the results and the reference data from the



Geomatics 2022, 2 232

mapping company are shown in Table 4, and the comparison involved calculating the
shortest distance from all points of the modeled polylines to all points in the reference data
provided by the mapping company. The aforementioned company modeled lane lines
manually from point cloud data before generating shapefiles and converting them to .csv
files as reference data.

Table 4. Polylines modeling results.

2D 3D

Root Mean Square Error
(RMSE) 0.045 (m) 0.062 (m)

Average Error 0.040 (m) 0.055 (m)
Standard Deviation (STD) 0.021 (m) 0.027 (m)

According to Taiwan HD map standards [15], the accuracy in 2D and 3D maps should
be lower than 20 and 30 cm, respectively. All indicators in each dimension satisfied standard
HD map requirements. The RMSE was used to estimate algorithm performance; the related
measurements were 4.5 and 6.2 cm for the 2D and 3D maps, respectively.

Figures 10 and 11 represent the study result, made into OpenDRIVE, when it is
imported into different platforms, such as OpenDRIVE Online Viewer, Google Earth, and
the CAR Learning to Act (CARLA) simulator. Moreover, we could check whether the final
OpenDRIVE file was available to be widely used. Figure 10 represents the study results
in OpenDRIVE Online Viewer, a free online viewing tool for viewing HD maps. The tool
allows people to directly open the files with the .xodr file extension and displays such files
as a 3D model. The reference line (green) in Figure 10. was selected from one lane line. All
roads were clearly visible in OpenDRIVE Online Viewer.
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Figure 10. Results presented in OpenDRIVE Online Viewer.

Figure 11 illustrates the converted elements in Google Earth, which only supports .kml
files. To import the study results into Google Earth, the ASSURE Mapping tool was applied
to transform the results in OpenDRIVE format to the Google Earth format. Since Google
Earth map does not display lane width, the converted results retained only polylines that
presented centerlines. After the conversion of the HD map, the centerline of each lane
almost fit the satellite image.
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CARLA, a free and open-source simulator that allows people to import simulated
scenes into it, supports simulations of OpenDRIVE files; furthermore, it can launch a driv-
ing scenario in these simulated scenes. Some researchers use this simulator for platform
testing and for simulating the performance of algorithms for self-driving cars. The simu-
lator provides some virtual meteorological conditions and vehicle models for situations.
Figure 12 displays a simulation of the Taiwan CAR Lab environment; this environment
was built using RoadRunner, a software program that enables the construction of virtual
scenes and objects in OpenDRIVE files.
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To compare the results after road modeling in OpenDRIVE format with reference
data, the results must be converted into the vector map as a .csv file. The ASSURE Maps,
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which allowed conversion of HD maps, format was adopted to convert the HD maps from
OpenDRIVE to the vector map. The relevant comparison is presented in Table 5.

Table 5. Results achieved from modeling roads in OpenDRIVE format.

2D 3D

Root Mean Square Error (RMSE) 0.069 (m) 0.079 (m)
Average Error 0.055 (m) 0.069 (m)

Standard Deviation (STD) 0.042 (m) 0.039 (m)

As indicated in Table 5, all the indicators fulfill the accuracy requirements of Taiwan
HD map standards; the accuracy in 2D was better than that in 3D. The errors from modeling
polylines and roads in OpenDRIVE format can be explained by the inaccuracy of the method
for obtaining mean curvatures and the fact that geometric parameters cannot represent
roads without error. Furthermore, the results were compared after maps were translated
from shapefiles provided by the mapping company, and some distortion was inevitable
during this step. However, the results are still reliable; the RMSE was 6.9 and 7.9 cm for
2D and 3D maps, respectively. Moreover, time consumption in each phase is shown in
Table 6, and the methodology proposed in this study reduce huge time of production. This
is a dependable result indicating that automatically modeled roads in OpenDRIVE format
meet the HD maps standard.

Table 6. Time consumption of each phase of OpenDRIVE generation.

Automated Generation Traditional Generation

Lane Line Point Cloud Extraction About 5 min
Modelling Lane Line About 15 s

OpenDRIVE Generation About 41 s
Total About 6 min Days~months

6. Conclusions

HD maps are important for supporting AV journeys and improving navigation. How-
ever, the costs associated with the manual production of HD maps are substantial. Fur-
thermore, no automatic map generation approach has been extensively applied. In this
study, an algorithm was proposed that can automatically generate HD maps for roads with
multiple lanes in OpenDRIVE format. The algorithm involves road element extraction
and lane line modeling. In the extraction part, CSF and region growing–based road edge
extraction are applied to obtain road markings in high-intensity data sets, as classified
using an intensity filter. During modeling, the algorithm first classifies the extraction data
set into different lane lines and then models them together through cubic spline fitting.
Subsequently, it extracts geometric parameters in OpenDRIVE format to construct an HD
map. Furthermore, the algorithm’s results satisfy reliability standards related to HD maps
in Taiwan. The accuracy level was 6.9 and 7.9 cm for 2D and 3D maps, respectively. The
algorithm reduces the time spent on HD map production. Moreover, the ASSURE tool can
be used to transform the algorithm results to other HD map formats [7].
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