Next Issue
Volume 3, September
Previous Issue
Volume 3, March
 
 

Thermo, Volume 3, Issue 2 (June 2023) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 5853 KiB  
Article
Experimental and Numerical Investigation of the Heat Transfer of Honeycomb-Structured Tubes
by Eileen Trampe, Dominik Büschgens and Herbert Pfeifer
Thermo 2023, 3(2), 331-345; https://doi.org/10.3390/thermo3020021 - 20 Jun 2023
Viewed by 1050
Abstract
Tube bundle recuperators are generally designed to operate with smooth tubes. Structured tubes can be used to increase the efficiency of recuperators. Compared to smooth tubes, the surface for heat transfer is increased and thus heat transfer is enhanced. This effect is accompanied [...] Read more.
Tube bundle recuperators are generally designed to operate with smooth tubes. Structured tubes can be used to increase the efficiency of recuperators. Compared to smooth tubes, the surface for heat transfer is increased and thus heat transfer is enhanced. This effect is accompanied by an increased pressure loss, which must be kept as low as possible. Four tube geometries with different honeycomb structures are examined. The results are compared with the performance of a smooth tube. The investigations were carried out both numerically and experimentally at different off-gas and combustion air velocities. The experimental results show that the highest heat transfer is achieved with the concave 6 mm structured tube. The greatest pressure loss also occurs here. The validation of the numerical model has shown issues in resolving the turbulence. Full article
(This article belongs to the Topic Heat Transfer Enhancement and Applications)
Show Figures

Figure 1

2 pages, 192 KiB  
Editorial
Editorial Special Issue on Feature Papers of Thermo in 2022
by Johan Jacquemin
Thermo 2023, 3(2), 329-330; https://doi.org/10.3390/thermo3020020 - 07 Jun 2023
Viewed by 645
Abstract
In this Special Issue of Thermo, a collection of 11 papers is presented based on a preselection of the Editor in Chief of the journal for this particular and specific Special Issue called Feature Papers of Thermo in 2022 [...] Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2022)
20 pages, 7053 KiB  
Article
CFD-Based Approach to Propose a Zigzag-Shaped Tube Heat Exchanger without Fins
by Sabit Rayhan, Keishi Kariya and Akio Miyara
Thermo 2023, 3(2), 309-328; https://doi.org/10.3390/thermo3020019 - 05 Jun 2023
Viewed by 1264
Abstract
This study explores the application of zigzag-shaped, finless tubes in enhancing heat transfer performance within heat exchangers. Using three-dimensional numerical simulations, we examined the heat transfer per unit area and the volume of the pressure drop, comparing these findings with a traditional parallel [...] Read more.
This study explores the application of zigzag-shaped, finless tubes in enhancing heat transfer performance within heat exchangers. Using three-dimensional numerical simulations, we examined the heat transfer per unit area and the volume of the pressure drop, comparing these findings with a traditional parallel tube heat exchanger. This innovative design strategy involved arranging zigzag-shaped tubes at varying distances, and the thermal transfer and frictional characteristics were tested at different air speeds. This research suggests that the introduction of zigzag heat exchangers, as opposed to traditional fin-and-tube designs, led to a significant improvement in heat transfer. This enhancement is attributed to the swirling flow created around the zigzag tubes, which increased the total heat transfer area. Furthermore, we found that the heat transfer area increased by 14.2%, 32.1%, and 63.9% for tube zigzag angles of 30°, 45°, and 60°, respectively, when compared to a parallel tube heat exchanger. Consequently, the zigzag-shaped tube heat exchanger demonstrated not only superior heat transfer, but also a reduction in frictional pressure loss. Full article
Show Figures

Figure 1

20 pages, 1692 KiB  
Article
Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Part IV
by Robert J. Meier and Paul R. Rablen
Thermo 2023, 3(2), 289-308; https://doi.org/10.3390/thermo3020018 - 26 May 2023
Cited by 3 | Viewed by 1202
Abstract
Group contribution (GC) methods to predict thermochemical properties are eminently important to process design. Following earlier work which presented a GC model in which, for the first time, chemical accuracy (1 kcal/mol or 4 kJ/mol) was accomplished, we here discuss classes of molecules [...] Read more.
Group contribution (GC) methods to predict thermochemical properties are eminently important to process design. Following earlier work which presented a GC model in which, for the first time, chemical accuracy (1 kcal/mol or 4 kJ/mol) was accomplished, we here discuss classes of molecules for which the traditional GC approach does not hold, i.e., many results are beyond chemical accuracy. We report new ring-strain-related parameters which enable us to evaluate the heat of formation of alkyl-substituted cycloalkanes. In addition, the definition of the appropriate group size is important to obtain reliable and accurate data for systems in which the electron density varies continuously but slowly between related species. For this and in the case of ring strain, G4 quantum calculations are shown to be able to provide reliable heats of formation which provide the quantitative data which we can use, in the case of absence of experimental data, to establish group and nearest-neighbour interaction parameters to extend the range of applicability of the GC method whilst retaining chemical accuracy. We also found that the strong van der Waals that overlap in highly congested branched alkanes can be qualitatively investigated by applying DFT quantum calculations, which can provide an indication of the GC approach being inappropriate. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2023)
Show Figures

Scheme 1

12 pages, 1661 KiB  
Article
The Thermochemical Conversion of Municipal Solid Waste by Torrefaction Process
by Maja Ivanovski, Darko Goričanec and Danijela Urbancl
Thermo 2023, 3(2), 277-288; https://doi.org/10.3390/thermo3020017 - 16 May 2023
Cited by 3 | Viewed by 1826
Abstract
In this work, the thermochemical properties of municipal solid waste (MSW) are studied using the torrefaction process as the main method for investigation. Torrefaction experiments were carried out using an electric laboratory furnace, at temperatures of 200, 250, and 300 °C. The residence [...] Read more.
In this work, the thermochemical properties of municipal solid waste (MSW) are studied using the torrefaction process as the main method for investigation. Torrefaction experiments were carried out using an electric laboratory furnace, at temperatures of 200, 250, and 300 °C. The residence time was set to 90 min. Proximate and ultimate analysis were performed on the torrefied MSW samples and compared with the properties of the raw MSW samples. In addition, the thermal properties of the obtained torrefied MSW samples were evaluated by thermogravimetric analysis (TGA) and derivative thermogravimetric analysis (DTG). The following could be stated: the obtained results showed that mass and energy yields (MY and EY, respectively) decrease with increasing when torrefaction temperature, while the heating values (HHV) increased under the same conditions (from 24.3 to 25.1 MJ/kg). Elemental analysis showed an increase in carbon content (C), from 45.7 ± 0.9 to 52.8 ± 1.05 wt.%, and decrease in oxygen content (O), from 45.6 ± 0.9 to 39.5 ± 0.8 wt.%, when torrefaction temperature is increased, which is consistent with the general definition of the torrefaction process. In addition, enhancement factors (EFs) and fuel ratios (FRs) were calculated, which ranged from 1.00 to 1.02 and 0.16 to 0.23, respectively. Some anomalies were observed during the thermal analysis, which are assumed to be related to the composition of the selected MSW. This study therefore shows that torrefaction pretreatment can improve the physicochemical properties of raw MSW to a level comparable to coal, and could contribute to a better understanding of the conversion of MSW into a valuable, solid biofuel. Full article
(This article belongs to the Special Issue Lifetime Prediction of Polymeric Materials)
Show Figures

Figure 1

17 pages, 333 KiB  
Article
Techniques for the Thermodynamic Consistency of Constitutive Equations
by Angelo Morro and Claudio Giorgi
Thermo 2023, 3(2), 260-276; https://doi.org/10.3390/thermo3020016 - 04 May 2023
Viewed by 944
Abstract
The paper investigates the techniques associated with the exploitation of the second law of thermodynamics as a restriction on the physically admissible processes. Though the exploitation consists of the use of the arbitrariness occurring in the Clausius–Duhem inequality, the approach emphasizes two uncommon [...] Read more.
The paper investigates the techniques associated with the exploitation of the second law of thermodynamics as a restriction on the physically admissible processes. Though the exploitation consists of the use of the arbitrariness occurring in the Clausius–Duhem inequality, the approach emphasizes two uncommon features within the thermodynamic analysis: the representation formula, of vectors and tensors, and the entropy production. The representation is shown to be fruitful whenever more terms of the Clausius–Duhem inequality are not independent. Among the examples developed to show this feature, the paper yields the constitutive equation for hypo-elastic solids and for Maxwell–Cattaneo-like equations of heat conduction. The entropy production is assumed to be given by a constitutive function per se and not merely the expression inherited by the other constitutive functions. This feature results in more general expressions of the representation formulae and is crucial for the compact description of hysteretic phenomena. Full article
12 pages, 1114 KiB  
Article
Evaporation/Decomposition Behavior of 1-Butyl-3-Methylimidazolium Chloride (BMImCL) Investigated through Effusion and Thermal Analysis Techniques
by Bruno Brunetti, Andrea Ciccioli, Guido Gigli, Andrea Lapi, Giulia Simonetti, Elisa Toto and Stefano Vecchio Ciprioti
Thermo 2023, 3(2), 248-259; https://doi.org/10.3390/thermo3020015 - 24 Apr 2023
Cited by 1 | Viewed by 1102
Abstract
The evaporation/decomposition behavior of the ionic liquid 1-butyl-3-methylimidazolium chloride (BMImCl) was studied with various techniques, such as thermogravimetry (TG), Knudsen effusion mass loss (KEML), and Knudsen effusion mass spectrometry (KEMS), in order to investigate the competition between the simple evaporation of the liquid [...] Read more.
The evaporation/decomposition behavior of the ionic liquid 1-butyl-3-methylimidazolium chloride (BMImCl) was studied with various techniques, such as thermogravimetry (TG), Knudsen effusion mass loss (KEML), and Knudsen effusion mass spectrometry (KEMS), in order to investigate the competition between the simple evaporation of the liquid as gaseous ion pairs (NIP: neutral ion pair) and the thermal decomposition releasing volatile species. TG/DSC experiments were carried out from 293 to 823 K under both He and N2 flowing atmospheres on BMImCl as well as on BMImNTf2 (NTf2: bis(trifluoromethylsulfonyl)imide). Both ionic liquids were found undergoing a single step of mass loss in the temperature range investigated. However, while the BMImNTf2 mass loss was found to occur in different temperature ranges, depending on the inert gas used, the TG curves of BMImCl under helium and nitrogen flow were practically superimposable, thus suggesting the occurrence of thermal decomposition. Furthermore, KEML experiments on BMImCl (in the range between 398 and 481 K) indicated a clear dependence of the unit area mass loss rate on the effusion hole diameter, an effect not observed for the ILs with NTf2 anion. Finally, KEMS measurements in the 416–474 K range allowed us to identify the most abundant species in the vapor phase, which resulted in methyl chloride, butylimidazole, butyl chloride, and methylimidazole, which most probably formed from the decomposition of the liquid. Full article
Show Figures

Figure 1

16 pages, 846 KiB  
Article
Preliminary Design of a Space Habitat Thermally Controlled Using Phase Change Materials
by A. Borshchak Kachalov, P. Salgado Sánchez, U. Martínez and J. M. Ezquerro
Thermo 2023, 3(2), 232-247; https://doi.org/10.3390/thermo3020014 - 12 Apr 2023
Cited by 10 | Viewed by 1457
Abstract
We explore the preliminary design of a space habitat thermally controlled using phase change materials (PCMs). The PCM is used to maintain a suitable, habitable temperature inside the habitat by isolating it from the external solar radiation. The system is studied numerically considering [...] Read more.
We explore the preliminary design of a space habitat thermally controlled using phase change materials (PCMs). The PCM is used to maintain a suitable, habitable temperature inside the habitat by isolating it from the external solar radiation. The system is studied numerically considering only diffusive heat transport (conduction), a scenario with practical application to microgravity or reduced gravity environments. The system dynamics are explored for a wide range of governing parameters, including the length of the PCM cell L, the thermo-optical properties—absorptivity α and emissivity ε—at the external boundary of the habitat wall exposed to solar radiation, the eclipse (illumination) fraction τe (τi) of the solar cycle, and the PCM used. We find that the thermo-optical properties at the external radiated boundary, characterized by the absorptivity–emissivity ratio (α/ε), play a key role in the system response and largely define the optimal design of the habitat. This optimum balances the heat absorbed and released by the PCM during repeated illumination and eclipse cycles. Full article
(This article belongs to the Special Issue Advances in PCMs as Thermal Energy Storage in Energy Systems)
Show Figures

Figure 1

16 pages, 10071 KiB  
Article
The Effect of the Isolator Design on the Efficiency of Rotary Piston Compressors
by Savvas Savvakis, Georgia Dimopoulou and Konstantinos Zoumpourlos
Thermo 2023, 3(2), 216-231; https://doi.org/10.3390/thermo3020013 - 04 Apr 2023
Cited by 1 | Viewed by 1527
Abstract
The current work investigates the relationship between the shape of an isolator of a concentric rotary piston compressor and the secondary peak pressure developed during each operating cycle. This peak pressure is developed when the piston passes through the isolator cavity, and it [...] Read more.
The current work investigates the relationship between the shape of an isolator of a concentric rotary piston compressor and the secondary peak pressure developed during each operating cycle. This peak pressure is developed when the piston passes through the isolator cavity, and it is negative for compressor efficiency. The aim of this paper is to identify the isolator cavity shape that minimizes this secondary peak to improve compressor efficiency. This study covers five different cavities that may be used in such compressors. Contrary to our expectations, the conclusion is that the best geometry is the one that can be manufactured with CNC machining. The geometry that can be manufactured with 3D printing also produces a significantly lower secondary peak pressure, but it is not cost-efficient. Another limitation of the 3D printing design is the thin walls that this cavity creates. Very thin walls may cause significant deformation during the compression cycle. The conclusion is that there is a CNC machining design that is cost-efficient and allows for higher compressor performance. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop