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Abstract: Recently, light detection and ranging (LiDAR)-based mobile mapping systems (MMS) have
been utilized for extracting lane markings using deep learning frameworks. However, huge datasets
are required for training neural networks. Furthermore, with accurate lane markings being detected
utilizing LiDAR data, an algorithm for automatically reporting their intensity information is beneficial
for identifying worn-out or missing lane markings. In this paper, a transfer learning approach based
on fine-tuning of a pretrained U-net model for lane marking extraction and a strategy for generating
intensity profiles using the extracted results are presented. Starting from a pretrained model, a new
model can be trained better and faster to make predictions on a target domain dataset with only
a few training examples. An original U-net model trained on two-lane highways (source domain
dataset) was fine-tuned to make accurate predictions on datasets with one-lane highway patterns
(target domain dataset). Specifically, encoder- and decoder-trained U-net models are presented
wherein, during retraining of the former, only weights in the encoder path of U-net were allowed to
change with decoder weights frozen and vice versa for the latter. On the test data (target domain),
the encoder-trained model (F1-score: 86.9%) outperformed the decoder-trained (F1-score: 82.1%).
Additionally, on an independent dataset, the encoder-trained one (F1-score: 90.1%) performed better
than the decoder-trained one (F1-score: 83.2%). Lastly, on the basis of lane marking results obtained
from the encoder-trained U-net, intensity profiles were generated. Such profiles can be used to
identify lane marking gaps and investigate their cause through RGB imagery visualization.

Keywords: LiDAR; mobile mapping systems; lane marking; U-net; transfer learning; fine-tuning;
intensity profile

1. Introduction

The development of autonomous vehicles (AVs) and advanced driver assistance
systems (ADASs) has prompted the development of high-definition (HD) maps with
attributes such as crosswalks, signalized intersections, and bike lanes [1]. Lane markings
are essential elements of these maps and, thus, their extraction is necessary. Lane markings
are also vital for road management, providing well-defined lanes for navigating roads
safely in day and night conditions [2]. Traffic accidents have increased in densely populated
urban areas with worn-out lane markings [3]. To mitigate these accidents, it is imperative
to provide the current condition of lane markings along the road surface. While several
studies have been conducted to detect lane markings through images and videos, light
detection and ranging (LiDAR) point clouds have attracted significant attention from the
research community due to the availability of reflective properties of lane markings in
LiDAR data unlike images, which could be affected by weather and lighting conditions.
Additionally, highly accurate, dense point-cloud data can be obtained in a short time
interval without being affected by occlusions, lighting, and weather. Moreover, on the basis
of the geometric and reflectivity information provided by LiDAR scanners, the intensity
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information of extracted lane markings can be automatically reported. Such information is
valuable for transportation agencies since it will reduce the number of on-site inspections
whereby lane marking gaps can be identified, and their causes can be investigated through
coacquired imagery visualization, thereby saving manual labor and ensuring personnel
safety. Hence, a strategy for generating intensity profiles, as well as investigating the cause
of lane marking gaps, is required.

LiDAR-based lane marking extraction approaches are based on either derived 2D
intensity images [4,5] or original 3D point clouds as input [6–8]. Traditionally, these strate-
gies focus on finding an optimum intensity threshold that separates lane marking points
from non-lane marking ones. However, LiDAR point-cloud intensity depends on multi-
ple factors such as the sensor-to-object range, laser beam incidence angle, and reflective
properties of the scanned surface. Thus, intensity values must be corrected/normalized
for determining an effective threshold [9]. Höfle et al. [10] proposed two approaches for
intensity data correction: (a) data-based correction where homogeneous surfaces were
used to empirically estimate parameters for a correction function accounting for range-
dependent factors, and (b) model-based correction where intensity values were corrected
according to the physical principle of radar systems. Another range-dependent intensity
correction was proposed by Tan et al. [11]. They substituted the theoretical model (intensity
dependence on the inverse of squared ranges) with a polynomial function in the range. The
degree of the polynomial, together with its coefficients, was determined for each sensor by
least-squares adjustment. Krooks et al. [12] studied the effect of incidence angle on LiDAR
intensity and found that such an effect is independent of the sensor-to-object distance and,
thus, can be corrected separately. Bolkas et al. [13] modeled diffused and specular reflection
from different colored surfaces through a Torrance–Sparrow model [14]. They used the
specular reflection component and incidence angle to correct the intensity data. However,
even after intensity correction through various strategies proposed in the literature, one
must have prior information about intensity distribution for LiDAR-based lane marking
extraction approaches to be effective. Recently, the focus has shifted to applying deep
learning in the form of novel convolutional neural network (CNN) architectures for lane
marking extraction that are agnostic to LiDAR intensity correction or prior knowledge
about intensity distribution. However, a huge dataset is required to train CNNs, which
is often a major bottleneck as manual effort is required for labeling input data [15,16].
Cheng et al. [17], thus, proposed a strategy to automatically label intensity images for
lane marking extraction. They first normalized LiDAR point-cloud intensity using the
procedure proposed by Levinson [18]. Thereafter, a fixed intensity threshold was applied,
followed by noise removal to extract lane markings. The lane marking point clouds were
then rasterized into intensity images to serve as labels for training a U-net model.

