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Abstract: The study of heat transfer in ground heat exchangers (GHEs) considering the fluid advection
inside the pipes; the heat transfer between the fluid and the ground through the grout material;
and the thermal interaction between GHEs is a challenging task. The present paper presents a new
semi-analytical method that takes into account the aforementioned effects to consider both the short-
to long-term effects of GHEs. The heat transfer between the fluid and grout was studied by a transient
multipole expansion considering time-dependent fluid temperatures and an advection model for
the pipes obtained from an energy balance on the heat carrier fluid. Thermal interactions were
analyzed using an equivalent borehole method while penalizing the transient multipole expansion
to include thermal interaction effects. Validation of the short-term predictions was performed by
comparing the proposed model to experimental data found in the literature and to an FEA model. The
proposed model was then compared with a FEA model in long-term simulations of a geothermal field
comprised of 24 GHEs for multi-annual simulation. The method resulted in substantial reduction in
computational time while preserving good accuracy when compared with the FEA model.

Keywords: ground-coupled heat pumps; ground heat exchangers; transient multipole expansion;
equivalent boreholes; thermal interactions

1. Introduction

One of the renewable energy sources that has been growing steadily worldwide in
the last decade is geothermal energy [1]. Ground coupled heat pump (GCHP) systems are
among the most efficient geothermal systems used for heating and cooling buildings [2].
GCHP systems consist of one (or several) heat pump that supplies heating or cooling to a
building through the ground via ground heat exchangers (GHEs). GHEs are a core part of
the GCHP system and consist of boreholes containing one or several U-tubes through which
a heat-carrier fluid flows, and it is backfilled with grout material. In each of the GCHP
design, control and operation phases, it is necessary to understand the heat transfer process
between not only one but several GHEs. For instance, meeting the energy demands of a
building requires that the GHEs are adequately sized so that returning fluid temperatures
remain within the operating bounds of the GCHP system. Fluid temperature variations
can be predicted from a model of the heat transfer between the fluid and the soil given
ground thermal loads, accounting for possible thermal interactions between GHEs located
in close proximity. Thus, improvements in the accuracy of heat transfer models lead to
improvements in the accuracy of the design of GHEs.

Heat transfer phenomena are studied on different time scales, from short-term to
long-term effects. Short-term effects are due to the flow of the fluid inside the U-tube
coupled with the heat conduction between the pipes and the grout. At this time scale that
ranges from minutes to a few hours, the thermal capacity of the grout decreases the rate
of heat propagation between the fluid and the soil, and not taking this phenomenon into
account can lead to an overestimation of the fluid temperatures [3]. The short-term effects
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end when quasi-steady conditions are reached inside the GHE, i.e., when temperature
gradients are constant under a constant ground load. Long-term effects, spanning days to
hundreds of years, include thermal interactions between boreholes and axial heat transfer
effects due to interaction with the surface and the ground below the GHEs. It is necessary
to consider both the short- and long-term effects to properly design a field of GHEs and
ensure proper operation of a GCHP system throughout its life cycle [4].

Long-term heat transfer outside GHEs is studied both analytically and numerically.
The well-known classical analytical solutions correspond to the infinite line source (ILS) [5]
and the cylindrical heat source (CHS) [6]. Analytical solutions can be superimposed in
time and space to consider variable ground loads and thermal interactions between GHEs.
An important limitation of these classical solutions is that they cannot represent axial
effects. Eskilson [7] solved the tridimensional heat transfer problem using a finite difference
method. GHEs were represented as hollow cylinders with uniform and equal—but time-
varying—temperatures. The model was used to produce dimensionless unit-step response
functions, called g-functions, that give the relation between the borehole wall temperature
and the heat extraction rates. Like analytical solutions, g-functions can be superimposed
on time to consider variable ground loads. The g-function is defined by:

Tb(t) = T0 − Q
2πksLNb

g(t) (1)

where Tb is the borehole wall temperature, T0 is the undisturbed ground temperature, ks
is the thermal conductivity, Q is the total heat extraction rate into the borefield, L is the
borehole length and Nb is the number of boreholes.

Eskilson [7] proposed the analytical finite line source (FLS) to estimate the g-function
of a single borehole. The FLS was later superimposed on space to evaluate g-functions
of fields of GHEs [8–10]. For larger fields, the FLS can lead to important errors in the
g-functions due to a mismatch of the boundary conditions at the borehole wall between
the FLS (uniform and equal heat extraction rates) and the g-functions (uniform and equal
temperatures). These errors can be eliminated by discretizing the GHEs to consider the
variation in heat extraction rates along the lengths of GHEs and their variations in time
to reproduce the uniform temperature condition of Eskilson [11,12]. In reality, neither the
heat extraction rates nor the borehole wall temperatures are uniform along the lengths
of the boreholes, since heat transfer is driven by the temperature difference between the
fluid and the borehole wall. A more proper boundary condition is that of an imposed
inlet fluid temperature, considering the internal thermal resistances of the boreholes and
the piping connections between them [13–15]. The g-functions—and thus the returning
fluid temperatures—are dependent on the borehole thermal resistances and the fluid
mass flow rate. Spatial and temporal superposition of the FLS solution are also used for
network-based models that study, at every time step, the complete distribution of the
borehole wall temperatures considering the hydraulic connections between GHEs [16–18].
The computational requirements of analytical models increase as the complexity of the
boundary condition increases. In the case of the imposed inlet fluid temperature, a system
of equations must be built and solved to evaluate heat extraction rate profiles and borehole
wall temperature profiles along all GHEs in the field. Prieto and Cimmino [19] proposed
a method to limit the sizes of the systems of equations by forming groups of similarly
behaving boreholes and modeling each of these groups using a single equivalent borehole.
This results in an efficient and robust method that allows the study of geothermal fields
composed of thousands of GHEs.

Knowing that internal configurations have a direct impact on the thermal interac-
tions among boreholes and the long-term responses of GHEs, some researchers have
coupled short-terms models with long-term models to conduct simulations. Yavuzturk
and Spitler [20] were the first to introduce an extension of the g-function considering short
time steps while including thermal capacity inside the GHE but disregarding the thermal
capacity in the fluid. Later, Xu and Spitler [21], based on the work from Yavuzturk and
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Spitler [20], developed a one-dimensional model using a finite volume method, where
the fluid is considered as an annular volume within the pipe, along with an equivalent
thermal capacity. Brussieux and Bernier [22] coupled a finite volume method for the interior
of a GHE with the CHS solution for the exterior of a GHE, resulting in the definition of
g∗-functions for short-term effects. Claesson and Javed [8] coupled an equivalent geometry
model for the interior of the GHE [23] and used the FLS solution to study thermal inter-
actions between the GHEs. Li et al. [24] used the analytical infinite composite-medium
line source (ICMLS) [25] to model the insides of GHEs and the g-functions to account for
thermal interactions among GHEs. In all aforementioned cases, despite the coupling of the
short- to long-term solutions, the methods do not consider the advection inside the pipes
and consider that all the GHEs have the same borehole wall temperature, which is not the
case, as demonstrated by Cimmino [13] and Monzó et al. [26]. Pasquier and Marcotte [27]
developed a response model based on a thermal resistance and capacitances (TRC) method
to generate the thermal response factor of a GHE and estimate the fluid temperatures.
Laferrière et al. [28] considered the axially-discretized thermal resistances and capacitances
(TRC) model of Bauer et al. [29] coupled to an advection model and to g-functions, using a
single uniform temperature at the wall of a GHE that represents the entire bore field. Re-
cently, Alaie et al. [30] developed a solution based on the TRC method proposed by Minaei
and Maerefat [31] and the segment-to-segment response factors proposed by Cimmino
and Bernier [12] to consider both short- to long-term responses. As opposed to the earlier
methods, their method does not consider that borehole wall temperatures are the same
for all GHEs and thus achieves better representations of the distribution of heat extraction
rates and temperatures within the field of GHEs. Additionally, there exist mesh-dependent
approaches, such as those of Al-Khoury and Bonnier [32] and Diersch et al. [33,34], which
are able to impose many boundary conditions and use many arrangements of GHEs; how-
ever, these methods are computationally demanding when considering multiple boreholes
and including short- to long-term effects.

Axially-discretized methods become computationally demanding when very large
fields of GHEs are considered. Thus, there is a need for accurate and computationally-
efficient models that consider short-term effects, including advection in the pipes, and are
able to simulate not only a single GHE but thousands. Coupled short- and long-term models
can also benefit from recent advancements in short-term models, such as the transient
multipole methods. Rivero and Hermanns [35] proposed a solution by means of matched
asymptotic expansion to evaluate the thermal resistances in a spectral domain. Prieto and
Cimmino [36] developed a transient multipole expansion to describe the variations in fluid,
pipe and borehole wall temperatures in the time domain. In both approaches, the fluid
thermal capacity and the advection of the fluid through the pipes are not taken into account.

This paper introduces a new methodology to study the transient heat transfer for
both the interiors and exteriors of GHEs, considering fluid flow inside the pipes, fluid-
to-soil heat conduction via grout, thermal interactions among GHEs and axial effects.
The equivalent borehole method of Prieto and Cimmino [19] is used to model the exteriors
of the GHEs, including thermal interactions between GHEs. The transient multipole
method of Prieto and Cimmino [36] is used to model the interiors of the GHEs, including
temperature penalization to account for thermal interactions. A finite difference model
of fluid advection inside the pipes is used to consider the axial distributions of fluid
temperatures and heat extraction rates. The model was first compared against the sandbox
test of Beier et al. [37] to validate the accuracy of the short-term response, and then against
a multi-annual simulation of a thermally interacting field of 24 boreholes using a finite
element analysis (FEA) solver based on Diersch et al. [33,34] to show that the method is able
to include both short-term effects and thermal interactions between boreholes for larger
periods of time.
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2. Mathematical Model

Figure 1 shows a borefield composed of Nb = 2 vertical GHEs, i and j, of the same
dimensions and separated by a horizontal distance rij. All GHEs are connected in parallel
and are fed a heat carrier fluid at the same inlet temperature and mass flow rate. Each
GHE is composed of a single U-tube (although the presented model can be extended to
any U-tube configuration). The geometrical parameters are the same for each GHE and
include: the borehole length L, the buried depth D, the borehole radius rb, the pipe outer
radius rp with wall thickness th and the U-tube shank spacing e. The thermal properties are
considered homogeneous, isotropic and constant. kb and ks are the thermal conductivities
(k) of the grout (b) and soil (s), respectively. αb and αs are the thermal diffusivities (α) of the
grout and soil, respectively.

Figure 1. Field of 2 vertical boreholes of equal dimensions.

The horizontal conduction heat transfer inside the GHE is studied in a transient state
using the transient multipole expansion method developed by Prieto and Cimmino [36].
This solution is extended to consider time-dependent fluid temperatures inside the U-tube
by means of a coefficient updating scheme. The radial and axial heat conduction in the soil
around GHEs, and the interactions between GHEs, are modeled with the FLS solution by
considering thermal interactions between equivalent boreholes as proposed by Prieto and
Cimmino [19]. The transient multipole method is coupled to the FLS solution to consider
both of the short- and long-term effects around GHEs, and to a discretized finite difference
model of the advection heat transfer process inside the U-tubes. The proposed model was
compared to a finite element analysis (FEA) model, based on the methodology developed
by Diersch et al. [33,34], with specific modifications to ensure solution stability, as will be
discussed in Section 2.4.

2.1. 2D Transient Heat Transfer with Time-Dependent Fluid Temperatures
2.1.1. Transient Multipole Expansion

The short-term transient heat transfer problem in the local vicinity of a GHE j is
modeled in 2D for a horizontal cross-section of the GHE, considering conduction in the
grout (Ωb) and the soil (Ωs). The heat transfer problem relies on the transformation of
coordinates based on geometrical characteristics of the GHE; thus, a point x = (ρ, φ)



Thermo 2022, 2 175

in the 2D-polar space could be expressed at any center Ok with translated coordinates
xk = (ρk, φk), as shown in Figure 2. The combination of the convection from the fluid to the
pipe inner surfaces and the conduction across the pipes is represented as Robin boundary
conditions at the pipe outer surfaces ∂Ωk (at a radius ρk = rk from a pipe axis). The thermal
capacitance of the pipes is neglected.

Figure 2. Computational domain of a GHE.

The temperature at a far-field boundary ∂Ωe (at re → ∞) is considered constant and
equal to the undisturbed ground temperature T0. For constant fluid temperatures Tfk ,j

inside N arbitrary positioned pipes and a uniform initial temperature T0 in the grout and
soil (i.e., in Ωb ∪Ωs), the transient heat transfer problem in radial coordinates (ρ, φ) is
given by:

1
αd

∂Td,j

∂t
= ∇2Td,j in Ωb ∪Ωs (2a)

− βkrk
∂T1,j

∂ρk

∣∣∣∣
rk

+ T1,j = Tfk ,j on ∂Ωk, k = 1, . . . , N (2b)

−kb
∂T1,j

∂ρ0

∣∣∣∣
rb

= −ks
∂T2,j

∂ρ0

∣∣∣∣
rb

on ∂Ωb (2c)

T1,j
∣∣
rb
= T2,j

∣∣
rb

on ∂Ωb (2d)

T2,j(re, φ, t)
∣∣
re→∞ = T0 on ∂Ωe (2e)

Td,j(ρ, φ, 0) = T0 in Ωb ∪Ωs (2f)

where αd is equal to the thermal diffusivity in the grout or soil (αb and αs) for indices
d = 1, 2, respectively; βk = 2πkbRk is the dimensionless fluid to outer pipe wall thermal
resistance of pipe k; and Rk is the fluid to outer pipe wall thermal resistance. Tfk ,j is the
fluid temperature at pipe k in a GHE j.

Following the method of Prieto and Cimmino [36], the transient heat transfer problem
with non-homogeneous boundary conditions for Td,j is separated into two sub-problems: a
transient heat transfer problem with homogeneous boundary conditions for Tdh ,j, and a
steady-state heat transfer problem with non-homogeneous conditions for Tdss ,j. The com-
plete solution is then given by superposition, with Td,j = Tdh ,j + Tdss ,j.
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The homogeneous transient heat transfer problem is then:

1
αd

∂Tdh ,j

∂t
= ∇2Tdh ,j in Ωb ∪Ωs (3a)

− βkrk
∂T1h ,j

∂ρk

∣∣∣∣
rk

+ T1h ,j = 0 on ∂Ωk, k = 1, . . . , N (3b)

−kb
∂T1h ,j

∂ρ0

∣∣∣∣
rb

= −ks
∂T2h ,j

∂ρ0

∣∣∣∣
rb

on ∂Ωb (3c)

T1h ,j
∣∣
rb
= T2h ,j

∣∣
rb

on ∂Ωb (3d)

T2h ,j(re, φ, t)
∣∣
re→∞ = 0 on ∂Ωe (3e)

Tdh ,j(ρ, φ, 0) = T0 − Tdss ,j in Ωb ∪Ωs (3f)

The non-homogeneous steady-state heat transfer problem is given by:

∇2Tdss ,j = 0 in Ωb ∪Ωs (4a)

− βkrk
∂T1ss ,j

∂ρk

∣∣∣∣
rk

+ T1ss ,j = Tfk ,j on ∂Ωk, k = 1, . . . , N (4b)

−kb
∂T1ss ,j

∂ρ0

∣∣∣∣
rb

= −ks
∂T2ss ,j

∂ρ0

∣∣∣∣
rb

on ∂Ωb (4c)

T1ss .j
∣∣
rb
= T2ss ,j

∣∣
rb

on ∂Ωb (4d)

T2ss ,j(re, φ)
∣∣
re→∞ = T0 on ∂Ωe (4e)

The solution to the homogeneous transient heat transfer problem is obtained by means
of separation of variables and expressed as a Fourier–Bessel expansion:

Tdh ,j(x, t) =
∞

∑
w=1

Cw,jXd,j(x; λw
d,j)e

−(λw
d,j)

2αdt (5)

where λw
d,j is the w-eigenvalue associated with the separation of variables sub-problem

for each domain d satisfying the continuity condition λ2,j = λ1,j
√

αb/αs for a GHE j.
Xd,j(x; λw

d,j) are the quasi-orthogonal eigenfunctions related to the eigenvalue λw
d,j for each

domain d in GHE j.
For the grout domain (d = 1), containing N arbitrarily positioned pipes, the quasi-

orthogonal eigenfunction is expressed as follows:

X1,j(x; λw
1,j) =

M

∑
l=−M

γ0
l,j Jl(λ

w
1,jρ0)eilφ0 +

N

∑
k=1

M

∑
l=−M

γk
l,jH

(1)
l (λw

1,jρk)eilφk (6)

and for the soil domain (d = 2):

X2,j(x; λw
2,j) =

M

∑
l=−M

δ0
l,j H

(1)
l (λw

2,jρ0)eimφ0 (7)

where J and H(1) are Bessel and Hankel functions of the first kind; M is the number of
terms of the multipole expansion; and γ0

l,j, γk
l.j and δ0

l,j are coefficients introduced to match
the boundary conditions in Equations (3b)–(3e). Cm,j are the Fourier–Bessel coefficients
satisfying the initial condition (Equation (3f)) and are given by:

Cm,j =

kb
αb

∫
Ωb

(T0 − T1ss ,j)X̄1dΩ + ks
αs

∫
Ωs
(T0 − T2ss ,j)X̄2dΩ

kb
αb

∫
Ωb

X1,jX̄1,jdΩ + ks
αs

∫
Ωs

X2,jX̄2,jdΩ
(8)
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The solution to the non-homogeneous steady-state heat transfer problem defined in
Equation (4) is treated as a multipole expansion for a T-complete basis. For the grout domain
(d = 1), containing N arbitrarily positioned pipes, the solution is expressed as follows:

T1ss ,j(x) =α0,j +
h

∑
m=1

[
αm,j

(
ρ0

rmax

)m
cos(mφ0) + βm,j

(
ρ0

rmax

)m
sin(mφ0)

]

+
N

∑
l=1

{
γl

0,j ln ρl +
h

∑
m=1

[
γl

m,j

(
ρl

rmin

)−m
cos(mφl) + δl

m,j

(
ρl

rmin

)−m
sin(mφl)

]} (9)

and for the soil domain (d = 2):

T2ss ,j(x) =α′0,j +
h

∑
m=1

[
α′m,j

(
ρ0

re

)m
cos(mφ0) + β′m,j

(
ρ0

re

)m
sin(mφ0)

]

γ′0,j ln ρ0 +
h

∑
m=1

[
γ′m,j

(
ρ0

rmin

)−m
cos(mφ0) + δ′m,j

(
ρ0

rmin

)−m
sin(mφ0)

] (10)

where rmin = min
i∈{1,...,N}

ri is the minimum external radius of the pipes; rmax ≥ rb is an

arbitrary radius and is equal to rb; and h is the number of terms in the complete expan-
sion. Similarly to multipole expansion for the quasi-orthogonal eigenfunctions, terms
αm,j, βm,j, γl

m,j, γ′m,j, δl
m,j and δ′m,j are determined by matching the boundary conditions in

Equations (4b)–(4e). According to Prieto and Cimmino [36], the values of α0,j = T0 and γ′0,j,
α′m,j and βm,j are set to 0. Here, the authors note that, for the present method, keeping all
terms expressed in Equation (10) stabilizes the integration in Equation (8), where terms γ′0,j
and α′m,j, βm,j are small when matching the far-field boundary with re = 100 m. For more
details concerning the evaluation of eigenvalues and coefficients to match the boundary
conditions in both problems, readers are referred to Prieto and Cimmino [36].

2.1.2. Time-Dependent Fluid Temperatures

Prieto and Cimmino [36] introduced a coefficient updating scheme to consider the
variations in fluid temperatures as step-wise variations at each time step n for every
t(n−1) < t ≤ tn (where tn = t(n−1) + ∆t). The initial temperatures in Equations (3f) and (8)
are replaced by the temperature at the end of the latest time step as follows:

T(n−1)
1,j (x) =

∞

∑
w=1

C(n−1)
w,j X1,j(x; λw

1,j)e
−(λw

1,j)
2αb∆t

+ T(n−1)
1ss ,j (11a)

T(n−1)
2,j (x) =

∞

∑
w=1

C(n−1)
w,j X2,j(x; λw

2,j)e
−(λw

2,j)
2αs∆t

+ T(n−1)
2ss ,j (11b)

Therefore, the Fourier–Bessel coefficients are calculated using this scheme at each
time step:

Cn
m,j =

kb
αb

I(n−1)
1m,j + ks

αs
I(n−1)
2m,j

kb
αb

∫
Ωb

X1,jX̄1,jdΩ + ks
αs

∫
Ωs

X2,jX̄2,jdΩ
(12)

with

I(n−1)
1m,j =

∫
Ωb

(T(n−1)
1,j − Tn

1ss ,j)X̄1,j(x; λm
1,j)dΩ

=
∫

Ωb

(C(n−1)
m,j X1,j(x; λm

1,j)e
−(λm

1,j)
2αb∆t

+ T(n−1)
1ss ,j − Tn

1ss ,j)X̄1,j(x; λm
1,j)dΩ

I(n−1)
2m,j =

∫
Ωs
(T(n−1)

2,j − Tn
2ss ,j)X̄2,j(x; λm

2,j)dΩ

=
∫

Ωs
(C(n−1)

m,j X2,j(x; λm
2,j)e

−(λm
2,j)

2αs∆t
+ T(n−1)

2ss ,j − Tn
2ss ,j)X̄2,j(x; λm

2,j)dΩ

(13)
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where Tn
dss ,j is the solution of the steady-state problem considering the fluid temperatures

at the n-th time step, and T0
1 = T0

2 = T0 in a GHE j. Note that when Equations (11) are
substituted into Equation (8), the sums in Equations (11) disappear, since the integrals with
terms Xd,j(x; λw

d,j)X̄d,j(x; λm
d,j) are 0 if w 6= m due to the quasi-orthogonal condition in the

whole domain Ωb ∪Ωs.
As written, Equation (12) is computationally intensive, since at every time step the

integrals expressed in Equation (13) must be calculated. However, using the linearity in the
steady-state problem described by Equation (4), it is possible to decompose the temperature
field as a weighted sum of the fluid temperatures at each pipe. The temperature field can
be expressed as N subproblems, and subtracting T0 from the global problem yields:

Tn
dss ,j = T0 +

N

∑
l=1

ψdl,j(Tn
fl ,j
− T0) (14)

where ψdl,j are the weighting functions in the domain d for a subproblem l in a GHE j:

∇2ψdl,j = 0 in Ωb ∪Ωs (15a)

− βkrk
∂ψ1l,j

∂ρk

∣∣∣∣
rk

+ ψ1l,j = δl
k on ∂Ωk, k = 1, . . . , N (15b)

−kb
∂ψ1l,j

∂ρ0

∣∣∣∣
rb

= −ks
∂ψ2l,j

∂ρ0

∣∣∣∣
rb

on ∂Ωb (15c)

ψ1l,j

∣∣∣
rb
= ψ2l,j

∣∣∣
rb

on ∂Ωb (15d)

ψ2l,j(re, φ)
∣∣∣
re→∞

= 0 on ∂Ωe (15e)

where δl
k is the Kronecker delta function which takes the value 1 if l = k and 0 otherwise.

Equations (14) and (15) constitute a decomposition on N subproblems representing a
unitary pulse at each pipe for each ψdl,j; therefore, ψdl,j is time independent. Solving ψdl,j
follows the same multipole expansion structure shown in Section 2.1.1.

Substituting Equation (14) into Equations (13) yields:

I(n−1)
1m,j = C(n−1)

m,j e−(λ
m
1,j)

2αb∆t
∫

Ωb

X1,j(x; λm
1,j)X̄1,j(x; λm

1,j)dΩ+

N

∑
l=1

(
T′(n−1)

fl ,j
− T′nfl ,j

) ∫
Ωb

ψ1l,jX̄1,j(x; λm
1,j)dΩ

I(n−1)
2m,j = C(n−1)

m,j e−(λ
m
2,j)

2αs∆t
∫

Ωs
X2,j(x; λm

2,j)X̄2,j(x; λm
2,j)dΩ+

N

∑
l=1

(
T′(n−1)

fl ,j
− T′nfl ,j

) ∫
Ωs

ψ2l,jX̄2,j(x; λm
2,j)dΩ

(16)

Substituting Equations (16) into Equation (12), rearranging and simplifying terms
result in:

Cn
m,j = C(n−1)

m,j e−(λ
m
1,j)

2αb∆t
+

N

∑
l=1

(
T(n−1)

fl ,j
− Tn

fl ,j

)
Eml,j (17)

with

Eml,j =

kb
αb

∫
Ωb

ψ1l,jX̄1,j(x; λm
1,j)dΩ + ks

αs

∫
Ωs

ψ2l,jX̄2,j(x; λm
2,j)dΩ

kb
αb

∫
Ωb

X1,j(x; λm
1,j)X̄1,j(x; λm

1,j)dΩ + ks
αs

∫
Ωs

X2,j(x; λm
2,j)X̄2,j(x; λm

2,j)dΩ
(18)

The terms Eml,j are independent of the fluid temperatures and thereby only need to be
evaluated once at the initialization of a simulation.
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2.2. Thermal Interactions between Ground Heat Exchangers

A temperature penalization approach is proposed to extend the transient multipole
model to 3D, including axial heat transfer and thermal interactions between boreholes.
Following the method of Cimmino and Bernier [12], each GHE is divided into ns segments
(totaling (ns + 1) layers), and each segment is modeled as a line heat source with a uniform
heat extraction rate positioned at the axis of the GHE segment. Figure 3 shows a uniform
discretization for two boreholes i and j separated with a distance rij. Each segment u
has a length Lu = L/ns. The finite line source (FLS) solution can then be superimposed
to evaluate a penalty on the temperatures predicted by the transient multipole method.
Additionally, the equivalent borehole method of Prieto and Cimmino [19] is used to simplify
the thermal interaction problem and obtain a computationally-efficient simulation model
of the bore field by only requiring the simulation of a limited number G of equivalent
boreholes instead of the entire field of Nb boreholes.

Figure 3. (ns) segments discretization of boreholes i and j.

2.2.1. Spatial and Temporal Superposition of the Finite Line Source Solution

The temperature drop at the borehole wall of a segment u of a borehole i at time tn can
be evaluated from the spatial and temporal superposition of the analytical FLS solution:

∆Tn
b,i,u = T0 − Tn

b,i,u =
1

2πks

Nb

∑
j=1

ns

∑
v=1

n

∑
p=1

Q′pj,v
(

hij,uv(tn − tp−1)− hij,uv(tn − tp)
)

(19)

where ∆Tn
b,i,u is the temperature drop at the wall of segment u of borehole i at time tk;

Tn
b,i,u is the temperature at the wall of segment u of borehole i at time tk; Q′pj,v is the heat

extraction rate per unit length of segment v of borehole j from time tp−1 to tp; and hij,uv is
the segment-to-segment thermal response factor for the borehole wall temperature change
over segment u of borehole i caused by heat extraction from segment v of borehole j.

The segment-to-segment response factor is given by the FLS solution:

hij,uv(t) =
1

2Lu

∫ ∞

1√
4αs t

1
s2 exp

(
−r2

ijs
2
)

IFLS(s) ds (20a)

IFLS(s) = erfint((Du − Dv + Lu)s)− erfint((Du − Dv)s)
+ erfint((Du − Dv − Lv)s)− erfint((Du − Dv + Lu − Lv)s)

+ erfint((Du + Dv + Lu)s)− erfint((Du + Dv)s)
+ erfint((Du + Dv + Lv)s)− erfint((Du + Dv + Lu + Lv)s) (20b)
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erfint(x) =
∫ x

0
erf(x′) dx′ = x erf(x)− 1√

π

(
1− exp(−x2)

)
(20c)

where rij is the radial distance between boreholes i and j (with rii = rb), erf(x) is the error
function and erfint(x) is the integral of the error function.

Recently, Prieto and Cimmino [19] proposed a methodology to account for thermal
interactions among boreholes as interactions between equivalent boreholes sharing similar
borehole wall temperatures and heat extraction rates. The field is divided into G equivalent
boreholes using a hierarchical aglomerative algorithm. Each equivalent borehole I repre-
sents a group GI composed of Nb,I boreholes. The temperature drop at the borehole wall
of a segment u of an equivalent borehole I at time tn is then:

∆T̄n
b,I ,u =

1
2πks

G
∑
J=1

ns

∑
v=1

n

∑
p=1

Q′pJ ,v

(
h̄IJ ,uv(tn − tp−1)− h̄IJ ,uv(tn − tp)

)
(21)

where ∆T̄n
b,I ,u is the temperature drop at the wall of segment u of equivalent borehole I at

time tk; Q′pJ ,v is the heat extraction rate per unit length of segment v of equivalent borehole
J from time tp−1 to tp; and h̄IJ ,uv is the equivalent segment-to-segment response factor
for the borehole wall temperature change over segment u of equivalent borehole I caused
by heat extraction from segment v of equivalent borehole J .

The equivalent segment-to-segment response factor is given by the average segment-
to-segment response factors for the borehole wall temperature change along segments u of
all boreholes in group GI due to the heat extraction at all segments v of all boreholes in
group GJ :

h̄IJ ,uv(t) =
1

2Lu

1
Nb,I

∫ ∞

1√
4αst

∑
i∈GI

∑
j∈GJ

1
s2 exp

(
−r2

ijs
2
)

IFLS(s) ds (22)

h̄J I ,vu(t) =
Nb,I
Nb,J

Lu

Lv
h̄IJ ,uv(t) (23)

To reduce the computation time involved in the Equation (21), a load aggrega-
tion scheme is employed and presented in Appendix A. This scheme is already imple-
mented in the pygfunction library [38], which was used here both for the aggregation
of loads (Equation (21)) and for the calculation of segment-to-segment response factors
(Equation (22)).

2.2.2. Penalization of the Transient Multipole Solution

A penalization technique is proposed to couple the transient multipole method pre-
sented in Section 2.1 with the equivalent borehole method. The transient multipole method
can be used to evaluate the borehole wall heat extraction rate on ground layers, and the
equivalent borehole method can be used to evaluate the borehole wall temperature change
over segments (see Figure 3). Thus, an interpolation scheme is introduced to evaluate
the heat extraction rate over a segment u from the transient multipole solution of its two
delimiting layers, s and s + 1 (with u = s):

Q′nI ,u = − kbrb
2

∫ 2π

0

(
∂Tn

1,I ,s

∂ρ

∣∣∣∣
rb

+
∂Tn

1,I ,s+1

∂ρ

∣∣∣∣
rb

)
dφ (24)

where Q′nI ,u is the heat extraction rate per unit borehole length of a segment u of equivalent
borehole I . Expressions for the temperature derivatives at the borehole wall are given in
Appendix B.
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The borehole wall temperature drop at a layer s is obtained from the borehole wall
temperature drops at the two adjoining segments u− 1 and u (with u = s):

∆T̃n
b,I ,s =

∆T̄n
b,I ,u−1 + ∆T̄n

b,I ,u

2
; s = 2, 3, . . . , ns (25)

where ∆T̃n
b,I ,s is the borehole wall temperature drop at a layer s of an equivalent borehole

I . For the top (s = 1) and bottom (s = ns + 1) layers:

∆T̃n
b,I ,s=1 = 2∆T̄n

b,I ,1 − ∆T̃n
b,I ,s=2 (26a)

∆T̃n
b,I ,s=ns+1 = 2∆T̄n

b,I ,ns
− ∆T̃n

b,I ,s=ns
(26b)

The penalization is applied to the transient multipole expansion solution for each
layer s by introducing the difference between the temperature drop at borehole wall for
an equivalent borehole I and the temperature drop at the same layer s by means of the
transient multipole expansion, ∆ Tn−1

1,I ,s

∣∣∣
rb
= T0 − Tn−1

1,I ,s

∣∣∣
rb

and Equation (17):

Cn
j,I ,s = C(n−1)

j,I ,s e−(λ
j
1,I ,s)

2αb∆t +
N

∑
l=1

(
Tn−1

fl ,I ,s − Tn
fl ,I ,s + ∆T̃n

b,I ,s − ∆ Tn−1
1,I ,s

∣∣∣
rb

)
Ejl,I ,s (27)

where Cn
j,I ,s is the j-th Fourier–Bessel coefficient at time step tn for a layer s in an equivalent

borehole I , and λ
j
1,I ,s are the eigenvalues related to a layer s in an equivalent borehole I .

Expressions for the average temperature at the borehole wall are given in Appendix B.
The complete solution by means of transient multipole expansion for a particular layer

s in an equivalent borehole I at time step tn in the grout and soil is then:

Tn
1,I ,s =

∞

∑
j=1

Cn
j,I ,sX1,I ,s(x; λ

j
1,I ,s)e

−(λw
1,I ,s)

2αb∆t +
N

∑
l=1

(Tn
fl ,I ,s − T0)ψ1l,I ,s + T0 (28a)

Tn
2,I ,s =

∞

∑
j=1

Cn
j,I ,sX2,I ,s(x; λ

j
2,I ,s)e

−(λw
2,I ,s)

2αs∆t +
N

∑
l=1

(Tn
fl ,I ,s − T0)ψ2l,I ,s + T0 (28b)

where ψdl,I ,s are the weighting functions for a layer s in an equivalent borehole I in domain
d (i.e., grout and soil).

Although the complete solution in Equation (28) looks computationally intensive due
to eigenvalues, eigenfunctions, integrals and weighting functions, in practical applications,
all boreholes possess a uniform geometry along their length and across the field. These
terms thus only need to be evaluated once at the initialization of the simulation, except for
the Fourier–Bessel coefficients that depend on the layer and the time step. Another inter-
esting thing in Equation (28) is that even though T0, ks and αs are considered constant,
the undisturbed ground temperature could change at each equivalent borehole, enabling
the inclusion of thermal gradients and layered solutions when the soil thermal properties
are not isotropic.

2.3. Advection Inside the Pipes

The model described in Sections 2.1.1 and 2.2 allows the evaluation of ground tem-
peratures based on known fluid temperature profiles Tfk ,I (z, t) at each pipe k at every
equivalent borehole I . This model needs to be coupled to a model of advection inside the
pipes to complete the simulation model and predict fluid and ground temperatures based
on ground loads.

Assuming quasi-steady plug flow inside the pipes and neglecting heat conduction in
the direction of flow (i.e., only considering heat convection between the fluid and the inner
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pipe wall), energy balances on a layer at downward-flowing pipe p and an upward-flowing
pipe q are given by:

πρ f cp f r2
k

∂Tfp ,I

∂t
+ cp f ṁn

I
∂Tfp ,I

∂z
+

1
Rp

Tfp ,I =
1

Rp
T1,I

∣∣
rp

(29a)

πρ f cp f r2
k

∂Tfq ,I

∂t
− cp f ṁn

I
∂Tfq ,I

∂z
+

1
Rq

Tfq ,I =
1

Rq
T1,I

∣∣
rq

(29b)

where z is the axial position along the pipe (positive in the downward direction); ρ f and
cp f are the fluid density and specific heat at constant pressure, respectively; and ṁn

I is the
average mass flow rate in a U-tube containing pipes p and q for an equivalent borehole I
at the particular time step tn.

The fluid to outer pipe thermal resistance, Rp, is given by the sum of the film resistance
at the inner pipe wall and the conduction resistance across the pipe wall:

Rp =
1

Nuπk f
+

ln( rp
rp−th

)

2πkp
(30a)

Nu =

{
3.66 if Re < 2300
0.023Re0.8Pr0.35 if Re ≥ 2300

(30b)

where Nu is the Nusselt number, Re is the Reynolds number, Pr is the Prandtl number and
kp is the pipe thermal conductivity.

An implicit finite difference scheme is used to solve the problem. The GHE is dis-
cretized into layers, according to Figure 3. The discretized energy balance on a control
volume delimited by two consecutive ground layers is given by:

−
cp f ṁn

I
Lu

Tn
p,I ,s−1 +

(
πρ f cp f r2

k
∆t

+
cp f ṁn

I
Lu

+
1

Rp

)
Tn

fp ,I ,s =
1

Rp
Tn

1,I ,s

∣∣∣
rp
+

πρ f cp f r2
k

∆t
Tn−1

fp ,I ,s (31a)

cp f ṁn
I

Lu
Tn

q,I ,s−1 +

(
πρ f cp f r2

k
∆t

−
cp f ṁn

I
Lu

+
1

Rq

)
Tn

fq ,I ,s =
1

Rq
Tn

1,I ,s

∣∣∣
rq
+

πρ f cp f r2
k

∆t
Tn−1

fq ,I ,s (31b)

The number of unknowns for the fluid temperatures per equivalent borehole, Tn
k,I ,s,

at each time step tn in Equation (31), is equal to N(ns + 1). A continuity condition is
imposed at the bottom of the equivalent borehole:

Tn
fp ,I ,ns+1 = Tn

fq ,I ,ns+1 (32)

where pipes p 6= q but belong to the same U-tube.
The system of equations is completed by imposing the ground loads Q̇n, for the

complete borefield. In this case, boreholes are assumed to be connected in parallel:

Q̇n = ṁn
Tcp f (T

n
out − Tn

in) (33)

where Tn
in and Tn

out are the inlet and outlet temperatures at time step n in the borefield and
ṁn

T = Nbṁn
b is the total mass flow rate, with ṁn

b the mass flow rate per borehole.
As the borefield is parallel-connected, the inlet temperature is the same for each

equivalent borehole I :
Tn

in = Tn
fp ,I ,1 (34)

The outlet temperature of the borefield, Tn
out, is obtained by mixing of the fluid at the

outlet of all equivalent boreholes:

Tn
out =

1
Nb

G
∑
I=1

Nb,ITn
fq ,I ,1 (35)
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The problem is then complete, and it is possible to estimate the fluid temperatures at
each equivalent borehole while imposing the heat extracted or rejected from the ground.
An iterative scheme is used to solve the simulation model at each time step n:

1. Calculate fluid temperatures, Tn
fp ,I ,s, using the pipe temperatures Tn−1

1,I ,s

∣∣∣
rp

at the

previous time step (n − 1) as a first guess in Equation (31) with their boundary
conditions and ground loads at time step n;

2. Calculate the heat transfer rates and borehole wall temperatures using Equations (21),
(24) and (26);

3. Update the coefficients in Equation (27) using the fluid temperatures Tn
fp ,I ,s, heat

transfer rates and average borehole wall temperatures calculated in steps (1) and (2);
4. Recalculate Tn

1,I ,s

∣∣∣
rp

according to Equation (28) using the new coefficients obtained in

step (3);
5. Compute the new fluid temperatures as in step (1) with the new pipe temperature

calculated in step (4);
6. Repeat from (2) if the difference of Tn

fp ,I ,s between the previous and current iterations

is greater than 10−4 ◦C.

The method converges quickly, usually after two or three iterations. In this case,
a linear system is solved with a guessed or updated value for Tn

1,I ,s

∣∣∣
rq

; thus, the unknowns

in the system of equations for estimating the fluid temperatures are equal to GN(ns + 1).
For the limiting case when the ground load is 0 W, the mass flow is set to 0 kg/s. Therefore,
the solution of Equations (29) does not require solving a system of equations, since the term
containing the derivative with respect to z is eliminated.

2.4. Finite Element Modeling

A reference finite element analysis (FEA) model was developed to validate the pro-
posed method. Diersch et al. [33,34] developed a complete FEA model that includes the
transient effects inside and outside GHEs and thermal interactions between them. This is
an extension of the model previously proposed by Al-Khoury and Bonnier [32]. The same
mathematical formalism is used in the present paper with some modifications.

The method was created on double-continuum finite element (i.e., one continuum
media for the soil and one for the GHEs) space based on Galerkin discretization with
6-node prismatic elements for the 3D model. Each GHE is simulated as a line element
surrounded by six nodes that virtually represent the borehole wall, located at a distance
greater than rb, as presented in Diersch et al. [34]. Figure 4 shows the discretizations used
for the two simulations used to validate the proposed semi-analytical methodology. First,
the discretization shown in Figure 4a corresponds to a single borehole and was used for
the comparison against experimental data. Then, Figure 4b shows the discretization for a
borefield composed of 24 GHEs that was used in multi-annual simulations.
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(a) (b)

Figure 4. Finite element discretization for model validation. (a) Mesh for Beier’s experiment. (b) Mesh
for a borefield with 24 GHE.

For each line element, short-term effects were modeled using the TRC model de-
veloped by Bauer et al. [29,39]. The correction noted by Bauer et al. [39] and presented
in FEFLOW white papers (Section 1.5.5) [40] was used when negative internal thermal
resistances were present. Depending on the number of U-tubes, each node over the line
element presents two pairs of temperatures: two for the inlet temperature and the grout
temperature where the inlet pipe is located, and two for the outlet temperature and the
grout temperature where the outlet pipe is located. The TRC model is coupled to the
FE-discretized equations considering a steady-state problem for a given borehole wall
temperature, as solved by Eskilson and Claesson [41], to predict the fluid temperatures
inside the pipes. This procedure is the same as that described by Diersch et al. [33].

A Picard iteration was employed to solve the system of equations and ensure the
temperatures converge. Diersch et al. [34] suggest that the GHE domain should be separated
from the whole domain and only later included to influence the soil by means of Schur
complement operation. However, in the present FEA model, the Picard iteration achieved
convergence after one or two iterations without the need to separate domains. Additionally,
due to the initialization of the model, a few iterations with a small time step (i.e., ∆t/10
for a fixed time step ∆t) are required to stabilize the heat transport between the fluid and
grout. After this stabilization, larger time steps (∆t) can be used.

3. Validation

The proposed method and the reference FEA model were first validated by compari-
son to the experimental results of Beier et al. [37] for a single borehole. Then, the proposed
method was validated against the FEA model for a multi-year simulation of a borefield
comprised of 24 boreholes. Inlet and outlet fluid temperatures and borehole wall tem-
peratures were compared in both cases. The accuracy of the method was evaluated by
computing the root mean square error (RMSE) and temperature differences between models
and an experiment.
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For the proposed method, the discretization along the GHE was done using 12 seg-
ments based on the recommendation of Cimmino and Bernier [12]. Following the recom-
mendations of Prieto and Cimmino [36], the order of the transient multipole expansion was
set to M = 7 and h = 15, corresponding to the homogeneous transient heat equation and
non-homogeneous steady-state heat equation, respectively, and the first 100 eigenvalues
were used for each simulation. All calculations were done on a personal computer with
16 GB of RAM and a 6-core processor (12 threads) running at normal speed of 2.60 GHz
and maximum speed of 4.80 GHz.

3.1. Sandbox Test

Beier et al. [37] designed a sandbox test widely used in the context of short-term
response validation of a GHE. The experiment consists of an average heat injection of
1051 W while maintaining an average mass flow rate of 0.197 kg/s in an 18 m long single
U-tube GHE for 3106 min (approximately 52 h). The dimensions and parameters used
for the experiment are shown in Table 1. Since in the experiment the GHE included an
aluminum housing that affects heat transfer to the soil, Pasquier and Marcotte [27] use a
modified thermal conductivity of the grout that preserves the borehole thermal resistance
reported in the experiment. Therefore, the thermal conductivity calculated by Pasquier and
Marcotte [27] was used in the proposed method.

Table 1. Sandbox test parameters.

Parameter Value

Borehole buried depth D = 0 m
Borehole length L = 18 m
Borehole radius rb = 0.063 m
U-tube pipe outer radius rp = 0.0167 m
U-tube pipe thickness th = 0.00303 m
U-tube shank spacing e = 0.0265 m
Ground thermal conductivity ks = 2.82 W/(mK)
Ground thermal diffusivity αs = 1.4× 10−6 m2/s
Grout thermal conductivity kb = 0.9 W/(mK)
Grout thermal diffusivity αb = 2.4× 10−7 m2/s
Fluid thermal conductivity k f = 0.63 W/(mK)
Fluid thermal capacity (ρcp) f = 4.2× 106 J/(m3K)
U-tube pipe thermal conductivity kp = 0.39 W/(mK)
Undisturbed ground temperature T0 = 22 ◦C
Number of segments ns = 12
Time step ∆t = 60 s

The time step used in the simulation corresponds to the resolution time reported in
the experiment and was equal to 60 s. Regarding the FEA model, 7260 6-node prismatic
elements were used, equivalent to 4144 nodes in total. A square domain was proposed
to consider the soil part with 6 m per side to avoid that the boundary conditions affect
the thermal response of the GHE. The length of the FEA along the GHE axis was equal
to 18.5 m. The ground load and mass flow rate reported in Beier et al. [37] were variable
in time. Instead of using the average of ground load and mass flow rate, time varying
values were used. Figure 5 shows the ground load and mass flow rate over the duration of
the experiment.
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Figure 5. Beier et al. [37] experiment: (a) ground load and (b) mass flow rate.

Figure 6 shows the inlet and outlet fluid temperatures and the average borehole wall
temperatures calculated with the proposed method, (a) the sandbox test and (b) the FEA
model, showing good agreement. Both the proposed method and the FEA model were
shown to accurately predict temperatures when compared to the experimental results.

Figure 6. Comparison of the proposed model with (a) the experimental data of Beier et al. [37] and
(b) the FEA model.

The comparison between the proposed model and the experimental data is shown in
Figure 6a, resulting in RMSEs for inlet and outlet fluid temperatures and for the average
borehole temperature equal to 0.134, 0.131 and 0.105 ◦C, respectively. The maximum
absolute errors for inlet and outlet fluid temperatures occurred at the 76th minute of
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the simulation and were 0.556 ◦C and 0.519 ◦C, respectively. In contrast, the maximum
absolute error for the average borehole wall temperature occurred at the 196th minute
and was equal to 0.253 ◦C. The fact that the errors did not occur at the same time for
inlet and outlet fluid temperatures and the borehole wall is explained by the fact that
the heat transfer process inside the borehole reached a quasi-steady state (or constant
heat flux) at a time in the order of r2

b/αs. Figure 6b shows the comparison between the
FEA model and the proposed method computing inlet and outlet fluid temperature and
average borehole wall temperature, similar to what was shown for comparison with the
experimental data. For this case, the RMSEs for the inlet and outlet fluid temperatures and
average borehole wall temperature were equal to 0.196, 0.196 and 0.183 ◦C, respectively.
The maximum absolute errors for each temperature, Tin, Tout and Tb, occurred at the end of
the simulations with values equal to 0.317, 0.317 and 0.270 ◦C.

Figure 7 shows a comparison of the fluid temperature profiles along the pipes be-
tween the proposed model and the FEA model at four different times, corresponding to
1, 10, 100 and 1000 min. Arrows indicate fluid flow direction. For the inlet pipe, the max-
imum absolute errors for 1, 10, 100 and 1000 min were equal to 0.003, 0.047, 0.013 and
0.125 ◦C. Similarly, for the outlet pipe, the maximum absolute errors were equal to 0.002,
0.048, 0.013 and 0.125 ◦C, corresponding to 1, 10, 100 and 1000 min of the simulation.
The maximum absolute errors for inlet and outlet pipes were expected to be approximately
equal, since the energy balance is preserved by the ground load in the discretization of the
advection equation.

Figure 7. Fluid temperature profiles along pipes at 4 different times.

The calculation time for Beier’s experiment by means of the proposed method was
equal to 214 s, including 210 s for the initialization and 4 s for the solution of the system of
equations and coefficient updating scheme.

3.2. Multi-Annual Simulation of a Geothermal Field

Two simulations were used to evaluate the accuracy of the proposed method for
long-term and short-term temperature predictions. A first multi-annual simulation was
performed for a period of 10 years using a 1 h time step to evaluate the long-term accuracy
of the method, followed by a period of 7 days using a time step of 1 min to evaluate the
short-term accuracy of the method. The borefield was comprised of 24 boreholes in a
rectangular configuration. Every GHE received the same inlet temperature and the same
mass flow rate. The parameters used in the simulation are shown in Table 2.
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Table 2. Borefield parameters.

Parameter Value

Borehole buried depth D = 4 m
Borehole length L = 100 m
Borehole radius rb = 0.075 m
U-tube pipe outer radius rp = 0.0211 m
U-tube pipe thickness th = 0.00406 m
U-tube shank spacing e = 0.05 m
Ground thermal conductivity ks = 2.4 W/(mK)
Ground thermal diffusivity αs = 1.2× 10−6 m2/s
Grout thermal conductivity kb = 0.81 W/(mK)
Grout thermal diffusivity αb = 2.1× 10−7 m2/s
Fluid thermal conductivity k f = 0.48 W/(mK)
Fluid thermal capacity (ρcp) f = 4.02× 106 J/(m3K)
U-tube pipe thermal conductivity kp = 0.42 W/(mK)
Undisturbed ground temperature T0 = 12.5 ◦C
Total mass flow rate ṁ = 6 kg/s
Number of segments ns = 12

The borefield was divided into equivalent boreholes that shared similar borehole wall
temperatures and heat extraction rates using the methodology proposed by Prieto and
Cimmino [19]. Figure 8 shows the borefield studied, in this case a rectangular configuration
where each consecutive borehole was 6 m equidistant both horizontally and vertically, and
the equivalent boreholes were identified. Equivalent boreholes denoted by the numbers
I, I I, I I I each represent 12, 8 and 4 GHEs, respectively. The FEA model was composed of
123,828 6-node prismatic elements with 65,934 nodes in a ground domain, 300 m per side
and an axial length equal to 140 m.

Figure 8. Equivalent boreholes for a field of 24 GHEs.

3.2.1. Simulation of a 10-Year Period

Figure 9 shows the complete simulation for the first 10 years of heat extraction and
heat rejection with the ground (Q̇), including inlet and outlet (Tin and Tout) temperature
and the average borehole wall temperature for each equivalent borehole (Tb,I , Tb,I I , Tb,I I I)
calculated with the proposed method. Figure 9a shows the ground loads (Q̇ > 0 corre-
sponds to heat extraction with the ground, negative otherwise) for the 10-year period,
generated using the synthetic ground load profile of Bernier et al. [42]. The maximum heat
extraction and rejection were equal to 93, 502 and −76, 704 W, respectively. The average
net heat transfer for all 10 years was equal to 3761 W, which means an imbalance towards
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heat extraction. The impact of this imbalance is shown in Figure 9b,c, exhibiting decreas-
ing behavior in both fluid temperatures and borehole wall temperature at the end of the
simulation. The maximum and minimum inlet fluid temperatures were 19.98 and 0.95 ◦C,
respectively, and the maximum and minimum outlet fluid temperatures were 17.29 and
4.25 ◦C, respectively. At the end of the simulation, the fluid had a temperature of 9.17 ◦C for
both Tin and Tout, since there was no heat exchange at this time. This represents a difference
between the temperature at the beginning of the simulation and the end of the simulation
equal to 3.33 ◦C. For the average borehole wall temperature for each equivalent borehole,
the maximum and minimum temperatures in the 10-year period were, respectively, 14.82
and 7.28 ◦C for equivalent borehole I; 14.86 and 7.37 ◦C for equivalent borehole I I; and
14.89 and 7.45 ◦C for equivalent borehole I I I. At the end of the simulation, the equivalent
boreholes (I, I I, I I I) presented average borehole wall temperatures equal to 9.36, 9.44 and
9.52 ◦C, respectively. Although the variation in the borehole wall temperature between the
equivalent boreholes was small, it existed and shows the need to simulate in detail a field
composed of several GHEs for larger periods of time. It is also worth mentioning that if the
ground loads maintain their imbalance for a longer time, the average borehole wall and
fluid temperatures will tend to decrease until they reach steady-state.

Figure 9. Multi-annual simulation over 10 years with the proposed method: (a) ground loads, (b) inlet
and outlet fluid temperatures and (c) average borehole wall temperature at each equivalent borehole.

Figure 10 compares the inlet and outlet fluid temperatures evaluated with the pro-
posed model and the FEA model. The difference between predicted inlet fluid temperatures
is denoted ∆Tin, and the difference between predicted outlet fluid temperatures is denoted
∆Tout. The results corresponding to the time steps of the minimum and maximum differ-
ences, and at the end of simulation, are presented in Table 3. Lastly, the RMSEs for the



Thermo 2022, 2 190

inlet and outlet fluid temperatures were 0.13 and 0.14 ◦C over the 10th simulation year,
respectively. Therefore, the inlet and outlet temperatures show good agreement when
compared with the FEA model.

Figure 10. Comparison of predicted inlet and outlet fluid temperatures during the 10th year:
(a) proposed method, (b) FEA model, (c) error of the inlet temperature and (d) error of the out-
let temperature.

Table 3. Errors of fluid temperatures during the 10th year.

Tin(
◦C) Tout(◦C) ∆Tin(

◦C) ∆Tout(◦C)
FEA Meth. FEA Meth.

Minimum error 0.57 0.95 3.86 4.25 −0.39 −0.39
Maximum error 18.71 18.54 16.02 15.84 0.18 0.18

End of simulation 9.03 9.17 9.03 9.17 −0.14 −0.14

The behavior between the soil and the GHE can be studied through the behavior of
the borehole wall temperature. For this purpose, according to the groups identified in
Figure 8, the average borehole wall temperature for each of the equivalent boreholes was
calculated in the FEA model to compare with the proposed methodology. Figure 11 shows
the average borehole wall temperature for each of the equivalent boreholes for the proposed
method and the FEA model, and the error between each of them for the 10th simulation
year. For Figure 11a–c, the average borehole wall temperature for each equivalent borehole
was estimated by means of the proposed method; for Figure 11d–f, by the FEA model;
and Figure 11g–i shows errors between FEA and the proposed model, for the 10th year.
The results corresponding to the time steps of the minimum and maximum differences
and at the end of simulation are presented in Table 4. The largest error (in magnitude)
was reached when the minimum temperature was reached. The RMSEs between FEA and
proposed method were 0.10, 0.09 and 0.10 ◦C, for each equivalent borehole, I, I I and I I I,
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respectively. The errors show that the proposed model is able to predict with reasonable
accuracy the thermal response between GHE and the soil.

Figure 11. Comparison of predicted borehole wall temperatures for each equivalent group (I, I I, I I I)
during the 10th year: (a–c) proposed method, (d–f) FEA model and (g–i) error between models.

Table 4. Errors on borehole wall temperatures during the 10th year.

Tb,I(
◦C) Tb,I I(

◦C) Tb,I I I(
◦C) ∆Tb,I(

◦C) ∆Tb,I I(
◦C) ∆Tb,I I I(

◦C)
FEA Meth. FEA Meth. FEA Meth.

Minimum error 7.07 7.28 7.16 7.37 7.45 7.66 −0.21 −0.21 −0.21
Maximum error 13.37 13.34 13.50 13.46 13.61 13.57 0.03 0.04 0.04

End of simulation 9.22 9.36 9.31 9.44 9.39 9.52 −0.14 −0.13 −0.13

The calculation time for this simulation was 310 s: 210 s dedicated to the initialization
procedures (i.e., integrals, eigenvalues, coefficients, etc.) and 100 s to the solution of the
systems of equations and iterations for the period of 10 years with a time step equal to 1 h.

3.2.2. Short-Term Effects after 10 Years

For the validation of the proposed method with respect to the short-term effects,
an additional period of 7 days was simulated following the 10 years of simulation. The time
step during this period was set to 1 min. The FEA model was initialized using the final
results of the 10-year simulation as initial conditions.

Figure 12 shows the inlet and outlet fluid temperatures and the borehole wall temper-
atures for each of the equivalent boreholes for the FEA model and the proposed method,
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and a comparison of the results. Figure 12a,b shows the temperatures obtained using the
proposed method, and Figure 12c,d shows the same temperatures obtained with the FEA
model. Figure 12e,f shows the differences between the FEA and proposed method. Table 5
presents the inlet and outlet fluid temperatures at the time of the maximum and minimum
errors and at the end of the simulation, and the differences between the FEA and the
proposed model. The RMSEs between the two models were 0.23 and 0.24 ◦C for the inlet
and outlet fluid temperatures, respectively. This shows that the proposed method is able
to accurately estimate the fluid temperatures when the short-term effects are considered.
Table 6 compares the average borehole wall temperatures at each equivalent borehole at
the times of the maximum and minimum errors and at the end of the simulation, and
the differences between the FEA and the proposed model. The RMSE for each equivalent
borehole, I, I I and I I I, was 0.16, 0.16 and 0.15 ◦C, respectively. As previously noted, these
results show good agreement when compared with the FEA model.

Figure 12. Comparison of predicted inlet and outlet fluid temperatures and borehole wall tem-
peratures for each equivalent group (I, I I, I I I) during the 7-day period: (a,b) proposed method,
(c,d) FEA model, (e) errors of the inlet and outlet fluid temperatures, and (f) error of the borehole
wall temperatures.
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Table 5. Errors of fluid temperatures during the 7-day period.

Tin(
◦C) Tout(◦C) ∆Tin(

◦C) ∆Tout(◦C)
FEA Meth. FEA Meth.

Minimum error −0.05 0.4 3.6 4.06 −0.46 −0.46
Maximum error 9.47 9.59 9.47 9.59 −0.2 −0.2

End of simulation 8.98 9.12 8.98 9.12 −0.14 −0.14

Table 6. Errors of borehole wall temperatures during the 7-day period.

Tb,I(
◦C) Tb,I I(

◦C) Tb,I I I(
◦C) ∆Tb,I(

◦C) ∆Tb,I I(
◦C) ∆Tb,I I I(

◦C)
FEA Meth. FEA Meth. FEA Meth.

Minimum error 7.06 7.30 7.14 7.37 7.22 7.44 −0.24 −0.24 −0.23
Maximum error 9.63 9.75 9.71 9.83 9.79 9.90 −0.12 −0.11 −0.11

End of simulation 9.16 9.31 9.25 9.39 9.33 9.46 −0.14 −0.14 −0.13

Figure 13 shows the fluid temperature profiles and the borehole wall temperature
profiles for each of the equivalent boreholes along their lengths estimated with the proposed
method and the FEA for the time step where the largest difference (in magnitude) between
the two methods was obtained, which in this case corresponded to 7029 min.

Figure 13. Fluid and borehole wall temperature profiles for each equivalent borehole at 7029 min:
(a) fluid temperature profiles for the FEA (dotted line) and the proposed method (solid line) for
each equivalent borehole, and (b) equivalent borehole wall temperature profiles for the FEA method
(dotted line) and the proposed method (continuous line).
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The arrows indicate the fluid flow direction for each pipe. The inlet temperatures
for each equivalent borehole for the FEA and proposed method were equal to −0.05 and
0.4 ◦C, respectively. This amounts to the error previously computed as −0.46 ◦C between
FEA and the proposed method. The outlet temperatures for the proposed method were
equal to 4.15 ◦C for I, 4.19 ◦C for I I and 4.23 ◦C for I I I. On the other hand, for the FEA the
temperatures were equal to 3.69 ◦C for I, 3.73 ◦C for I I and 3.76 ◦C for I I I.

Figure 13b shows the equivalent borehole wall temperature profiles along the lengths
of the GHEs for the FEA and proposed model. According to results in Table 6, the difference
between FEA and proposed method for each equivalent borehole was preserved, and were
similar to the differences in the average temperature, being −0.24, −0.24 and −0.23 ◦C
boreholes I, I I and I I I, respectively. A small difference was observed at all equivalent
boreholes, top and bottom, equal to −0.22 ◦C on both parts.

4. Conclusions

This paper presented a novel approach to the study of heat transfer in a field of
thermally interacting GHEs where the heat capacity effects of the fluid, grout and soil
are included. In the proposed method, the heat transfer inside the GHE is studied by the
transient multipole expansion and coupled with the outside of the GHE by penalizing the
interior solution with the equivalent borehole method to include the interactions between
the GHEs. The advection inside the pipes is modeled by the energy balance along the
pipes and discretized using a finite difference scheme. The method drastically reduces the
dimensions of the system of equations due to the use of the equivalent borehole method to
limit the number of modeled boreholes.

The main contributions of this paper are listed below:

• The method is able to be used in efficient short-term simulations by extending the
transient multipole expansion [36] with an efficient coefficient updating scheme to
compute fluid and GHE temperatures.

• It is no longer necessary to separate the solutions for short- and long-term effects as
done by some researchers [8,24,28], since the heat extraction rates are calculated by the
extension of the transient multipole expansion; therefore, the transition between time
scales is done naturally by the approaching exact solution. Additionally, no condition
is assumed at the borehole wall.

• Calculation times show that it is possible to perform computationally efficient sim-
ulations, even when both short- to long-term effects are included. The majority of
this calculation time is due to the initialization (210 s on every simulation). The ini-
tialization time for the multipole method is independent of the time step and the
number of boreholes. The initialization time for the equivalent borehole method is
only weakly dependent on the number of boreholes and the number of time steps.
The simulations for Beier’s experiment, the 10-year borefield simulation and the 7-day
borefield simulation were done in 4 s, 100 s and 16 s, respectively.

The method was first validated against experimental data provided by Beier et al. [37]
for a single GHE and against an FEA simulation of the same experiment. The maximum
errors for the inlet fluid temperature, outlet fluid temperature and average borehole wall
temperature were 0.556, 0.519 and 0.253 ◦C, respectively, when compared to the experimen-
tal data; and 0.317, 0.317 and 0.270 ◦C, respectively, when compared to the FEA method.
The validation showed that the proposed model compares well with the FEA method,
and that both methods compare favorably with the experiment. Differences between the
proposed method and the FEA method were expected, since the two methods use different
models for the interiors of the GHEs. A 10-year simulation of a field of 24 GHEs was then
presented to evaluate the long-term accuracy of the proposed method when compared
to the FEA method. A 10 year period was simulated with a 1 h time step, followed by
a 7-day period with a time step of 1 min to evaluate the short-term accuracy of the pro-
posed method in the context of long-term simulations. For the 10-year period, the last
year presented maximum and minimum differences with the FEA method of 0.18 and
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−0.39 ◦C, respectively, for both the inlet and outlet fluid temperatures. For the 7-day period,
the maximum and minimum differences with the FEA method were −0.24 and −0.46 ◦C,
respectively, for both the inlet and outlet fluid temperatures.

The method is not restricted to applications where the GHEs are connected in parallel,
but could also be extended to consider series connections between the boreholes by mod-
ifying the model in Section 2.3. The method could also be extended to include stratified
solutions for anisotropic soils, adapting, for example, the solution by Abdelaziz et al. [43].
Additionally, by specific modifications of the FLS solution, the method could include effects
such as groundwater flow by making use of proposed solutions such as the moving infinite
line source (MILS) by Diao et al. [44], the moving finite line source (MFLS) by Molina-
Giraldo et al. [45] or the stratified MFLS by Luo et al. [46]. This will, however, require
future work to adapt the equivalent borehole method to consider groundwater flow during
the clustering process.

Author Contributions: Conceptualization, C.P. and M.C.; methodology, C.P. and M.C.; software, C.P.
and M.C.; validation, C.P.; formal analysis, C.P.; investigation, C.P.; resources, M.C.; data curation, C.P.;
writing—original draft preparation, C.P.; writing—review and editing, C.P. and M.C.; visualization,
C.P.; supervision, M.C.; project administration, M.C.; funding acquisition, M.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This study is funded by the Natural Sciences and Engineering Research Council of Canada
(NSERC) (grant number: RGPIN-2018-04471).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Load Aggregation

The temporal superposition process described in Equation (22), repeated here, is
instead solved using a load aggregation algorithm:

∆T̄n
b,I ,u =

1
2πks

G
∑
J=1

ns

∑
v=1

n

∑
p=1

Q′pJ ,v

(
h̄IJ ,uv(tn − tp−1)− h̄IJ ,uv(tn − tp)

)
(A1)

The load aggregation algorithm presented by Javed and Claesson [47] is used. The load
history is discretized in time using geometrically expanding cells:

∆τk = ∆t · 2b(k−1)/ncc (A2a)

τk =
k

∑
p=1

∆τp (A2b)

where ∆t is the width of the first aggregation cell (equal to the simulation time step), nc is
the number of cells per aggregation level, and bc is the floor operator. Cells are generated
until last value τk is larger than the maximum simulation time.

Each aggregated load contributes to the average borehole wall temperature for each
segment as follows:

∆T̄n
b,I ,u =

1
2πks

G
∑
J=1

ns

∑
v=1

nc

∑
p=1

Q′p,n
J ,v

(
h̄IJ ,uv(τ

p)− h̄IJ ,uv(τ
p−1)

)
(A3)

where Q′p,n
J ,v are the aggregated loads in each cell p at a time tn.
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For p ≥ 2, aggregated loads at a time tn are calculated according to the aggregated
loads on the previous time step tn−1:

Q′p,n
J ,v =

1
2b(p−1)/ncc

Q′p−1,n−1
J ,v +

2b(p−1)/ncc − 1
2b(p−1)/ncc

Q′p,n−1
J ,v (A4)

The first aggregated load (p = 1) has its value equal to the average load since the last
time step. Here, loads are constant during a time step:

Q′1,n
J ,v = Q′nJ ,v (A5)

Appendix B. Additional Expressions for the Transient Multipole Method

In addition to the expressions presented in Prieto and Cimmino [36], the proposed
method requires the evaluation of the average temperatures at the pipe walls ( T1,I

∣∣
rq

) and

the average temperature at the borehole wall ( T1,I
∣∣
rb

), along with their derivatives (e.g.,
∂T1,I

∂ρ

∣∣∣
rb

= 1
2π

∫ 2π
0

∂T1,I
∂ρ

∣∣∣
rb

dφ). Their evaluation necessitates expressions for averages and

derivatives of the eigenfunctions (X1) for the homogeneous problem, and the average
temperatures (T1ss ) and derivatives for the steady-state non-homogeneous problem.

For the homogeneous problem, the average and derivatives of the eigenfunction X1 at
the pipe boundary (∂Ωl) are given by:

X1,I =
1

2π

∫ 2π

0
X1,Idφ =

M

∑
m=−M

γ0
m,I Jm(λ1,I l0l)eimθ0l J0(λ1,I rl)

+ γl
0H(1)

0 (λ1,I rl)

+
N

∑
j=1,j 6=l

M

∑
m=−M

γ
j
m,I gm,I

(A6a)

∂X1,I
∂ρ

∣∣∣∣∣
rl

= λ1,I
M

∑
m=−M

γ0
m,I Jm(λ1,I l0l)eimθ0l J′0(λ1,I rl)

+ λ1,Iγl
0,IH′(1)0 (λ1,I rl)

+ λ1,I
N

∑
j=1,j 6=l

M

∑
m=−M

γ
j
m,I g′m,I

(A6b)

where

gm,I =

{
Jm(λ1,I ljl)e

imθjl H(1)
0 (λ1,I rl) if ljl < rl

H(1)
m (λ1,I ljl)e

imθjl J0(λ1,I rl) if ljl > rl
(A7a)

g′m,I =

{
Jm(λ1,I ljl)e

imθjl H′(1)0 (λ1,I rl) if ljl < rl

H(1)
m (λ1,I ljl)e

imθjl J′0(λ1,I rl) if ljl > rl
(A7b)
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At the borehole wall boundary (∂Ωb):

X1,I = γ0
0,I J0(λ1,I rb)

+
N

∑
j=1

M

∑
m=−M

γ
j
m,I Jm(λ1,I lj0)e

imθj0 H(1)
0 (λ1,I rb)

(A8a)

∂X1,I
∂ρ

∣∣∣∣∣
rb

= λ1,Iγ0
0,I J′0(λ1,I rb)

+ λ1,I
N

∑
j=1

M

∑
m=−M

γ
j
m,I Jm(λ1,I lj0)e

imθj0 H′(1)0 (λ1,I rb)

(A8b)

For the steady-state non-homogeneous problem, the average and derivatives of the
multipole expansion at the pipe boundary (∂Ωl) are given by:

T1ss ,I = α0,I + γl
0,I ln rl +

N

∑
j=1,j 6=l

(
γ

j
0,I gj,I

)
(A9a)

∂T1ss ,I
∂ρ

∣∣∣∣∣
rl

= γl
0,I

1
rl
+

N

∑
j=1,j 6=l

(
γ

j
0,I g′j,I

)
(A9b)

where

gj,I =

{
ln(ljl) if ljl > rl

ln(rl) if ljl < rl
(A10a)

g′j,I =

{
0 if ljl > rl
1
rl

if ljl < rl
(A10b)

(A10c)

At the borehole wall boundary (∂Ωb):

T1ss ,I = α0,I +
N

∑
j=1

{
γ

j
0,I (ln rb)

}
(A11a)

∂T1ss ,I
∂ρ

∣∣∣∣∣
rb

=
N

∑
j=1

γ
j
0,I/rb (A11b)
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