Next Issue
Volume 3, June
Previous Issue
Volume 2, December
 
 

Thermo, Volume 3, Issue 1 (March 2023) – 12 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 3545 KiB  
Article
Experimental Work on Salt-Based Cooling Systems
by Damian Park, Isye Hayatina, Mohammed Farid and Amar Auckaili
Thermo 2023, 3(1), 200-215; https://doi.org/10.3390/thermo3010012 - 22 Mar 2023
Cited by 1 | Viewed by 2048
Abstract
The energy consumption for space cooling is progressively increasing. Integrating renewable energy into space cooling systems is critical for reducing CO2 emissions from the building sector. The salt-based cooling system is an appealing alternative as it can be charged by solar energy. [...] Read more.
The energy consumption for space cooling is progressively increasing. Integrating renewable energy into space cooling systems is critical for reducing CO2 emissions from the building sector. The salt-based cooling system is an appealing alternative as it can be charged by solar energy. This system is based on the characteristic of endothermic salts, which generate a considerable cooling effect when dissolved in water. A screening test was performed in this work to evaluate the cooling performance of several endothermic salts. Furthermore, a laboratory-scale system was developed to demonstrate the endothermic salt-based thermal storage and cooling generation system. Temperature decreases up to 12.3 °C were observed in the system containing Potassium Chloride salt. The temperature drop was maintained after the system underwent a charging/discharging cycle; however, the cooling period was shortened. The system demonstrated an inherent low efficiency due to the large volume of water required in the discharging phase, demanding a considerable amount of energy to evaporate the water in the charging phase. As a result, the application of this system will be restricted to the usage of low-grade energy during the charging phase. Full article
(This article belongs to the Special Issue Advances in PCMs as Thermal Energy Storage in Energy Systems)
Show Figures

Figure 1

24 pages, 5910 KiB  
Article
Optimal Location of the Active Thermal Insulation Layer in the Building Envelope
by Barbara Król and Krzysztof Kupiec
Thermo 2023, 3(1), 176-199; https://doi.org/10.3390/thermo3010011 - 08 Feb 2023
Viewed by 1500
Abstract
One of the modern methods of protecting against building heat losses is active thermal insulation (ATI). In winter conditions, ATI works by supplying heat into the envelope, which increases the temperature in the ATI layer. A low-temperature renewable energy medium feeds the active [...] Read more.
One of the modern methods of protecting against building heat losses is active thermal insulation (ATI). In winter conditions, ATI works by supplying heat into the envelope, which increases the temperature in the ATI layer. A low-temperature renewable energy medium feeds the active insulation layer directly, e.g., through solar or geothermal energy. A model for heat transfer through the building envelope with an ATI layer was developed. The numerical simulations verified the simplifying assumptions in the model. A relationship was derived to determine the optimal location of the ATI layer in the envelope. The objective function of the summed costs of the thermal energy supplied to the internal space and the envelope was assumed. We took into account the fact that the unit price of energy supplied to the ATI layer is lower than the price of the energy supplied to the internal space. Based on the results of the measurements carried out in a building facility with the ATI layer installed, the actual savings effects due to the ATI layer were compared to the calculated values. Full article
Show Figures

Figure 1

28 pages, 569 KiB  
Article
Natural Convection Heat Transfer from an Isothermal Plate
by Aubrey Jaffer
Thermo 2023, 3(1), 148-175; https://doi.org/10.3390/thermo3010010 - 03 Feb 2023
Cited by 4 | Viewed by 3223
Abstract
Using boundary-layer theory, natural convection heat transfer formulas that are accurate over a wide range of Rayleigh numbers (Ra) were developed in the 1970s and 1980s for vertical and downward-facing plates. A comprehensive formula for upward-facing plates remained unsolved because they [...] Read more.
Using boundary-layer theory, natural convection heat transfer formulas that are accurate over a wide range of Rayleigh numbers (Ra) were developed in the 1970s and 1980s for vertical and downward-facing plates. A comprehensive formula for upward-facing plates remained unsolved because they do not form conventional boundary-layers. From the thermodynamic constraints on heat-engine efficiency, the novel approach presented here derives formulas for natural convection heat transfer from isothermal plates. The union of four peer-reviewed data-sets spanning 1<Ra<1012 has 5.4% root-mean-squared relative error (RMSRE) from the new upward-facing heat transfer formula. Applied to downward-facing plates, this novel approach outperforms the Schulenberg (1985) formula’s 4.6% RMSRE with 3.8% on four peer-reviewed data-sets spanning 106<Ra<1012. The introduction of the harmonic mean as the characteristic length metric for vertical and downward-facing plates extends those rectangular plate formulas to other convex shapes, achieving 3.8% RMSRE on vertical disk convection from Hassani and Hollands (1987) and 3.2% from Kobus and Wedekind (1995). Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2022)
Show Figures

Figure 1

21 pages, 6456 KiB  
Review
Review of the State of the Art for Radial Rotating Heat Pipe Technology Potentially Applicable to Gas Turbine Cooling
by Zhao Wang, Ali Turan and Timothy Craft
Thermo 2023, 3(1), 127-147; https://doi.org/10.3390/thermo3010009 - 03 Feb 2023
Cited by 1 | Viewed by 1567
Abstract
Improvements in the efficiency of gas turbine engines over the decades have led to increasing turbine inlet temperatures. This, in turn, has resulted in the need to cool the turbine blades themselves to avoid damage to them. While air-cooling and film-cooling methods have [...] Read more.
Improvements in the efficiency of gas turbine engines over the decades have led to increasing turbine inlet temperatures. This, in turn, has resulted in the need to cool the turbine blades themselves to avoid damage to them. While air-cooling and film-cooling methods have been adopted as the primary methods of gas turbine blade cooling, the heat pipe cooling method shows greater potential in terms of temperature uniformity, maximum allowable gas temperature, reliability, and durability. This paper reviews the state-of-the-art research activities on the radial rotating heat pipes (RRHP) potentially applicable to gas turbine cooling. The emergence of the heat-pipe-cooled turbine blade concept, designs, and variants will be described at the beginning. Then the paper will review the literature addressing the heat transfer performance of RRHPs, and the effects on them of rotational forces, working fluid properties, and geometry, as well as operational limits they may be subject to. Additionally, the effects of secondary flow and numerical simulation of RRHPs will be reviewed and discussed. It can be concluded that fundamental studies are still needed for the understanding of the RRHP, as well as the improvement of numerical models. Full article
Show Figures

Figure 1

23 pages, 4769 KiB  
Review
Comprehensive Review of Compressed Air Energy Storage (CAES) Technologies
by Ayah Marwan Rabi, Jovana Radulovic and James M. Buick
Thermo 2023, 3(1), 104-126; https://doi.org/10.3390/thermo3010008 - 29 Jan 2023
Cited by 17 | Viewed by 12465
Abstract
As renewable energy production is intermittent, its application creates uncertainty in the level of supply. As a result, integrating an energy storage system (ESS) into renewable energy systems could be an effective strategy to provide energy systems with economic, technical, and environmental benefits. [...] Read more.
As renewable energy production is intermittent, its application creates uncertainty in the level of supply. As a result, integrating an energy storage system (ESS) into renewable energy systems could be an effective strategy to provide energy systems with economic, technical, and environmental benefits. Compressed Air Energy Storage (CAES) has been realized in a variety of ways over the past decades. As a mechanical energy storage system, CAES has demonstrated its clear potential amongst all energy storage systems in terms of clean storage medium, high lifetime scalability, low self-discharge, long discharge times, relatively low capital costs, and high durability. However, its main drawbacks are its long response time, low depth of discharge, and low roundtrip efficiency (RTE). This paper provides a comprehensive review of CAES concepts and compressed air storage (CAS) options, indicating their individual strengths and weaknesses. In addition, the paper provides a comprehensive reference for planning and integrating different types of CAES into energy systems. Finally, the limitations and future perspectives of CAES are discussed. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2022)
Show Figures

Figure 1

8 pages, 1889 KiB  
Article
Heat Capacity of Solid Halide Eutectics and Their Enthalpy at Melting Point
by Alexander Redkin, Iraida Korzun, Tatyana Yaroslavtseva, Olga Reznitskikh, Yuriy Zaikov, Sergeiy Kumkov and Anna Kodintseva
Thermo 2023, 3(1), 96-103; https://doi.org/10.3390/thermo3010007 - 18 Jan 2023
Cited by 1 | Viewed by 1582
Abstract
The isobaric heat capacity of solid eutectic mixtures LiCl-KCl-CsCl, LiBr-CsBr and LiBr-KBr-CsBr was investigated from room temperature up to melting point. The molar heat capacity of all mixtures under study was found to be close to the additive sum of that of pure [...] Read more.
The isobaric heat capacity of solid eutectic mixtures LiCl-KCl-CsCl, LiBr-CsBr and LiBr-KBr-CsBr was investigated from room temperature up to melting point. The molar heat capacity of all mixtures under study was found to be close to the additive sum of that of pure salts. The heat accumulated up to melting temperature is directly dependent on the melting point. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2022)
Show Figures

Figure 1

2 pages, 163 KiB  
Editorial
Acknowledgment to the Reviewers of Thermo in 2022
by Thermo Editorial Office
Thermo 2023, 3(1), 94-95; https://doi.org/10.3390/thermo3010006 - 18 Jan 2023
Viewed by 614
Abstract
High-quality academic publishing is built on rigorous peer review [...] Full article
18 pages, 4243 KiB  
Article
A 2D Moving Mesh Finite Element Analysis of Heat Transfer in Arctic Soils
by Michelle Wilber and Getu Hailu
Thermo 2023, 3(1), 76-93; https://doi.org/10.3390/thermo3010005 - 17 Jan 2023
Viewed by 1262
Abstract
Accurate soil heat transfer models are needed to predict and adapt to a warming arctic. A numerical model to accurately predict temperatures and thaw depths in soils, both with depth and with horizontal distance from features such as cliffs, was developed in Matlab [...] Read more.
Accurate soil heat transfer models are needed to predict and adapt to a warming arctic. A numerical model to accurately predict temperatures and thaw depths in soils, both with depth and with horizontal distance from features such as cliffs, was developed in Matlab using the finite element method. The model was validated against analytical solutions to simple versions of the problem and experimental temperature data from borehole thermistor strings on the north shore of Alaska. The current model is most useful for short term (on the order of days) predictions of thaw depth and near surface temperatures in homogeneous soils with existing data to allow the calibration of soil thermal parameters. These are exactly the time scales and capabilities that would integrate well with erosional models to predict the erosion during storm events and summer thaw conditions. Comparisons with analytical solutions show the model to be fairly accurate in predictions of temperatures thaw-depth and temperatures, within about 0.25 °C and 0.02 m respectively, for reasonable arctic soil parameters. Differences between predicted temperatures and thaw-depth against borehole data from Barter Island, Alaska are within about 1 °C and 0.5 m respectively. Comparison to commercial software, which does not directly track and move the phase change boundary, shows that this moving-mesh model has much better agreement. The model developed in this work is flexible and can be modified to model a wide variety of problems, but is efficiently set up to take a surface and thaw-boundary profile (not necessarily horizontal) and use soil parameters and surface boundary conditions appropriate to Arctic regions. It has been verified to appropriately model cliffs, which are particularly vulnerable to erosion. Full article
Show Figures

Figure 1

10 pages, 1845 KiB  
Article
Thermochemical Evaluation of Different Waste Biomasses (Citrus Peels, Aromatic Herbs, and Poultry Feathers) towards Their Use for Energy Production
by Elena Pulidori, José Gonzalez-Rivera, Chiara Pelosi, Carlo Ferrari, Luca Bernazzani, Emilia Bramanti, Maria Rosaria Tiné and Celia Duce
Thermo 2023, 3(1), 66-75; https://doi.org/10.3390/thermo3010004 - 10 Jan 2023
Cited by 5 | Viewed by 1563
Abstract
The biomass waste obtained at the end-of-pipe of the extraction industry can be used as fuel for energy production, aiming at cost reduction/waste disposal issues. However, few systematic investigations into the calorific value of these residues are reported in the literature. In this [...] Read more.
The biomass waste obtained at the end-of-pipe of the extraction industry can be used as fuel for energy production, aiming at cost reduction/waste disposal issues. However, few systematic investigations into the calorific value of these residues are reported in the literature. In this work, the thermochemical properties of solid residues from different biomasses (residues from citrus peels, leaves, flowers, stems, and poultry feathers used for extraction) as potential biomass fuels have been investigated. The heat of combustion (ΔcH) of the solid residues from citrus (orange, tangerine, lemon, grapefruit, and pomelo), aromatic herbs (rosemary, lavender, thyme, Artemisia vulgaris L. and Ruta chalepensis L.), and poultry feathers biomasses was measured by direct calorimetry. The results were compared with the higher heating values (HHV) calculated using the elemental (CHNOS) and thermogravimetric (TGA) analyses data and with the enthalpy of combustion calculated using the biomass composition predicted by FTIR spectroscopy in tandem with chemometrics. The calculated values match with the corresponding experimental values of ΔcH. The heat of combustion highlights the energetic features of solid residues for their potential uses as alternative biomass for energy production. This information is essential to evaluate the employment of solid residues as fossil fuel substitutes. Full article
Show Figures