In addition to requiring a large number of training samples, another drawback of
CNNs is their inability to generalize to patterns that are significantly different from ones
encountered during training even after application of techniques such as dropout (a tech-
nique where neurons in a neural network are randomly dropped during training to prevent
overfitting), weight regularization (set of techniques that prevent the neural network
weights from growing too large so that network is not highly sensitive to small changes
in input), and data augmentation (set of techniques where training data size is increased
by adding modified copies of existing training samples) [19–21]. Thus, transfer learning
has gained more interest where the current knowledge can be adapted to new conditions
for better prediction [22,23]. In the geospatial domain, many researchers have utilized
a pretrained network to solve their problems of interest. Yuan et al. [24] first trained a
CNN to learn the nonlinear mapping from low-resolution RGB images to high-resolution
ones. The same network was then transferred to hyperspectral images by tackling bands
individually. Chen et al. [25] used a Visual Geometry Group-16 model (VGG16) pretrained
on the ImageNet dataset (a database of 14 million annotated images over 20,000 miscel-
laneous categories) for airplane detection in remote sensing images. They replaced the
fully connected layers of the model with additional convolutional layers and retrained
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the model on a small number of manually labeled airplane samples. Nezafat et al. [26]
investigated three networks (AlexNet, VGGNet, and ResNet) pretrained on the ImageNet
dataset to classify truck images, generated from LiDAR point-cloud data, according to their
body type. Low-level features extracted as output from each pretrained model were fed as
input to train a multilayer perceptron (MLP) for truck body type classification.

It is, thus, evident that a model trained on a dataset can be adapted to perform
predictions on a new dataset through changes in architecture and retraining with few
examples. This is significant in the context of deep learning-based lane marking extraction
in LiDAR intensity images. Since the intensity of LiDAR data and lane marking patterns
vary from one dataset to another, it is not practical and efficient to train a model from
scratch for every newly collected dataset, even with an automated labeling procedure.
Thus, the objectives of this paper are (1) to study fine-tuning of a pretrained U-net model
for knowledge transfer from the source to target domain in the context of lane marking
extraction, and (2) to propose an intensity profile generation strategy utilizing the lane
marking predictions by the fine-tuned U-net model.

In detail, a transfer learning strategy is applied for lane marking extraction whereby a
pretrained U-net model from a previous study [17] is fine-tuned with additional training
samples from another dataset consisting of new lane marking patterns (not seen earlier
during the training phase of the pretrained model). This is an example of domain adapta-
tion where the task in the two settings remains the same (here, the task being lane marking
extraction) but input distribution is different. The pretrained U-net model was trained on
the past dataset collected over two-lane highways (hereafter referred to as “source domain
dataset”). The new dataset (hereafter also referred to as “target domain dataset”) includes
other lane marking patterns such as one-lane highways and dual lane markings at the edge
of the road surface, in addition to two-lane highways. Specifically, the main contributions
of this study are as follows:

1. A transfer learning approach is successfully applied to fine-tune weights of a pre-
trained U-net model with limited training data for lane marking extraction on a target
domain dataset under two scenarios:

• only encoder is trained with decoder weights frozen;
• only decoder is trained with encoder weights frozen.

2. The predictions of both transfer learning models are compared with each other. In ad-
dition, the fine-tuned models are also evaluated upon the source domain dataset with
two-lane highways, and their performance is compared with the pretrained model.
This helped in assessing the generalization ability of the two models. Moreover, these
performance comparisons aided in assessing the preferable modes of fine-tuning U-
net for domain adaptation. To the best of authors’ knowledge, most transfer learning
strategies deal with networks that are not fully convolutional unlike U-net. Moreover,
U-net fine-tuning has only been studied in the biomedical context [27].

3. To clearly illustrate the benefits of fine-tuning, another U-net model is trained from
scratch on source and target domain datasets, and then its predictions are compared
with the fine-tuned models on target domain datasets.

4. Lastly, intensity profiles are generated along the road datasets utilized in this study.
Regions with lane marking gaps are reported along with the corresponding RGB
image visualization. This procedure assists in lane marking inspection, and it removes
the possibility of missed problematic areas during manual inspection.

The rest of this paper is structured as follows: first, the mobile mapping system and
collected LiDAR point clouds used in this study are described in Section 2. The motivation
for U-net fine-tuning is presented in Section 3, followed by Section 4 that introduces the
proposed strategies. Lastly, the results are reported and discussed in Section 5, while the
conclusions and scope for future work are summarized in Section 6.
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2. Mobile LiDAR System and Datasets Used in This Research
2.1. Mobile LiDAR System

In this study, a mobile mapping system—Purdue Wheel-Based Mobile Mapping Sys-
tem, High Accuracy (PWMMS-HA)—is utilized. The PWMMS-HA (shown in Figure 1)
has four 3D LiDAR units onboard: three Velodyne HDL-32Es and one Velodyne VLP-16
High Resolution. The system is also equipped with three FLIR Grasshopper3 9.1MP GigE
color cameras. The remote sensing units of the PWMMS-HA are directly georeferenced
by an Applanix POS LV 220 global navigation satellite system/inertial navigation system
(GNSS/INS) unit (i.e., the position and orientation information of the remote sensing units
throughout the survey mission are directly derived by the GNSS/INS mounted on the
PWMMS-HA). The post-processing positional accuracy of the POS LV 220 is ±2 cm, and
the attitude accuracy is 0.02◦ and 0.025◦ for the roll/pitch and heading, respectively [28].
The range accuracy measures for the HDL-32E and VLP-16 are ±2 cm and ±3 cm, re-
spectively [29,30]. The onboard cameras are triggered through the pulse per second (PPS)
output of the POS LV which is fed as an input to the Grasshopper3’s optoisolated general-
purpose input/output (GPIO). Event feedback for both systems is provided directly from
the cameras to the GNSS/INS systems through the strobe feedback GPIO. PointGrey
FlyCap is used as the software interface for all cameras during data collection.
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Figure 1. Purdue Wheel-Based Mobile Mapping System, High Accuracy (PWMMS-HA) unit used in this study.

Through a system calibration procedure, mounting parameters between LiDAR units
and an Applanix POSLV 220 GNSS/Inertial Measurement Unit (IMU) navigation sys-
tem were estimated, facilitating the reconstruction of georeferenced, well-registered point
clouds from the LiDAR scanners [31]. The cameras’ mounting parameters were esti-
mated through another calibration procedure for LiDAR point-cloud registration with
imagery [32]. Those parameters combined with vehicle trajectory enable forward and
backward projection between the reconstructed point cloud and RGB imagery. The pro-
jection capability aids in analyzing the lane marking extraction performance of various
U-net models and lane marking gaps identified through intensity profiling. In Figure 2, the
correspondence between a road surface point cloud and RGB imagery is shown, where the
red dot in the former is projected onto the latter (displayed as an empty magenta circle).
Hereafter, a red dot represents a location in the LiDAR point cloud, while a magenta circle
corresponds to the same location in an RGB image.
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Figure 2. Projection of a location in (a) LiDAR point cloud (solid red dot) onto (b) corresponding
RGB imagery (empty magenta circle) using the estimated LiDAR/camera/GNSS/IMU system
calibration parameters.

2.2. Dataset Description

For fine-tuning, the pretrained U-net model from a prior study [17] was adopted. This
model was trained on three datasets where the first two belonged to an interstate highway
and the third covered a rural highway. They are referred to as datasets 1, 2, and 3, which
covered 18.04, 33.87, and 15.29 miles, respectively. The locations of these datasets are shown
in Figure 3. In the past study, samples from datasets 1 and 3 were utilized for training,
and samples from dataset 2 were used for testing. All these datasets were collected over
two-lane highways, as illustrated by the RGB images in Figure 4.
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The target domain datasets used in this study were collected on highway and non-
highway roads in Tippecanoe County in Indiana, USA. The northbound (NB) and south-
bound (SB) segments, displayed as red and blue trajectories in Figure 5, were collected
along a highway with a total length of 16.1 and 11.8 miles, respectively. The eastbound (EB)
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and westbound (WB) segments, denoted as yellow and magenta trajectories in Figure 5,
belonged to non-highway areas with a total length of 5 miles each. In addition to two-lane
highways, this dataset also included lane marking patterns such as (a) one-lane highway
with dual lane marking at the center, (b) dual lane markings at the road edge, and (c) pair
of dual lane markings at the road edge. These patterns were not seen in the source domain
dataset, which was used for the training of the U-net model. RGB images of the new lane
marking patterns are shown in Figure 6. Lastly, a completely unseen dataset (hereafter re-
ferred to as “independent dataset”) not belonging to either source or target domain dataset
locations was utilized to further evaluate the generalization capability of U-net models and
demonstrate the benefit of fine-tuning a pretrained model. This dataset was acquired over
a rural highway, including both one- and two-lane areas, as shown in Figure 7.
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3. Motivation for U-Net Fine-Tuning

In the previous study [17], a fully convolutional neural network (FCNN), denoted
as U-net, was trained for lane marking extraction on two-lane highways. Typical LiDAR
intensity images for such regions are shown in Figure 8. The network architecture consisted
of two salient paths, as shown in Figure 9—an encoder (on the left in Figure 9) and a decoder
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(on the right in Figure 9). In this paper, these two paths of the pretrained U-net model were
fine-tuned separately to obtain better predictions for different lane marking patterns that
were not encountered earlier. As mentioned previously, such new patterns included (a) a
one-lane highway with dual lane marking at the center, (b) dual lane markings at the road
edge, and (c) a pair of dual lane markings at the road edge; their corresponding LiDAR
intensity images are shown in Figure 10. The results of the pretrained model on these new
patterns showed significant misdetection, as illustrated in Figure 11.
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(a) one-lane highways with dual lane markings at the center, (b) dual lane markings at the edge, and
(c) pair of dual lane markings at the edge.

As per the misdetections in Figure 11, the pretrained model needs to be fine-tuned.
One could also argue for training a new model from scratch using LiDAR intensity images
with the new lane marking patterns shown in Figure 10. However, since the target domain
dataset is small and, thus, less representative of different possible variants of lane marking
patterns, this would lead to significant overfitting [34], whereby the model would perform
well on new lane marking patterns but obtain poor results in two-lane highway areas.
Another overfitting case could also arise if the whole pretrained model was fine-tuned
where all network parameters could change to perform well on a small training dataset [35].
Therefore, only the encoder or decoder part of the pre-trained U-net model was fine-tuned
in this study.
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(a) one-lane highways with dual lane marking at the center, (b) dual lane markings at the edge, and
(c) pair of dual lane markings at the edge.

4. Methodology for U-Net Fine-Tuning and Intensity Profile Generation

The proposed framework for lane marking detection through U-net models and
intensity profile generation is illustrated in Figure 12. Road surface blocks were first
extracted from LiDAR point clouds. Each block was then rasterized into an intensity image.
Furthermore, the training labels are generated automatically [17]. One should note that,
since intensity images were directly generated from point clouds, there was no registration
error between the point-cloud data and generated intensity images. Encoder/decoder
paths of the pretrained U-net were fine-tuned only one at a time to generate two trained
models. Hereafter, they are respectively referred to as encoder and decoder-trained U-net
models. The individual encoder and decoder training scheme ensured that the network
parameters could be adequately adapted to perform well on a new training dataset without
overfitting. The performance of fine-tuned models was evaluated on the ground truth
generated from both previous and new datasets. Lastly, according to the prediction from
the best-performing U-net model, intensity profiles along the road surface were generated
and evaluated for discontinuities with the aid of RGB image visualization.
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4.1. U-Net Fine-Tuning

For the input data of U-net fine-tuning, this study adopted the strategies proposed by
Cheng et al. [17] to generate intensity images and corresponding lane marking labels from
LiDAR point clouds. The first step in generating input intensity images was extraction of
the road surface point cloud. The extracted point cloud was then tiled at a regular interval
of 12.8 m along the driving direction. Hereafter, the 12.8 m long road surface segment is
referred to as the “road surface block” (each block typically has 0.4 to 0.8 million points).
Here, the width of each road surface block typically ranged between 12 and 16 m. Thus,
the interval of 12.8 m ensured minimal resizing along the length and width of the block
while generating an image size fixed at 256 × 256 pixels, with a 5 cm cell size. A larger
image would increase computations without much improvement in the model, while,
with a smaller image, the model would become insensitive to small lane markings that
might be rejected as noise. On the other hand, the cell size was chosen on the basis of the
average point density which ensured that it was neither too small to result in many empty
pixels in the image nor too large such that the level of details in the image was diminished.
Furthermore, the typical lane marking width was approximately 6 inches or 15 cm (for both
single and dual lane markings) [36] and, thus, the chosen cell size was sufficient for lane
marking detection in 3D space as per the masking procedure described in Section 4.2.
Once the road surface point cloud was tiled, an intensity enhancement was applied to
each road surface block, where intensity values greater than the fifth percentile threshold
were set to 255 (LiDAR intensity is recorded as an integer between 0 to 255), while lower
ones were maintained. Here, the fifth percentile threshold was based on the assumption
that the points with intensity values greater than this threshold were hypothesized lane
markings [17], as shown in Figure 13. After that, each road surface block was rasterized
into an intensity image. In an intensity image, a pixel value was defined by taking an
average of the intensity values of points falling in each cell. A second level of fifth percentile
enhancement was then applied to the generated intensity images. The amplification of the
high-intensity values, which were hypothesized to originate from lane markings, through
the two-step enhancement (for road surface blocks and intensity images) facilitated easier
learning for the U-net model.
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Figure 13. Illustrations of hypothesized lane markings (extracted by a fifth percentile intensity
threshold) and corresponding RGB imagery.

Once the intensity images were curated for fine-tuning, the next step was to generate
the corresponding input lane marking labels. Considering the intensity differences across
the used LiDAR scanners on PWMMS-HA, intensity normalization was applied to each
road surface block. Then, hypothesized lane marking points were identified from the
normalized road surface block using the fifth percentile intensity threshold. The hypoth-
esized lane marking point cloud was further processed for noise removal to extract lane
marking points. Interested readers can refer to Cheng et al. [17] for more details about
this step. Hereafter, similar to the previously discussed intensity image generation, the
lane marking points were rasterized to generate a preliminary labeled image. Lastly, to
ensure better spatial structure for the lane markings in the labeled images, a bounding box
was defined around each lane marking segment in the preliminary labeled images, and
all pixels within the box were labeled as lane marking pixels to generate the final labeled
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images [17]. Examples of an intensity image and its corresponding labels are shown in
Figure 14.
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In this study, all differently trained U-net models (including the models used for
validating the fine-tuned ones) utilized a loss function based on the dice coefficient for
training [37]. For all the models, early stopping criteria were used to stop training when
the loss on validation data did not improve for 15 consecutive epochs. The training
data were augmented during each epoch through (a) random rotation of the image in
a clockwise direction in the range of 0◦ to 180◦, (b) horizontal flipping, and (c) zoom in
and out of the image by resizing. An Adam optimizer with a learning rate of 8 × 10−4

was used, and it was decayed by a factor of 10 if validation loss did not improve for five
consecutive epochs as the training progressed. The performance of all the U-net models
was evaluated by reporting metrics such as precision, recall, and F1-score—represented
by Equations (1)–(3), where TP, FP, and FN denote true positives, false positives, and false
negatives, respectively. TP denotes correct lane marking pixel predictions, FP denotes
non-lane marking pixels incorrectly classified as lane marking pixels, and FN denotes
lane marking pixels incorrectly classified as non-lane marking pixels. Precision refers to
the fraction of accurate lane marking predictions among total lane marking predictions,
whereas recall indicates how well the true lane markings were detected. F1-score, which
was used to quantify the overall performance, is a harmonic mean of precision and recall.

Precision =
TP

TP + FP
. (1)

Recall =
TP

TP + FN
. (2)

F1-score =
2 × Precision × Recall

Precision + Recall
. (3)

4.2. Intensity Profiling

Once various U-net models—pretrained, encoder-trained, decoder-trained, and one
trained from scratch—were evaluated by the target domain dataset, all the intensity images
from the target domain dataset were fed to the best-performing model. The predictions
were then used to generate lane marking intensity profiles for reporting intensity infor-
mation of detected lane markings, as well as investigate the cause behind missing lane
markings along transportation corridors. For each intensity image representing a 12.8 m
long road surface block, 2D lane marking pixels were predicted by the U-net model. They
were then transformed back to 3D for intensity profile generation, whereby intensity values
for predicted lane markings were reported along the road surface at regular intervals. The
final output was in the form of a plot of intensity value against driving distance along
the road.

The centroids derived from the predicted lane marking pixels, as shown in Figure 15a,
in an intensity image were regularly spaced at a 5 cm distance, which was the pixel size
of the used images. To obtain lane marking predictions with similar point density to the
input LiDAR point clouds, we adopted a masking strategy whereby the centroids were
utilized to create 2D masks. Around each centroid, a 5 cm square buffer was created along
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the XY-plane [17]. Neighboring buffer regions were merged to form 2D masks, and each of
the merged masks was assigned a mask ID, as shown in Figure 15b.
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Figure 15. Illustrations of (a) predicted image, (b) 2D masks, and (c) derived 3D lane marking segments in two-lane
highways with a dashed line at the center; (d) predicted image; (e) 2D masks; (f) derived 3D lane marking segments in
one-lane highways with dual line at the center.

After that, considering the intensity difference among the different LiDAR units,
the hypothesized lane marking point cloud (as mentioned previously, derived from the
normalized road surface block by the fifth percentile thresholding) corresponding to each
predicted image was utilized. The points in the hypothesized lane marking point cloud
falling inside the 2D masks were extracted as final 3D lane marking points and were
assigned IDs according to the masks used to extract them, as shown in Figure 15c. There
was, however, a caveat to the above-described masking strategy in the case of dual lane
marking areas. Since the gap between dual lane markings was 15 cm, which was three
times the intensity image resolution, the dual lane markings were predicted as a single
marking through the U-net model, as shown in Figure 15d. Thus, only one mask was
generated for dual lane markings instead of one mask for each, as displayed in Figure 15e.
Through this single mask, the 3D points from both sides of the dual lane marking were
grouped as one lane marking segment, as shown in Figure 15f. Only within the regions
where the dual lane markings were temporarily separated by a crossing island could the
dual lane markings be predicted as two isolated segments. After extracting lane marking
segments using all the 2D masks created from intensity images, the derived segments
needed to be clustered into the right, middle, and left edges on the basis of road delineation,
as shown in Figure 16, for reporting intensity information.
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The algorithm used for lane marking segment clustering is graphically depicted in
Figure 17. Starting with the extracted lane marking segments within a block, least-squares
fitting was applied to each segment for defining the best fitting line, as shown in the
zoomed-in cyan rectangle in Figure 17b. Then, two endpoints were defined along the best
fitting line of each lane marking segment within two consecutive blocks. Grouping the lane
marking in successive blocks depended on the separation between the endpoints of lane
marking segments. For endpoints which were more than 40 cm (determined on the basis
of the minimum curvature for designing two-lane highways [38]) apart, a given segment
would be grouped with another segment in the second block if the angle between a vector
joining adjacent endpoints of the two segments (denoted as vector 1 in Figure 17b) and
vector along the fitted straight line of the given segment (denoted as vector 2 in Figure
17b) was the smallest among all angles between such segment pairs and did not exceed
8◦, which was determined on the basis of the minimum curvature and standard width for
designing two-lane highways [38]. Lastly, segments in the two blocks were grouped.
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On the other hand, for endpoints which were less than 40 cm apart, vectors 1 and 2
were first defined along the fitted straight line for each segment, as shown in Figure 17c. If
the angle between the vectors was less than 8◦, the two segments were grouped. These steps
were repeated until the lane marking segments from all blocks were processed, as shown
in Figure 17d. One should note that, for intersections, the lane marking segments along
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one direction would be grouped first. The remaining segments would then be grouped by
repeating the above steps. Each group of segments was then divided by 2D rectangular
buffers with a length of 20 cm along the driving direction and a width of 50 cm (slightly
larger than the span of dual lane markings and the gap), as shown in Figure 17e. The final
step was to calculate the centroid and average intensity value (from the hypothesized lane
marking point clouds) within each buffer to generate intensity profiles along the road.
Once the intensity profiles were derived, the locations with lane marking gaps could be
identified and investigated further through RGB images to examine their causes, as shown
in Figure 18.
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5. Results and Discussion

For U-net fine-tuning, an original U-net model, which was trained on two-lane high-
ways (source domain dataset), was fine-tuned to make predictions on datasets with new
lane marking patterns such as one-lane highways and dual lane markings at the edge of
the road (target domain dataset). Two experiments were conducted: (a) in the first, only
encoder weights could change; (b) in the second, only decoder weights could change. An-
other experiment was also conducted where another U-net model was trained from scratch
on both source and target domain datasets. The performance comparison of this model
with fine-tuned models helped in analyzing the effectiveness of transfer learning for lane
marking extraction in new patterns. Additionally, both encoder- and decoder-trained U-net
models were also evaluated using the past test dataset to assess if fine-tuning negatively
affected their performance on two-lane highways due to overfitting to new lane marking
patterns. Furthermore, all four U-net models were evaluated on the independent test
dataset (not belonging to either source or target domain dataset locations) to obtain another
assessment of their generalization capability. Once the U-net models were evaluated on
various test datasets, all the intensity images (4682 images) from the target domain dataset
were fed to the best-performing model for intensity profile generation. The description of
used datasets for training or fine-tuning, validation, testing, and intensity profile generation
are summarized in Table 1. The model fine-tuning/training was executed on the Google
Collaboratory platform that provides free K-80 GPU access. The Keras deep learning
framework was used to implement U-net. Table 2 lists the time taken by each step in the
adopted methodology.



Geomatics 2021, 1 300

Table 1. Datasets used for training or fine-tuning, validation, testing, and intensity profile generation
of various U-net models.

U-Net Model Pairs of Intensity and Labeled Images
(Training or Fine-Tuning)/(Validation)

Intensity Images for
Testing

Pretrained Source domain dataset 1:
1183/238 pairs

Source domain dataset 1:
174 intensity images

Target domain dataset 2:
122 intensity images

Independent dataset 3:
100 intensity images

Encoder-trained Target domain dataset 2:
267/69 pairs

Decoder-trained Target domain dataset 2:
267/69 pairs

Trained from scratch
Combined source and target dataset:

1450 (1183 1 + 267 2)/307 (238 1 + 69 2)
pairs

U-Net Model Intensity Images for Intensity Profile Generation

Encoder-trained
(best-performing) Whole target domain dataset 3: 4682 intensity images

1 Two-lane highway patterns; 2 one-lane highway patterns; 3 one- and two-lane highway patterns.

Table 2. Time taken by various steps in the proposed strategy for intensity image generation, U-net
training, and intensity profile generation.

Step Time Taken (min) Platform

Intensity image generation (per mile) ~5 32 GB RAM computer
Pretrained U-net model (1183 images) ~60 Google Collaboratory

Training fine-tuned U-net models (346 images) 1 ~15 Google Collaboratory
Training U-net model from scratch (1450 images) ~75 Google Collaboratory

Intensity profiling (per mile) ~10 32 GB RAM computer
1 Almost the same for encoder and decoder.

In this study, 1421 pairs (1183 for training and 238 for validation) of intensity image
and corresponding label from the source domain dataset were used, while, for the target
domain dataset, a total of 336 such pairs were generated. Both encoder- and decoder-
trained U-net models utilized 267 images for training and the remaining 69 images for
validation. The model trained from scratch used 1450 (1183 + 267) and 307 (238 + 69) images
for training and validation, respectively. For testing, lane marking extraction results from
the target domain dataset (122 intensity images) for various U-net models—pretrained,
encoder-trained, decoder-trained, and one trained from scratch—are presented in Table 3.
Additionally, to gauge the generalization ability of newly trained models (fine-tuned and
trained from scratch), they were also evaluated on source domain datasets (174 intensity
images), and their performance was compared with the pretrained one, as listed in Table 4.
Lastly, performance measures on independent test data (100 intensity images) are provided
in Table 5.

Table 3. Performance metrics of various U-net models on new test dataset (target domain 1).

Model Precision (%) Recall (%) F1-Score (%)

Pretrained U-net 84.6 58.4 65.7
Encoder-trained U-net 2 86.4 88.1 86.9
Decoder-trained U-net 83.9 83.1 82.1

U-net model trained from scratch 83.9 72.2 75.2
1 One-lane highway patterns (174 intensity images); 2 the model with the best performance.
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Table 4. Performance metrics of various U-net models on past test dataset (source domain 1).

Model Precision (%) Recall (%) F1-Score (%)

Pretrained U-net 84.1 87.9 85.9
Encoder-trained U-net 2 81.8 87.9 84.7
Decoder-trained U-net 72.6 87.5 79.4

U-net model trained from scratch 79.0 87.2 82.9
1 Two-lane highway patterns (122 intensity images); 2 the model with the best performance.

Table 5. Performance metrics of various U-net models on independent test dataset 1.

Model Precision (%) Recall (%) F1-Score (%)

Pretrained U-net 89.8 83.9 86.3
Encoder-trained U-net 2 90.7 90.3 90.1
Decoder-trained U-net 82.5 85.8 83.2

U-net model trained from scratch 81.1 85.8 82.5
1 One- and two-lane highway patterns (100 intensity images); 2 the model with the best performance.

As evident from Table 3, the pretrained model showed substandard performance on
the new test dataset with an F1-score of only 65.7%, which was due to poor predictions in
new lane marking patterns. On the other hand, the encoder- and decoder-trained models
obtained better F1-scores of 86.9% and 82.1%, respectively. Figure 19 shows the superior
performance of fine-tuned models over the pretrained one, whereby the latter showed
misdetection in areas with new lane marking patterns. Furthermore, the encoder-trained
model performed better than the decoder-trained one as evident by the respective F1-score
values. Specifically, the former was able to eliminate false positives and false negatives to a
larger extent than the latter, as illustrated in Figure 20.
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The better performance of the encoder-trained model is owed to the fact that, in deep 
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context of lane marking extraction, such features include speckle pattern and distribution 

Figure 19. Improved prediction in fine-tuned models compared to pretrained model: (a) RGB images
of new lane marking patterns in target domain dataset segments; (b) corresponding intensity images;
(c) pretrained U-net predictions with highlighted misdetection; (d) encoder-trained U-net predictions;
(e) decoder-trained U-net predictions.

The better performance of the encoder-trained model is owed to the fact that, in deep
learning models, the shallow layers (the encoder path) learn low-level features [27]. In the
context of lane marking extraction, such features include speckle pattern and distribution
of high-intensity non-lane marking points, which vary from dataset to dataset depending
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upon lane marking patterns and are critical for accurate prediction. While freezing the
encoder and training decoder, we did not allow the network to learn such low-level features
in the new training dataset leading to worse performance. Lastly, the model trained from
scratch, while performing better than the pretrained model, was outperformed by both
fine-tuned models, as evident by the F1-scores in Table 3. The inferior performance of
the model trained from scratch compared to fine-tuned models was expected since the
combined training dataset was still dominated by previous lane marking samples, and the
number of new training samples was not enough to adapt network parameters for better
performance in new lane marking patterns. This is visualized in Figure 21 where the model
trained from scratch showed partial detections in areas with pair of dual lane markings at
the edge. In addition, another demerit of the model trained from scratch was its fivefold
longer training time compared to fine-tuning, as mentioned in Table 2. A large number of
training samples and random initial weights (no prior knowledge embedded) increased
the training time.
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Figure 20. Better performance of encoder trained model over decoder-trained one in new test
dataset: (a) RGB images in different dataset segments; (b) corresponding input intensity images;
(c) encoder-trained U-net predictions; (d) decoder-trained U-net predictions showing false positives
and negatives.

Geomatics 2021, 1, FOR PEER REVIEW 17 
 

 

shown in Figure 22b, on the same rural road divided by the center dual yellow lines. The 
intensity profiles derived from the WB segment could be related to those from the EB 
segment. For example, the right-edge profile from the WB segment could correspond to 
the left-edge profile from EB segment. For NB and SB segments, the intensity profiles and 
the corresponding RGB images are visualized in Figures 23 and 24, while those for WB 
and EB segments are displayed in Figures 25 and 26. 

  
(a) (b) 

   
(c) (d) (e) 

Figure 21. Better performance of fine-tuned models over one trained from scratch on new test dataset: (a) RGB image for 
location i (same location i as in Figure 17); (b) corresponding intensity image; (c) encoder-trained U-net predictions; (d) 
decoder-trained U-net predictions; (e) predictions by the U-net trained from scratch showing false negatives. 

  
(a) (b) 

Figure 22. Road delineation of (a) NB and SB segments and (b) WB and EB segments. 

Using the corresponding nature of profiles in different dataset segments, the repeat-
ability of the proposed strategies for detecting lane markings and generating intensity 
profiles could be demonstrated. As can be seen in Figure 23a,b, sudden intensity changes 
in the profiles for both NB and SB segments could be observed at locations I, II, and III 
within milepost range 6–10. The cause behind these sudden intensity changes was a tran-
sition of pavement from asphalt to concrete, shown in Figure 24a,b, where it is known that 
the average luminance of concrete pavements is 1.77 times that of asphalt pavements [39]. 
Another area with different asphalt pavements can be seen in Figure 24c. Next, as dis-
played in Figure 25, the right-, middle-, and left-edge intensity profiles from the WB seg-
ment were almost the same as the left, middle, and right ones, respectively, from the EB 
segment. At locations IV, V, and VI in Figure 25, the missing lane marking regions could 
be identified and visualized through the corresponding images, as shown in Figure 26a–
c. A roundabout and its merging region led to the long gap for locations IV, V, and VI in 
Figure 25. 

Figure 21. Better performance of fine-tuned models over one trained from scratch on new test dataset: (a) RGB image
for location i (same location i as in Figure 17); (b) corresponding intensity image; (c) encoder-trained U-net predictions;
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As far as the performance on the source domain dataset is concerned, the encoder-
trained model with F1-score of 84.7% again outperformed the decoder trained one with
an F1-score of just 79.4% and the model trained from scratch with an F1-score of 82.9%, as
listed in Table 4. In addition, the encoder-trained model’s performance was comparable to
the pretrained U-net model (F1-score 85.9%), which shows that the encoder-trained model
generalized well on the source domain dataset in addition to robust predictions on the
target domain dataset. Lastly, as can be seen from Table 5, once again, the encoder-trained
model outperformed all other models with an F1-score of 90.1%. In summary, the encoder-
trained U-net model obtained by fine-tuning a pretrained model with only a few hundred
images not only performed better on the target domain test dataset but also generalized
well to the source domain and independent test datasets.

The intensity profiles for lane marking predictions by the encoder-trained U-net (the
best-performing model) in the whole target domain dataset (a total of 4682 intensity images
for NB, SB, WB, and EB segments) were derived for the right, middle, and left edges of the
roadway. The NB and SB segments were surveyed on the outer lane of a two-lane highway
whose common lane markings were center dual yellow lines, as shown in Figure 22a.
Hence, only the left-edge profiles from NB and SB segments corresponded (note: in some
regions, the dual lane markings were temporarily separated by a crossing island). On
the other hand, WB and EB segments were collected in opposite driving directions, as
shown in Figure 22b, on the same rural road divided by the center dual yellow lines. The
intensity profiles derived from the WB segment could be related to those from the EB
segment. For example, the right-edge profile from the WB segment could correspond to
the left-edge profile from EB segment. For NB and SB segments, the intensity profiles and
the corresponding RGB images are visualized in Figures 23 and 24, while those for WB and
EB segments are displayed in Figures 25 and 26.
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Figure 22. Road delineation of (a) NB and SB segments and (b) WB and EB segments.

Using the corresponding nature of profiles in different dataset segments, the repeata-
bility of the proposed strategies for detecting lane markings and generating intensity
profiles could be demonstrated. As can be seen in Figure 23a,b, sudden intensity changes in
the profiles for both NB and SB segments could be observed at locations I, II, and III within
milepost range 6–10. The cause behind these sudden intensity changes was a transition
of pavement from asphalt to concrete, shown in Figure 24a,b, where it is known that the
average luminance of concrete pavements is 1.77 times that of asphalt pavements [39].
Another area with different asphalt pavements can be seen in Figure 24c. Next, as displayed
in Figure 25, the right-, middle-, and left-edge intensity profiles from the WB segment were
almost the same as the left, middle, and right ones, respectively, from the EB segment. At
locations IV, V, and VI in Figure 25, the missing lane marking regions could be identified
and visualized through the corresponding images, as shown in Figure 26a–c. A roundabout
and its merging region led to the long gap for locations IV, V, and VI in Figure 25.
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ferent asphalt pavements) in Figure 23 with RGB image (left), corresponding intensity image (center), and lane marking 
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Figure 23. Intensity profiles (right, middle, and left edges) with similar changes (highlighted by yellow lines) for (a) NB and
(b) SB segments.
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Figure 24. Changes in intensity profiles at locations (a) I (asphalt-to-concrete), (b) II (concrete-to-asphalt), and (c) III
(different asphalt pavements) in Figure 23 with RGB image (left), corresponding intensity image (center), and lane marking
prediction image (right).
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Figure 25. Intensity profiles (right, middle, and left edges) with similar changes (highlighted by yellow lines) for (a) WB
and (b) EB segments.

Furthermore, the agreement of intensity profiles derived from NB/SB and WB/EB
segments was estimated by comparing the average intensity values at the same location.
Tables 6 and 7 list the difference statistics for the intensity profiles from NB/SB and WB/EB
segments, respectively. The results show that the root-mean-squared error (RMSE) of
the NB/SB intensity profiles (left-edge common lane markings) was around 3.2 (note:
PWMMS-HA provided intensity as an integer number within 0–255). The average intensity
values from WB and EB segments (three edges lane markings) were in agreement within the
range of 4.2 to 4.4. Lastly, RGB image visualization identified the following four primary
causes behind the intensity profile gaps: (a) misdetection by the U-net model in spite of
high intensity of lane marking points, (b) adequately visible lane markings in RGB images
but not reflective enough to be detected as high-intensity points in LiDAR point cloud,
(c) worn-out lane markings leading to poor reflectivity, and (d) absence of lane markings.
An example location for each of the above conditions is marked in the intensity profiles in
Figure 25 (locations VII, VIII, IX, and X), and they are further illustrated in Figure 26c–f
by the RGB images, intensity image, and lane marking predictions by the encoder-trained
U-net model. One should note that the datasets used for intensity profile generation were
collected on highway and non-highway regions at different speed limits (25–60 mph),
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which resulted in road surface blocks with varying point density (ranging from 2500 to
7500 points per m2). Accurate lane predictions, as shown in Figure 24 (highway region)
and Figure 26 (non-highway region), prove that the lane marking extraction by the U-net
model was agnostic to point density.
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6. Conclusions and Recommendations for Future Research

Recently, lane marking extraction from LiDAR data using deep learning has gained
impetus. However, the requirement of a large number of training samples, which are
usually generated manually, is a major bottleneck. Efforts have been made to automate the
labeling of intensity images for lane marking extraction; however, curating a new training
dataset with many samples for every LiDAR data collection by a different scanner or at
different locations with new lane marking patterns is not practical. Hence, this paper
presented a transfer learning approach of domain adaptation whereby a U-net model
trained on an earlier LiDAR dataset (source domain data collected on two-lane highways)
was fine-tuned to make lane marking predictions on another dataset with new lane marking
patterns (target domain data collected over one-lane highways, with dual lane markings
at the center, and with a pair of dual lane markings at the edge). With this approach, a
robust U-net model was trained using only a few training examples from the target domain
dataset. To this end, two U-net models were established after fine-tuning either the encoder
or decoder path of a pretrained U-net model referred to as encoder-trained and decoder-
trained U-net, respectively. Additionally, another U-net model was trained from scratch on
combined source and target domain datasets to analyze the benefits of fine-tuning.

On the target domain dataset, the encoder-trained U-net performed the best with an F1-
score of 86.9%, while the decoder-trained U-net showed an F-score of 82.1%. Furthermore,
the model trained on combined datasets achieved an F1-score of only 75.2% and took nearly
fivefold longer to train than the fine-tuned models as a result of a larger training dataset
and random initial weights. The fine-tuned models, on the other hand, were trained on a
small dataset with initial weights derived from the pretrained model.

On the source dataset, the encoder-trained model obtained an F1-score of 84.7%,
while the same metric for the decoder-trained model was 79.4%. The model trained from
scratch obtained an F1-score of 82.9%, performing better than the decoder-trained model
but not the encoder-trained one. Furthermore, the pretrained model had an F1-score of
85.9% on the same dataset, which was reasonably matched by the encoder-trained model.
Additionally, an independent test dataset belonging to neither source nor domain dataset
locations was curated to further evaluate the U-net models, where the encoder-trained
model outperformed all the other ones with an F1-score of 90.1%. The aforementioned
performance results on the target domain, source domain, and independent dataset lead
to two conclusions. First, when the target domain dataset is small and different from the
source domain dataset, it is preferable to fine-tune a pretrained model than train a model
from scratch on combined source and target domain datasets. Secondly, it is preferable to
fine-tune encoder weights than decoder ones in a U-net during domain adaptation.

The second part of this paper proposed an intensity profile generation strategy,
whereby lane marking intensity variation along the driving direction was reported at
regular intervals. First, 3D LiDAR points were extracted by 2D masks generated using the
lane marking pixels predicted from the best-performing U-net model (encoder-trained).
The extracted lane markings were then clustered into right, middle, and left edges ac-
cording to the road delineation. Along the driving direction, each group of extracted
lane markings was divided by 2D rectangular buffers to estimate the average intensity of
the points falling in each buffer. Lastly, the average intensity versus the driving distance
(intensity profile) for each edge lane marking was depicted.

For the repeatedly surveyed lane markings, the intensity differences across the derived
profiles were within the range of 4.2 to 4.4 (with intensity values registered as integer values
within 0 to 255 range), which demonstrated the robustness of the proposed strategies for
detecting lane markings and generating intensity profiles. Another benefit of the proposed
strategy is the identification of regions with sudden intensity changes due to transition from
one pavement type to another, verified by RGB imagery visualization. Moreover, intensity
profiling coupled with RGB image visualization can assist departments of transportation
in improving and maintaining lane markings while significantly reducing manual labor
and mitigating risk associated with in-person inspection.
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In the current approach, the proposed strategy cannot predict lane markings in real
time. A major bottleneck is the sequential generation of intensity images from road
surface point-cloud block, which will be addressed in the future by parallelizing this
procedure. Another avenue for future work is testing the encoder-trained U-net model on
datasets acquired by different LiDAR units of different models and gauging how well it can
generalize. Moreover, in the misdetection regions where lane markings can be observed by
the coacquired images, the color and texture information of these images can be utilized to
identify undetected points from LiDAR datasets. Through this image-based refinement,
the performance of lane marking extraction can be improved.
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