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Abstract: The isobaric heat capacity of solid eutectic mixtures LiCl-KCl-CsCl, LiBr-CsBr and LiBr-
KBr-CsBr was investigated from room temperature up to melting point. The molar heat capacity of
all mixtures under study was found to be close to the additive sum of that of pure salts. The heat
accumulated up to melting temperature is directly dependent on the melting point.

Keywords: alkali halides eutectics; heat capacity; enthalpy; melting temperature

1. Introduction

Eutectic mixtures comprising halide salts are used as phase-change materials. The
melting temperatures of eutectics are much lower than those of pure salts [1]. Low temper-
atures have certain advantages including a low vapour pressure in molten state and low
corrosion activity.

It makes halide eutectics very attractive for use in solar energy production [2–6] or
power sources [7]. Heat capacity is very important since it indicates the amount of energy
that a given system can possess under certain conditions.

Heat capacity has been shown to be temperature independent in a molten state
according to many studies [8–11], but in solids, the heat capacity rises with temperature.
There are scarce data on the heat capacity of solid eutectic halide mixtures. FLINAK, a
well-known eutectic mixture was measured in a solid state [12,13].

The aim of the present research was to investigate the heat capacity of the solid halide
eutectic mixtures within temperature interval from room temperature up to melting point.
The study was focused on the mixtures with melting temperatures below 600 K.

2. Materials and Methods

Alkali halide salts classified as “chemically pure” (99.5% of main substance) were
used for mixture preparation. Lithium chloride was provided by FMC (UK), caesium
salts were from Vekton, Russia. and lithium and potassium bromides were from Reachim,
Russia. Chloride salts were purified by zone melting [14,15]. LiBr was purified from mois-
ture and other admixtures through double recrystallization from anhydrous acetonitrile
solution with additional treatment with molecular sieves. KBr and CsBr were purified
from moisture by stepwise with vacuum drying. The detailed procedure was given in
our previous work [1]. The mixtures prepared were subjected to thermal and gravimetric
analysis in order to verify the melting temperature and sample mass stability. The samples
were homogenous, and the melting temperature difference was within 5 degrees. The
compositions of eutectic mixtures are given in Table 1.
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Table 1. Compositions and melting points.

Molar Composition Melting Point, K [1] Molar Weight

0.575 LiCl–0.165 KCl–0.26 CsCl 541 78.6
0.62 LiBr–0.38 CsBr 556 134.7

0.561 LiBr–0.189 KBr–0.25 CsBr 510 124.45

The study of heat capacity was carried out on the samples of the prepared mixtures
using the STA 449C Jupiter synchronous thermal analyser (NETZSCH). The experiments
were carried out under the following conditions: heating rate 10K/min; argon atmosphere;
and Pt–Rh crucibles with a perforated lid. The heat capacity was determined in three
stages: first stage—measurement of the base curve when the crucibles were empty; second
stage—measurement with a standard sample (sapphire); and final stage—measurement
with test sample. The detailed description of the experimental procedure has been described
elsewhere [1]. The uncertainty of heat capacity determination was 5%.

3. Results and Discussion

The heat capacity of solid eutectic mixtures under investigation is given in Table 2
according to temperature.

Table 2. Heat capacity of solid eutectics.

LiCl-KCl-CsCl LiBr-CsBr LiBr-KBr-CsBr

T,K Cp, J mole−1 T,K Cp, J mole−1 T,K Cp, J mole−1

303 48.3 348 51.2 316 49.8
323 50.7 358 51.2 326 49.8
333 49.1 368 52.5 336 50.4
341 50.5 378 53.9 346 50.4
350 51.7 388 53.9 356 51.0
359 52.3 398 53.9 366 51.0
370 52.3 408 52.5 376 51.0
380 53.1 428 51.2 386 51.0
390 53.1 438 52.5 396 51.0
400 52.3 448 52.5 406 51.6
410 52.3 458 52.5 416 51.6
420 53.8 468 52.5 426 52.3
430 53.6 478 52.5 436 52.3
440 53.1 488 53.9 446 52.3
450 52.3 498 53.9 456 53.5
460 51.5 508 53.9 466 53.5
470 52.3 518 53.9 476 54.8

528 55.2 481 54.8
538 57.9

The isobaric heat capacities of solid eutectic mixtures were measured up to
melting temperature.

The results for LiCl-KCl-CsCl are shown in Figure 1. The calculation of molar heat
capacity according to the Neumann–Kopp rule [16,17] is also presented as Cp mixture =
∑Cp component salt.

The usage of this rule for halide salt mixtures can be justified by the similarity of
the halide salts’ thermodynamic properties [18]. The experimental and calculated values
were in good agreement. The pure salt data were taken from the available literature [8,19].
Experimental and calculated data were used for the calculation of the enthalpy accumulated
by eutectic mixture up to the melting temperature. Calculation of the integral (by the
standard trapezoid method [20]) from the LSQM-line produced a value of 21.9 kJ mole–1

for LiCl-KCl-CsCl. The accuracy of the calculations was approximately ±7.5%.
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Figure 1. Heat capacity of LiCl-KCl-CsCl solid eutectic. #—our data, line—values calculated
according to the additive law based on the data available from the literature [8,19].

Molten bromide eutectics possess certain advantages in comparison with chloride
systems, primarily, due to lower temperatures. For this reason, they were also interesting
subjects for study. The isobaric heat capacities of solid eutectic mixtures LiBr-KBr and
LiBr-KBr-CsBr were measured up to melting point.

The heat capacities of the bromide eutectics being investigated are shown in Figures 2 and 3.
The enthalpy of samples was calculated for bromide eutectics for premelting tempera-
ture. Calculation of the integral gave the value of 21.4 kJ mole–1 for LiBr-KBr-CsBr and
23.95 kJ mole–1 for LiBr-CsBr. Comparison of enthalpy and melting temperature indicated
their dependency. The data for eutectic mixtures can be considered as a derivative of pure
salts and, thus, they have the same dependency as that of individual salts. The results for
eutectic mixtures are given in Table 3 and Figure 4. The enthalpy and melting points of
chloride, bromide, and iodide salts were taken from literature [21] and are shown in Table 4
and Figure 4.

Thermo2023, 3, FOR PEER REVIEW  4 
 

 

 
Figure 2. Heat capacity of the solid LiBr-CsBr eutectic mixture. ○—our data, line—values calculated 
according to additive law using literature data [8,19]. 

 
Figure 3. Heat capacity of solid the LiBr-KBr-CsBr eutectic mixture.○—our data, line—values calcu-
lated according to additive law using literature data [8,19]. 

0

10

20

30

40

50

60

0 100 200 300 400 500 600
T,K

H
ea

t c
ap

ac
ity

, J
 m

ol
e–1

 K
–1

0

10

20

30

40

50

60

0 100 200 300 400 500 600
T,K

H
ea

t c
ap

ac
ity

, J
 m

ol
e–1

 K
–1

Figure 2. Heat capacity of the solid LiBr-CsBr eutectic mixture. #—our data, line—values calculated
according to additive law using literature data [8,19].
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Figure 3. Heat capacity of solid the LiBr-KBr-CsBr eutectic mixture. #—our data, line—values
calculated according to additive law using literature data [8,19].

Table 3. Melting points and enthalpy before the melting of the eutectics.

Molar Composition Melting Point, K [1] Enthalpy at Melting Point
kJ/mole

0.575 LiCl–0.165 KCl–0.26 CsCl 541 21.90
0.62 LiBr–0.38 CsBr 556 23.95

0.561 LiBr–0.189 KBr–0.25 CsBr 510 21.40
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Figure 4. Enthalpy of salts and eutectics before melting versus melting point.

The fitting was carried out by two mathematical methods: LSQM and the interval
method. LSQM is well known and provides reliable fitting parameters of data under
treatment, but it gives only the maximal (by modulus) bounds emax of measuring errors.
Consequently, the parameters calculated by the standard least square method (LSQM)
gives too broad an uncertainty interval. Under given conditions of uncertainty, interval
analysis methods [22,23] give the guaranteed estimates of parameters (the information sets)
which defines the area of possible values of property under investigation.
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Table 4. Enthalpy (H) of solid halide salts before melting point (Tm) [17].

Salt Tm, K H, kJ mole−1 Salt Tm, K H, kJ mole−1

LiCl 883 41.4 KBr 1007 54.0
NaCl 1074 54.5 RbBr 967 49.7
KCl 1044 54.1 CsBr 908 46.4
RbCl 993 50.3 LiI 742 36.4
CsCl 918 49.4 NaI 933 48.3
LiBr 823 39.0 KI 954 51.2
NaBr 1020 52.3 RbI 920 47.8

CsI 913 48.0

The fitting line was as follows: H (T) = A × T + B, where H is the enthalpy of the
solid eutectic near melting point, T is the melting temperature, and A and B are the
empirical coefficients.

The results of data treatment are shown in Figures 5 and 6. Figure 5 demonstrates the
information set (the possible values of coefficients A and B). According to interval analysis,
the minimal coefficient B is 5.48 × 10−2 kJ mole−1 K−1, which relates to the maximal
coefficient A equal to 23.9 KJ mole−1. Maximal coefficient B is 6.95 × 10−2 kJ mole−1 K−1,
which relates to 18.3 kJ mole−1. The optimal coefficients correspond to the central point
(Acnt = 6.22 × 10−2 kJ mole−1 K−1, Bcnt = 21.169 kJ mole−1). The results of LSQM are close
(A = 6.26 × 10−2 kJ mole−1 K−1, B = 21.208 kJ mole−1).
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These results were related to the temperature interval 510–1074, and the constants
were related to 510 K. At recalculating to zero point by temperature, the equation is as
follows: LSQM results:

ALSQ = 6.26 × 10−2 kJ mole−1 K−1, BLSQ = −10.655 kJ mole−1

The results of estimation on the basis of the interval approach are the following:

Acnt = 6.22 × 10−2 kJ mole−1 K−1, Bcnt = −10.718 J mole−1
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The results obtained demonstrated the independence of fitting results from the treat-
ment method.

Thus, the amount of heat accumulated by solid halide eutectic mixtures up to melting
point can be described by the following linear equation:

H = 62.2 × Tm − 10.718 J mole−1

The enthalpy of the melting of halide eutectics is also dependent on the melting
point [24] according to the following formula:

H = 38 × Tm − 11.220 J mole−1,

where H is enthalpy of fusion, and Tm is melting point.
Thus, it is possible to calculate the amount of energy accumulated by salt or eutectic

mixture before and just after melting as follows (Figure 7):

H = 98.6 × Tm − 21.855 J mole−1
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This is the heat that the system possesses just after melting. This equation allows
for the estimation of the amount of heat that the eutectic mixture can accumulate for
heat storage.

4. Conclusions

1. The molar heat capacity of all mixtures under study was found to be close to the
additive sum of that of pure salts.

2. The enthalpy of the solid eutectic mixtures closes to melting temperature was directly
dependent on the melting point.

3. The results obtained allow for the estimation of the amount of energy that the eutectic
mixture can accumulate for storage.
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