Figure 1

28 pages, 3698 KiB  
Review
Wall Insulation Materials in Different Climate Zones: A Review on Challenges and Opportunities of Available Alternatives
by Yitong Dong, Jiashu Kong, Seyedmostafa Mousavi, Behzad Rismanchi and Pow-Seng Yap
Thermo 2023, 3(1), 38-65; https://doi.org/10.3390/thermo3010003 - 06 Jan 2023
Cited by 10 | Viewed by 8694
Abstract
Buildings account for nearly one-third of overall energy consumption in today’s world energy status, in which a considerable part is used for indoor conditioning. Energy efficiency enhancement of buildings components and technologies is a key priority, given the essential need for carbon neutrality [...] Read more.
Buildings account for nearly one-third of overall energy consumption in today’s world energy status, in which a considerable part is used for indoor conditioning. Energy efficiency enhancement of buildings components and technologies is a key priority, given the essential need for carbon neutrality and climate change mitigation around the world. Exterior wall insulation is considered as the most effective technology for protecting buildings against continual ambient fluctuations. Proper design and implementation of wall insulation would lead to performance enhancement, energy conservation as well as improved thermal comfort. They can also protect building structures against corrosion and heat fatigue, extending the life of buildings. There are many different types of thermal insulation materials currently on the market, each with its own set of thermal qualities and functionality. This paper aims to examine the qualities, benefits, and drawbacks of several exterior wall insulation technologies, and provide recommendations for how to use various forms of exterior wall insulation in different climates. Full article
(This article belongs to the Special Issue Advances in PCMs as Thermal Energy Storage in Energy Systems)
Show Figures

Figure 1

17 pages, 3573 KiB  
Article
The Influence of Plant Extract on the Phase Equilibrium of Structure I Gas Hydrate in a Simulated Offshore Environment
by Virtue Urunwo Wachikwu-Elechi, Sunday Sunday Ikiensikimama and Joseph Atubokiki Ajienka
Thermo 2023, 3(1), 21-37; https://doi.org/10.3390/thermo3010002 - 30 Dec 2022
Viewed by 1612
Abstract
Gas hydrate inhibitors, especially those used in offshore environments, are chemicals. These chemicals are synthetic in nature and pose both technical and environmental risks. This study emphasizes the influence of a Plant Extract (PE) on the phase behavior and equilibrium of structure I [...] Read more.
Gas hydrate inhibitors, especially those used in offshore environments, are chemicals. These chemicals are synthetic in nature and pose both technical and environmental risks. This study emphasizes the influence of a Plant Extract (PE) on the phase behavior and equilibrium of structure I (SI) gas hydrate and its inhibition efficiency. The PE was screened using a mini flow loop. From the pressure-temperature phase diagram, the various weight percentages of the PE were able to disrupt the thermodynamic equilibrium conditions of the water and gas molecules to lower temperatures and increase pressures, which caused a shift in the equilibrium curve to an unstable hydrate formation zone. The pressure versus time plot as well as the inhibition efficiency plots for the PE and Mono Ethylene Glycol (MEG) were evaluated. Overall, the inhibition efficiency of the PE was higher than that of MEG for 1 wt% (60.53%) and 2 wt% (55.26%) but had the same efficiency at 3 wt% (73.68%). The PE at 1 wt% had the greatest inhibition effect and adjudged the optimum weight percent with a well-regulated phase equilibrium curve. This shows that PE is a better gas hydrate inhibitor than MEG, which is toxic to both human and aquatic life; therefore, it is recommended for field trials. Full article
(This article belongs to the Special Issue Vapor–Liquid Equilibrium and Chemical Thermodynamics)
Show Figures

Graphical abstract

20 pages, 2358 KiB  
Article
Prediction of Performance and Geometrical Parameters of Single-Phase Ejectors Using Artificial Neural Networks
by Mehdi Bencharif, Sergio Croquer, Yu Fang, Sébastien Poncet, Hakim Nesreddine and Said Zid
Thermo 2023, 3(1), 1-20; https://doi.org/10.3390/thermo3010001 - 28 Dec 2022
Cited by 2 | Viewed by 1764
Abstract
Ejectors have gained renewed interest in the last decades, especially in heat-driven refrigeration systems, to reduce the load of the compressor. Their performance is usually influenced by many factors, including the working fluid, operating conditions and basic geometrical parameters. Determining the relationships between [...] Read more.
Ejectors have gained renewed interest in the last decades, especially in heat-driven refrigeration systems, to reduce the load of the compressor. Their performance is usually influenced by many factors, including the working fluid, operating conditions and basic geometrical parameters. Determining the relationships between these factors and accurately predicting ejector performance over a wide range of conditions remain challenging. The objective of this study is to develop fast and efficient models for the design and operation of ejectors using artificial neural networks. To this end, two models are built. The first one predicts the entrainment and limiting compression ratio given 12 input parameters, including the operating conditions and geometry. The second model predicts the optimal geometry given the desired performance and operating conditions. An experimental database of ejectors using five working fluids (R134a, R245fa, R141b, and R1234ze(E), R1233zd(E)) has been built for training and validation. The accuracy of the ANN models is assessed in terms of the linear coefficient of correlation (R) and the mean squared error (MSE). The obtained results after training for both cases show a maximum MSE of less than 10% and a regression coefficient (R) of, respectively, 0.99 and 0.96 when tested on new data. The two models have then a good generalization capacity and can be used for design purposes of future refrigeration systems. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2022)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop