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Abstract: Ejectors have gained renewed interest in the last decades, especially in heat-driven refrig-
eration systems, to reduce the load of the compressor. Their performance is usually influenced by
many factors, including the working fluid, operating conditions and basic geometrical parameters.
Determining the relationships between these factors and accurately predicting ejector performance
over a wide range of conditions remain challenging. The objective of this study is to develop fast and
efficient models for the design and operation of ejectors using artificial neural networks. To this end,
two models are built. The first one predicts the entrainment and limiting compression ratio given
12 input parameters, including the operating conditions and geometry. The second model predicts
the optimal geometry given the desired performance and operating conditions. An experimental
database of ejectors using five working fluids (R134a, R245fa, R141b, and R1234ze(E), R1233zd(E))
has been built for training and validation. The accuracy of the ANN models is assessed in terms of
the linear coefficient of correlation (R) and the mean squared error (MSE). The obtained results after
training for both cases show a maximum MSE of less than 10% and a regression coefficient (R) of,
respectively, 0.99 and 0.96 when tested on new data. The two models have then a good generalization
capacity and can be used for design purposes of future refrigeration systems.

Keywords: single-phase ejector; artificial neural network; ejector performance; ejector design;
thermodynamic model

1. Introduction

Worldwide population growth and industrialization in developing countries have
remarkably increased the demand for thermal comfort development during recent decades.
The industry standard to meet this demand is the vapor compression refrigeration system
(VCRS), which is known for its high capacity and ability to operate at cooling temperatures
but also for its elevated energy requirements and relatively low energy performance. Many
alternatives to the VCRS have been proposed in recent years with the main purpose of
improving energy performance and reducing the use of refrigerant fluids. In this context,
ejector-based refrigeration systems (ERS) have been proposed as a cost-effective and less
pollutant alternative, most notably for moderate heating and cooling demands [1]. The
heat-driven refrigeration cycle (HDRC) is a member of the ERS family where the mechanical
compressor is replaced by three components: a pump, a generator, and a supersonic single-
phase ejector, such that the latter acts as a thermo-mechanical compressor but without
any moving parts. A general schematic of the HDRC is shown in Figure 1, along with the
corresponding pressure–enthalpy diagram. In this cycle, high-pressure vapor (primary
flow) is delivered from the generator. This flow enters the supersonic ejector and entrains
the low-vapou-r pressure (secondary flow) coming from the evaporator. Both flows are
mixed and compressed to an intermediate pressure throughout the ejector and the resulting
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mixture is directed toward the condenser. The condensed liquid is split into two parts: one
part is fed back into the pump and the generator, while the other is directed toward the
throttling valve and the evaporator. The HDRC cycle has gained interest in recent years
since it can be activated using waste heat or energy from renewable sources and allows the
drop-in replacement of low global warming potential (GWP) refrigerants as working fluids
at a low performance penalty [2].

(a) (b)

Figure 1. (a) General schematics of the HDRC, along with (b) its corresponding pressure–enthalpy
diagram.

The coefficient of performance (COP) of the HDRC is directly proportional to the
entrainment ratio of the supersonic ejector [3]. The entrainment ratio, ω, is defined as the
ratio between the secondary flow mass flow rate, ṁs, and the primary mass flow rate, ṁp.
The other performance metric for a supersonic ejector is the compression ratio is PCR, which
is the ratio between the static pressure at the exit of the diffuser, Pcond, and the static pressure
at the secondary flow inlet, Psec. The typical supersonic ejector performance curve for fixed
inlet conditions is displayed in Figure 2. Three operating modes can be distinguished as
the outlet pressure increases: when ω does not change with Pcond, the ejector is said to be
in a double-choked or on-design regime. This regime ends when the critical compression
ratio or critical pressure Pcrit,1 is reached. It marks the optimal operating point for a given
geometry and inlet conditions. As Pcond augments beyond Pcrit,1, the entrainment ratio
decreases linearly Pcond. This is known as single-choke or off-design regime. Once the
outlet pressure reaches the threshold Pcrit,2, the ejector enters the malfunction mode, and
back flow is observed at the secondary inlet.

Figure 2. Operating modes of a supersonic ejector for a fixed geometry and given inlet conditions.

Figure 3 shows the basic geometry of a supersonic ejector along with the definition of
the main geometrical parameters. After acceleration in the convergent–divergent nozzle,
the primary flow entrains the secondary flow into the mixing chamber. Then, both flows
interact in the constant area section until oblique shock waves take place before entering the
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diffuser. Being the central component in ERS, the performance of supersonic ejectors has
been thoroughly studied during the last decade for different configurations and working
fluids. On the one hand, coupled interactions exist between the ejector performance metrics
(ω and PCR) and the system operating conditions [4], which affect both the steady operation
and transients of the system [5]. On the other hand, experimental studies have shown the
sensibility of the entrainment ratio to key geometrical parameters such as the area ratios
relative to the nozzle throat area [6], the mixing chamber length [7,8] and the nozzle exit
position (NXP) [9]. Similarly, the maximum possible compression ratio during double
choke, Pcrit1, has been linked to the diffuser outlet area and the NXP [10], the primary
nozzle exit shape [11] and the design of the constant area section [12]. The interested
reader is referred to Aidoun et al. [1] for a state-of-the-art description of ejector-based
refrigeration cycles.

Constant area section DiffuserNozzle

Secondary flow

Primary flow

Dcas

Lcas Ldiff

DdiffDprim.out

Dcol

-  NXP=0  +

Figure 3. Schematic view of the ejector geometry.

Test benches for supersonic ejectors are often limited by construction costs, dimensions
and operating conditions. Hence, design optimization and internal flow structure are often
assessed using numerical tools. For instance, thermodynamic models, which take on the
solution of conservation equations across specific ejector sections, allow quantifying the in-
fluence of different geometrical parameters on ejector [13,14] and cycle performance [15], as
well as the integration with optimization algorithms [16]. Internal flow dynamics are better
studied using computational fluid dynamics (CFD). These have permitted us to characterize
the mean internal flow dynamics [17], quantify the relationships between internal phenom-
ena and global performance [18,19] and trace the energy transfer mechanisms through the
device [20]. However, in general, the computation and time requirements for CFD models
are prohibitive for common industrial applications and extensive parametric studies.

Artificial neural network (ANN) is a field in artificial intelligence that mimics the
behavior of the human brain to make predictions based on existing data. The power of
ANN comes from its ability to learn directly from examples, tolerate relatively imprecise or
incomplete data points and their lower vulnerability to outliers when compared to other
machine learning approaches [21]. Moreover, ANN models are known as universal function
predictors, i.e., they can be used to produce approximate solutions for complex non-linear
systems, all without the need to know the underlying physics. Early efforts during the
last decade have shown the potential of ANN to model and study the performance of ERS.
For instance, Sözen and Akçayol [22] and Sözen and Arcaklioğlu [23] demonstrated the
potential of shallow neural networks to optimize and determine the exergy losses of an
ejector–absorption refrigeration cycle using the main temperatures as input parameters.
Similarly, Wang et al. [24] showed that this type of ANN outperforms other machine
learning approaches in the prediction of a hybrid ejector air-conditioning system.

Given their lower computational costs relative to CFD models, ANN models of super-
sonic ejectors are placed in an ideal position for integration with optimization algorithms,
such as particle swarm optimization and ant colony optimization, to maximize cycle perfor-
mance [25], as well as the construction of surrogate models to study the changes in internal
flow properties [16]. Nonetheless, as it is still a relatively new tool, the proper application of
ANN for ERS poses challenges requiring further study. To name a few: their generalization
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capacity, input parameter selection, neural network architecture, best training algorithms,
etc. In this regard, Gupta et al. [26] presented an ANN able to predict the entrainment ratio
with a 90% accuracy and classify the operating regime (single- or double-choke) with a
91% accuracy when trained using an experimental database for different refrigerants. A
novel contribution of their model is the inclusion of gas properties in the training database.
In a follow-up study, these same authors showed that integrating two shallow neural
networks, such that predictions of the first NN are fed into the second one, improved the
prediction accuracy of entrainment ratio and operating regime to, respectively, 93% and
∼99% for a single-phase air ejector [27]. Similarly, Zhang et al. [28] determined that the
Levenberg–Marquardt training algorithm showed better accuracy and performance over
the resilient back-propagation and scaled conjugate gradient choices for predicting the
back pressure of steam ejectors with condensation. Moreover, Zheng et al. [29] showed the
feasibility of CFD results as training data for NNs meant for design optimization, even for
two-phase ejectors.

The objective of this study is to provide greater insight into the use of ANNs for
the study and optimization of supersonic ejectors by using this approach to establish
relationships between ejector performance and the main governing parameters (geometry
and operating conditions) as well as to provide tools for the design and operation of
supersonic ejectors. To this end, two ANN models have been built using a dataset of
959 instances of experimental data collected from 22 studies on HDRC working with
R134a, R245fa, R141b and R1234ze(E), R1234zd(E). The first model predicts the entrainment
and compression ratio using 12 input parameters, including operating conditions and
geometric characteristics. The second model estimates four geometry parameters, namely,
the nozzle throat (Dcol) and exit (Dprim,out) diameters, the nozzle exit position (NXP) and
the constant area section diameter (Dcas) given the desired ω and PCR and the temperatures
and pressures at the inlets and the outlet. To the best of the authors’ knowledge, this study
is the most complete considering the number of different experimental databases used
from various research groups (and so using different experimental set-ups) and types of
refrigerant. Furthermore, for the first time, the full range of geometrical parameters and
operating conditions and both performance metrics ω and PCR are considered. Thus, the
two ANN models can predict either the performance of the ejector based on its design or
its design based on the targeted performance. Finally, the relative importance of all input
parameters is quantified.

In the following section, the database and ANN construction steps are presented in
detail. Results are then presented in Section 3, which includes model validation as well a
discussion on the importance of the input parameters in both approaches. Finally, closing
comments are given in Section 4.

2. Materials and Methods
2.1. Artificial Neural Networks

Artificial neural networks learn from input information and are able to process it for
data classification, pattern recognition, finding approximation functions and simulating
sophisticated operations [30]. Such a method is particularly well adapted to predict the
properties of complex systems [31]. The architecture of an ANN is usually divided into
three parts: an input layer, a hidden layer and an output layer. Each layer is composed
of processing elements called perceptrons. These perceptrons receive input data from
upstream elements, perform a weighted sum on it, transform the result using an activation
function and output the result to the downstream layer. Original data are introduced into
the input layer. During training, the input weights for each perceptron are adjusted by
presenting the ANN with known data and minimizing its prediction error. This process is
known as training. In this way, the ANN is able to establish its own relationships between
the input and output parameters without any insight into the underlying physics.

ANNs synthesize and find correlations between inputs and outputs. Hence, sufficient
and representative data are a must during the training process so the model is able to
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recognize the underlying structure of the information involved. Otherwise, it risks being
undertrained and is not able to find sufficiently accurate predictions on the training set.
Once the ANN model is trained, its ability to make predictions on new data (a validation
set) is tested by presenting it with new instances. Ideally, it will have the ability to pre-
dict outputs for any new input set of data within the range of the training data with an
acceptable degree of accuracy. In summary, the process of any neural network-based model
contains five main aspects [32]: (a) data acquisition, analysis, and problem representation;
(b) determination of the network architecture; (c) determination for the learning process;
(d) training; and (e) testing for generalization.

Different types of ANN exist depending on the mathematical operations and set
of parameters required to determine the output. Some of the most used are multilayer
perceptron (MLP) and radial basis function (RBF) [24]. Furthermore, there are different
ANN training algorithms with varying learning speeds, stability and accuracy. One of the
most popular is the back-propagation algorithm. It basically readjusts the weights for each
perceptron to minimize the output error or cost function. The back-propagation training
algorithm gradient descent with momentum is often too slow for practical problems because
it requires small learning rates for stable learning. Faster algorithms such as conjugate
gradient, quasi-Newton, and Levenberg–Marquardt use standard numerical optimization
techniques [23]. These eliminate some of the disadvantages mentioned above. The latter
(Levenberg–Marquardt) was used in this study.

In this study, the accuracy of the ANN models is evaluated in terms of mean squared
error (MSE) and the regression correlation coefficient (R), which are defined below [33]:

MSE =
1
N ∑

i
|ti − oi|2 (1)

R =

√
1− ∑i(ti − oi)2

∑i(oi)2 (2)

The mean squared error is the average squared difference between outputs and targets.
Lower values are better. Regression R values are necessary to measure the correlation
between the outputs and targets. R = 1 means a perfect correlation.

2.2. Database Description

The database was built by collecting experimental data points from the 22 references
listed in Table 1. The references were chosen based on the number of details provided
with regards to the geometry and working conditions. The collected data has been split
into two parts: 800 instances (83.52%) are used for model building or training the dataset,
and the remaining 159 instances (16.75%) are used as the final validation dataset. The
model-building dataset (the 800 instances) was further split into a training set (70%), a
validation set (15%) and a test set (15%). A randomized separation step was used to create
the datasets, ensuring homogeneous distribution amongst all the groups. After division,
the data were centered and normalized between −1 and +1 to make them consistent with
the limits of a tangent sigmoid transfer function. The mean squared error and the linear
coefficient of regression were used as cost functions. The references used for building the
database were chosen using the following criteria:

• Only experimental data from HDRC, including single-phase ejectors, were collected;
• The working fluids are R134a, R245fa, R141b, R1234ze(E) and R1233zd(E). No mixture

is considered.

Ejector performance is sensitive to the working fluid, the geometry and the operating
conditions. Thus, the parameters for constructing the database were chosen accordingly in
order to ensure proper representation of the ejector operation. As for the working fluid,
four common refrigerants were chosen based on their popularity and the availability of
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experimental references. The proportion of each working fluid in the database is: 37.53%
R134a, 25.75% R245fa, 27.52% R141b and 9.17% for R1234ze(E) and R1233zd (E).

Table 1. Experimental studies on ejector refrigeration systems gathered for the construction of the
database.

Working Fluid Reference Number of Data Points

R134a

Selvaraju and Mani [34]

360

García del Valle et al. [12]
Yan et al. [35]
Li et al. [36]

Poirier et al. [37]
Falat et al. [38]

R245fa

Haghparast et al. [39,40]

247

Hamzaoui et al. [5]
Shestopalov et al. [41]

Mazzelli and Milazzo [42]
Scott et al. [43]

Eames et al. [44,45]
Narimani et al. [46]
Bencharif et al. [47]

R141b
Huang et al. [14]

264Thongtip and Aphornratana [6,48]
Ruangtrakoon and Thongtip [49]

R1234ze(E)-R1233zd(E) Gagan et al. [50] 88Mahmoudian et al. [51]

The database parameters were split into three categories: geometrical parameters,
operating parameters and performance parameters. These are summarized in Table 2,
along with the numeric range and mean for each one. These allow us to assess the system’s
limits considered in this study. Since it is very difficult to find references that provide all
the database parameters, some missing values were allowed in the experimental source.
The proportion of missing values in the database for each parameter across all instances
is also indicated in Table 2. It shows that the distribution of the parameters through the
database is less than 4%. ANNs offer an advantage when some instances in the set are
missing parameters since they can continue without any problems given their parallel
nature. Using (RBF) interpolation is an advanced method in approximation theory for
constructing high-order accurate interpolates of unstructured data [52].

Table 2. Range of inputs and outputs with their minimum, maximum and average values, as well as
their distribution percentage.

Parameter Units Minimum Maximum Mean Missing Values (%)

Geometrical Parameters
Primary nozzle throat diameter (Dcol) mm 0.50 20.20 5.68 0%

Primary nozzle outlet diameter (Dprim,out) mm 0.80 26.32 9.13 0%
Nozzle exit position (NXP) mm 0.00 69.93 18.55 0%

Constant area section diameter (Dcas) mm 0 34.07 10.46 0%
Constant area section length (Lcas) mm 0 223.77 69.21 4%

Diffuser oulet diameter (Dout) mm 2.60 108.30 34.91 4%
Diffuser length (Ldi f f ) mm 11.50 950.00 212.39 4%
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Table 2. Cont.

Parameter Units Minimum Maximum Mean Missing Values (%)

Operating parameters
Primary flow temperature (Tprim) ◦C 48 120 88.91 0%

Primary flow pressure (Pprim) kPa 400 3907.93 1514.13 0%
Secondary flow temperature (Tsec) ◦C −7 30.60 9.98 0%

Secondary flow pressure (Psec) kPa 20.50 630.00 195.72 0%
Condenser temperature (Tcond) ◦C 11.93 42.50 30.64 0%

Performance parameters
Double-choke entrainment ratio (ω) - 0.01 0.99 0.33 3.54%

Limiting compression ratio (PCR) - 0.21 4.80 2.14 0%

2.3. Construction of the ANN Models

The main objective of the present work is the prediction of the performance parameters
and geometric characteristics of an ejector for HDRC using four working fluids (R134a,
R134a, R141b and R1234ze(E), R1233zd(E)). This is the first time the prediction of perfor-
mance and geometric characteristics of different ejectors for a wide range of working fluids
is estimated using ANN. It is also the first time both of these parameters are predicted using
ANNs trained with more than one data source. Ejector performance is defined concerning
the application of interest. The focus here is refrigeration and air conditioning, and en-
trainment and compression are the main parameters characterizing ejector operation. Two
ANN models were constructed using the database parameters. These are summarized in
Table 3. The first one is an operation model in which twelve input parameters (geometrical
and operating parameters) are used to determine the ejector performance parameters (ω
and PCR). The second model is meant for design problems. In this case, the operating and
performance parameters are used to determine the geometry parameters.

Table 3. Description of the input and output of the data for the two ANNs models.

ANN Model Input Parameters Output Parameters

Case 1: Ejector performance prediction
Dcol , Dprim,out, NXP

ω, PCRDcas, Lcas, Dout, Ldi f f
Tprim, Pprim, Tsec, Psec, Tcond

Case 2: Geometry determination ω, PCR, Tprim, Pprim Dcol , Dprim,out, NXP, DcasTsec, Psec, Tcond

The models were generated using the MATLAB R2017b neural network toolbox. A
replica of the models was built in IBM SPSS statistics 25 to verify their validity and to esti-
mate the importance of the input parameters. They consist of an input layer, a single hidden
layer and an output layer. The number of neurons in the hidden layer was determined
using Equation (3) [53]:

n =
√

ni + no + a (3)

where n is the number of hidden layer neurons, ni the number of neurons in the input layer,
and no the number of neurons in the output layer. a is a fixed value ranging from 0 to 10.
According to Equation (3), the number of neurons in the hidden layer ranges from 4 to
14 in Case 1 and from 3 to 13 in Case 2. In this study, the number of hidden layers is set
to 10 neurons for both cases. This was determined using a trial and error approach. The
resulting number of neurons is the minimum that provides a reasonable estimate of the
output. Using more neurons leads to overfitting and poor generalization. For both models,
the hyperbolic tangent sigmoid transfer function was used for the input and hidden layers.
The neurons in the output layer used a linear transfer function.
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In this study, a feed-forward back-propagation algorithm known as the gradient-
descent method was used. This algorithm adjusts the weights automatically to minimize
the error between the target values and the model output [54]. Other algorithms, such as
the Levenberg–Marquardt, were used but they required more computational resources
without any noticeable improvement in the results. Training automatically stopped once
the ANN generalization stopped improving, as indicated by an increase in the mean square
error of the validation samples.

Figure 4 illustrates the structure of the two ANN models. The circles represent the
perceptrons and the arrows represent the unidirectional interconnections between them.
Case 1 (Figure 4a) consists of 14 input neurons (Dcol , Dprim,out, NXP, Dcas, Lcas, Dout, Ldi f f ,
Tprim, Pprim, Tsec, Psec, Tcond) and 10 hidden neurons against two outputs neurons (ω) and
(PCR). In Case 2 (Figure 4b), the input layer consists of 7 neurons (ω, PCR, Tprim, Pprim, Tsec,
Psec, Tcond) and 10 hidden neurons for 4 output neurons (Dcol , Dprim,out, NXP, Dcas). The
basic settings for both ANN models are summarized in Table 4.

(a) (b)

Figure 4. Structure of the ANN models for (a) Case 1 and (b) Case 2.

Table 4. Basic settings of the ANN models.

Parameters/Functions Value

Algorithm Levenberg–Marquardt
Transfer function Tangent sigmoid

Performance parameters Mean squared error
Number of hidden layers 10

Number of input layers Case 1 (12)
Case 2 (7)

Number of output layers Case 1 (2)
Case 2 (4)

Kinds of samples Training 70 % , validation 15% and testing 15%
Train epoch Dividerand
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All the networks are trained, tested and validated using the Levenberg–Marquardt
algorithm. As mentioned before, it is considered as one of the fastest algorithms [55]
for training a neural network with a moderate size. The models include twelve input
parameters for Case 1 and seven for Case 2 with 10 hidden layers for both networks. In
terms of outputs, 2 parameters are predicted for Case 1 and 4 for Case 2, respectively.

Finally, the types of samples are as follows: 70% for training, and the remaining
30% is determined by the equality between the test and validation using a divider and
training epochs.

2.4. Training

The performance of the ANN model depends on the success of the training process.
During training, the model is presented with a set of labeled data (i.e., data for which the
results are known) so it can iteratively adjust its weights in order to minimize the error
between its predictions and the actual output values. Each iteration in the training process
is also known as an epoch. Since at each epoch the weights are adjusted to the training set,
there is a compromise between the number of epochs and the generalization capacity of
the model. A successful training leads to accurate output predictions on the training, test
and validation datasets.

2.5. Model Validation

The plot regressions shown in Figures 5 and 6 depict the ANN performance for the
training, validation, and test datasets by comparing the model’s predictions in both cases
with the corresponding target values. The training step was repeated several times for both
cases in order to obtain very high-accuracy models. Regarding Case 1 (Figure 5), a very good
agreement is observed for each training set. Two point clusters can be recognized in each
plot of Figure 5, one in the range of 0 to 1, corresponding to entrainment ratio predictions,
and the other one in the range of 1.5 to 4, corresponding to the limiting compression ratio
predictions. The correlation coefficient on the test set for this case (R = 0.9685) is very close
to R for the training set (0.9609), which shows the model has a good generalization capacity.
The highest differences between predictions and target values are observed for very low
entrainment ratios, which usually correspond to single-choke operating ejectors. These
conditions are much less represented in the database. Concerning Case 2 (Figure 6), a
very good agreement is observed as well. The correlation coefficient on the test set in this
case is R = 0.9771). The point clusters are harder to spot, given that there are four output
parameters. The highest differences seem to take place close to zero, which corresponds to
very small primary throat diameters as well as some missing values.
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Figure 5. Comparison between the ANN predictions versus the target values (experimental data) for
Case 1: prediction of ω and PCR.
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Figure 6. Comparison between the ANN predictions and the target values (experimental data) for
Case 2: prediction of Dcol , Dprim,out, NXP and Dcas.

3. Results
3.1. Generalization Capacity

The collected data include 959 data points divided into two groups: 83.25% were
used in the training step, whereas the remaining 16.75% was used as blind data for further
assessing the model’s performance. Figure 7 compares the predictions versus target values
(experimental data) for both models on the latter dataset. The correlation coefficients on
this newly presented data are 0.9868 and 0.9262 for Cases 1 and 2, respectively. Regarding
Case 1 (Figure 7a), the model shows good agreement in particular for entrainment ratio
values of about 0 and 0.7 and limiting compression ratios between 1.5 and 3. There is a
noticeable dispersion for target values PCR ≥ 3, which is related to the fewer data instances
in this range. Furthermore, for Case 2, as shown in Figure 7b, there is an overall good
agreement between ANN predictions and the target values concerning (Dcol , Dprim,out, NXP
and Dcas), although some dispersion is observed, in particular, for negative target values.
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(a) (b)

Figure 7. Comparison between the ANN predictions and the target values (experimental data) for the
two models using the 159 data points from the database initially set aside: (a) Case 1 and (b) Case 2.

3.2. Operating Conditions

The ejector is particularly sensitive to its operating conditions, which is the correlation
between the variation of the entrainment ratio (ratio between secondary and primary flow)
and the backpressure (the backpressure is the pressure of the condenser), as shown in
Figure 6. The ejector performance can be divided into three distinguished modes. The
first one on the design or double choking-mode when both primary and secondary flow
conditions are choked, as the flow pressure increases by further deceleration to equate
the imposed backpressure, and ω is constant without any effect of the backpressure. The
second one is off-design or single choking-mode, where only the primary flow is choked
and the secondary flow is not; ω decreases while the back pressure increases above the
critical value. The last mode is called back flow or reversed mode when both flows are not
choked, and the back pressure exceeds the critical point, thus causing the reverse of the
entrained flow. It results in negative ω values.

In this setting, the second set of the database comprising 159 sets of samples is used
for a comparison between the results predicted by the ANN models (Cases 1 and 2), and
the experimental data were carried out, including only the output data divided into two
categories of on-design and off-design for both approaches. Figure 7 presents a set of
results for ω and PCR with critical and sub-critical conditions, and one can observe that a
good agreement between ANN and experimental sets is achieved. However, the on-design
mode (up) offers more accuracy compared to the off-design part (low). The entrainment
ratio ω is located between (0.1 to 0.65) for the on-design section, while for the off-design
section, there is more dispersion between (0 and 0.5) caused by the back pressure of the
condenser PCR is in the range of (1.5 and 2.6) regarding critical condition and between 1.5
and 3.3 relating to sub-critical position.

Figure 8 displays, for fixed geometrical parameters, the predicted values of the en-
trainment coefficient ω and the critical pressure PCR for both on- and off-design conditions.
The predictions remain quite good for PCR and degrade a little bit between the on- and
off-design conditions for ω. This behavior is expected due to the high sensitivity of the
critical point relatively to the operating conditions and the sharp decrease of ω with PCR
in the off-design regime. Figure 9 presents the same kind of comparison for the three
main geometrical parameters Dcol , Dprim,out, and Dcas for Case 2. The accuracy of the ANN
model remains quite acceptable and similar for the three parameters. The comparison
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points out, in particular, a lack of experimental data to strengthen the prediction capability
of the model.

(a) (b)

(c) (d)

Figure 8. Comparison between the on-design (a,b) and off-design (c,d) modes in terms of ω (a,c) and
PCR (b,d).
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(a) (b)

(c)

Figure 9. Predictions of the ANN model in terms of: (a) Dcol , (b) Dprim,out, and (c) Dcas for Case 2.

3.3. Importance of Parameters

The ANN models for Cases 1 and 2 were built using, respectively, 12 and 7 input
parameters for a set of data equal to 800. As shown in Section 3.1, these are able to accurately
predict previously unpresented data, meaning they can be applied in new scenarios within
the range of the training dataset. The models also allow estimating the importance of each
input variable by assessing the change in the output variables when varying each feature
at a time. This estimation was carried out using IBMSPSS on the two ANN models.

Figure 10 displays the importance of each input parameter (feature) on each model.
The values are normalized using the most important feature as a reference. For an operation
problem where the outlet parameters are ω and PCR (Case 1), the operating conditions at
the secondary inlet and the outlet (Tcond, Psec) are the most influencing parameters (≥80%).
This is expected since the system’s main control points are often the conditions at the
condenser and the evaporator. The temperature and pressure of the secondary and primary
flow followed by the diameters of primary nozzle conditions also have a higher importance
level (≥60%) but to a lesser extent. The less important parameters are the diameter and the
length of the constant area section.

Concerning a design problem (Case 2), where the outlet parameters are the geometrical
parameters: Dcol , Dprim,out, NXP and Dcas, the most influencing features are the primary
inlet conditions Pprim (∼100%) and Tprim (∼79%) followed by the secondary inlet conditions
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(50%). It is also interesting to note that ω and PCR are the least influencing parameters,
despite being the objective of the model.

(a) (b)

Figure 10. Relative importance of the input parameters on the model predictions for Cases (a) 1 and
(b) 2.

As previously mentioned, studying the ANN models in depth allows for better com-
prehension. Another way to see the importance of the parameters is the use of scatterplot
matrix, which is the collection of scatterplots organized into a grid or matrix. Each scat-
terplot shows the relationship between a pair of variables. Figures 11 and 12 display
the operating parameters and geometrical characteristics, respectively, in terms of input
parameters used to train, test, and validate two ANN models (Cases 1 and 2). Five (5)
variables for operational conditions and seven (7) variables for geometrical characteristics
are driven by 800 sets of data. In all cases, the optimal values fall in a range, where enough
experimental data have already been collected.
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show the range of optimum parameters.
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The two ANN models developed in this investigation provide promising results. Another
validation is proposed here for a single-phase supersonic ejector working with R245fa considered
by Bencharif et al. [47]. Figure 13 confirms the validation of the proposed working mechanism
of the first model. The predicted outputs are compared to experimental data, and the predictions
of the thermodynamic model developed and validated by Croquer et al. [56] for an ejector-based
HDRC working with R134a and later used and further validated by Bencharif et al. [47] for a
R245fa ERS, both ejectors including droplet injection. A set of data is used to compare the
three approaches, namely the experiments, the thermodynamic and ANN models. There
is an overall fairly good agreement between the ANN results and the experimental data
regarding the limiting compression ratio (Figure 13a) with an average relative deviation of
less than ε = 3% and a maximum value of ε = 26.5%. The ANN improves the predictions
of the thermodynamic model. The average relative difference between the thermodynamic
model and the experiments is indeed equal to ε = 7.3% (max. ε = 30.7%).

Regarding the entrainment ratio (Figure 13b), the ANN predictions of ω follow the
trends of the experimental data, although, at some points, it shows a greater deviation than
the thermodynamic model and especially at lower condenser (ejector outlet) pressures. The
average relative error between the ANN and the experiments remains quite acceptable:
ε = 16.5%, which decreases down to ε = 10% if one removes about 12% of the database, for
which the experimental data may be close to the critical point but in the off-design regime.
The relative error is similar between the thermodynamic model and the experiments. The
maximum relative error (ε = 80.1%) between the ANN and the experiments is reached at
the maximum Pout considered here. As this ANN model only predicts the critical point on
the operating curve, it may correspond, in fact, to a small deviation in Pout in comparison
with the experiments for a given ω value.
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(a) (b)

Figure 13. Comparison between the experimental data (�), thermodynamic (�) and ANN (4) models
in terms of (a) critical pressure Pout and (b) entrainment ratio ω. Results obtained for a single-phase
supersonic ejector working with R245fa and considered by Bencharif et al. [47].

4. Conclusions

In this study, two ANN models have been constructed to predict the performance and
main design parameters of supersonic ejectors for HDRC. The training database contained
800 data points of supersonic ejectors for HDRC with four working fluids: R141b, R134a,
R245fa and R1234ze(E), R1233zd(E). The data were extracted from 22 different experimental
references available in the literature. Furthermore, the models were validated and tested for
generalization capacity using 159 additional data instances from these same sources. Two
ANN models were constructed: Case 1, which predicts the ejector ω and PCR given basic
geometrical and operation parameters, and Case 2, which estimates geometrical parameters
given the desired operating point and double-choke performance. Based on the results, the
following conclusions can be drawn:

• Both approaches (Cases 1 and 2) show good accuracy. The maximum relative error
for both models on the training set was less than 10%. Moreover, Case 1 absolute
fractions of variance on the training and test dataset were, respectively, R = 0.9972 and
R = 0.9968. For Case 2, the corresponding coefficients were, respectively, R = 0.9714
and R = 0.9166.

• When presented with a dataset of 159 new instances, models show absolute fractions
of variance R = 0.9868 (Case 1) and R = 0.9262 (Case 2). This shows the high capacity
of the models to predict newly presented data within their training range.

• Comparison between on-design and off-design with 159 data indicates that the two
models agree very well with the experimental data. Otherwise, the critical mode offers
better results than the sub-critical mode for both operating conditions and geometrical
characteristics.

• The most important parameters in the prediction of the ejector performance are the
operating conditions for the secondary inlet and outlet, followed by NXP and the
primary inlet conditions. Whereas the primary and secondary inlet conditions are
the most influential parameters for the estimation of geometrical parameters (Dcol ,
Dprim,out, NXP and Dcas).

• Comparisons with experimental and numerical data show that the ANN can provide
better accuracy over a wide range of data.

This study verifies the feasibility of using ANN models for predicting the performance
and operation of ANN ejectors. Different from usual thermodynamic models, the ANN
does not make any simplifications about the flow behavior and can be trained to cover a
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wide range of working fluids, working conditions, and ejector dimensions. Nonetheless,
constructing and preparing the database can be time-consuming and difficult to achieve
for very specific situations. Further research in this area should be aimed toward a more
efficient way of constructing the models and include more complex ejector configurations,
such as two-phase ejectors, other ejector-based refrigeration cycles, and refrigeration cycle
parameters, such as the COP and the cooling load.
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