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Abstract: We have reported tetradentate ligands (salophen) coordinated with N and O atoms that
led to the Cu (II) complexes. These Cu (II) complexes (C-1 and C-2) were firstly established by using
elemental analysis and confirmed by mass spectra. At the same time, the characterization of C-1 and
C-2 complexes is performed by using several spectroscopic methods and morphological analysis. The
bandgap values of the C-1 and C-2 complexes are evaluated with UV-vis DRS spectra. The PL spectral
data and photocurrent curves clearly indicated the small recombination rate of the hole–electron pair.
The synthesized C-1 and C-2 complexes’ photocatalytic properties were examined for the degradation
of cationic dyes such as methylene blue (MB λmax.= 654 nm) and methyl violet (MV λmax.= 590 nm)
below visible-light action. The C-2 complex is more active than the C-1 complex because of its high
photostability, small band-gap energy, and low recombination rate for hole–electron pair separation,
and improved visible-light character, which encourages the generation of hydroxyl radical species
throughout the photodegradation process. Scavenger probes were used to identify the dynamic
species for the photodegradation of dyes, and a mechanism investigation was established.

Keywords: Cu (II) complexes; photocatalysis; surface area; rate of recombination; methyl violet dye

1. Introduction

The use of Schiff base ligands in coordination chemistry has been extensively stud-
ied, particularly those with tetradentate ligands containing nitrogen and oxygen donor
atoms [1–5]. Metal (II) complexes of these ligands have shown promising catalytic activity
in oxidative catalysis [6] and deoxygenation [7] reactions. Cu (II) Schiff base complexes,
in particular, have received interest for their potential catalytic activity (conventional or
photocatalytic) in the oxidation of organic substrates [8,9]. The use of Schiff base ligands
derived from 2-hydroxy-1-naphthaldehyde and aryl-1,2-diamines in the synthesis of M(II)
complexes has been extensively studied [10–12]. Among these, Cu (II) Schiff base com-
plexes have been reported to exhibit various catalytic activities [13,14]. However, despite
the large number of metal–Schiff base complexes available, Cu (II) Schiff base complexes
are relatively less studied for their photocatalytic applications in organic transformations.
The recent study on the piezo-photomineralization of MR and RhB cationic dyes using Cu
(II) Schiff base complexes obtained from 4-chlorobenzene-1,2-diamine or 4-fluorobenzene-
1,2-diamine with 2-hydroxy-l-naphthaldehyde is of great significance. The study can
provide insights into the potential of Cu (II) Schiff base complexes as photocatalyst in the
degradation of organic pollutants [15–17].

Under visible-light irradiation, mono- and bimetallic complexes have been used to
photodegrade organic pollutants [18]. Photooxidation of aromatic hydrocarbons and
methylstyrenes have also been accomplished using Ru (II) and Zn (II) complexes with

Photochem 2023, 3, 274–287. https://doi.org/10.3390/photochem3020016 https://www.mdpi.com/journal/photochem

https://doi.org/10.3390/photochem3020016
https://doi.org/10.3390/photochem3020016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photochem
https://www.mdpi.com
https://orcid.org/0009-0001-2376-5060
https://orcid.org/0000-0003-1773-9429
https://doi.org/10.3390/photochem3020016
https://www.mdpi.com/journal/photochem
https://www.mdpi.com/article/10.3390/photochem3020016?type=check_update&version=2


Photochem 2023, 3 275

Schiff base ligands [19]. Other studies have investigated the potential of Pd (II) Schiff base
complexes for the synthesis of fused heterocyclic aromatic hydrocarbons and the activation
of allylic C-H bonds and Ag-doped Pd (II) complexes under visible-light irradiation for the
degradation of dyes [20,21]. Zn (II) complexes have also been investigated for their possible
use in the photooxidation of 2,2’-(Ethyne-1,2-diyl) dianilines [22], the photodecomposition
of organic dye pollutants [23], and the piezo-photomineralization of dyes and industrial
waste [24]. More recently, Ti (IV) complexes obtained using salophen-based ligands have
been explored for their potential piezo-photocatalytic degradation of methyl red and
rhodamine B dyes [25].

In this study, the reactions of tetradentate Schiff base ligands obtained from
4-chlorobenzene-1,2-diamine or 4-fluorobenzene-1,2-diamine with 2-hydroxy-1-naphthaldehyde
and Cu2+ ions were investigated for their potential use in the photomineralization of MR
and MV cationic dyes under visible-light treatment. The structures of ligands L-1 and L-2,
and respective complexes C-1 and C-2 are given in Figure 1.
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2. Materials and Methods

All the experimental processes for preparation of ligands were performed by following
earlier methods [23]. The detailed experimental methods and characterization techniques
for the analysis of Cu (II) complexes are shown in the Supplemental Materials. The carefully
purified and dried Cu (II) complexes C-1 and C-2 were analyzed using elemental mass spectra,
XPS, TGA, FTIR, FESEM, UV-visible emission, ESR, and photocurrent measurements.

Experimental Procedure for Photomineralization of Dye Pollutants

The photocatalyst (30 mg) was placed into 80 mL dye pollutant solution (5 × 10−4 M)
in a 100 mL quartz glass cylindrical photoreactor. The mineralization of MR and MV
cationic dyes was kept in the presence of visible light (300 Watts tungsten light with photon
flux 8.02 × 1013 Einstein/s and wavelength 380–780 nm), as found by utilizing the chem-
ical actinometric method with Reinecke salt [18] for 30 min. The adsorption–desorption
equilibrium technique for the specific dye was attained in the absence of light for 10 min;
the light was then permitted to fall on the reaction dye solution. Once the light was turned
on, then a sample was taken every 5 min for UV-visible spectroscopic analysis. To verify
the reusability of the catalyst, C-1/C-2 was separated by the centrifugal method, used
again for the degradation of the dye, and its concentration studied using a UV-visible
spectrophotometer at dye λmax.
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3. Results and Discussion

Molar conductivity experiments were used to determine if the new Cu (II) complexes
were ionic or covalent. The conductivity of both C-1 and C-2 complexes was measured
with the 10−3 M concentrations and showed the values 12.07 and 9.17 ohm−1 mol−1 cm2,
respectively. These values indicated that both the complexes are covalent and nonelec-
trolytic in nature (Table S1) [25]. Further, after 72 hours, the complexes were reexamined for
molar conductance and exhibited the same conductance. Hence, the Cu (II) complexes are
highly stable as Cu2+ ions are strongly complexed with the salophen ligands. The elemental
and physicochemical data for the C-1 and C-2 complexes are depicted in Table S1. The
analytical data show that various elements such as Cu, Cl/F, N, C, and H agree with the
theoretical data, which are empirically formulated as C-1 and C-2 complexes. The MALDI
mass spectral data for complexes C-1 and C-2 coincide with the exact molecular weight
and are outlined in Figures S1 and S2, respectively. The Cu (II) complexes spectra show
that the m/z values of 511.1475, and 495.1571 are in agreement with the molecular ions of
C-1 and C-2, respectively (Figures S1 and S2) [24].

X-ray photoelectron spectroscopy (XPS) can be a useful tool for analyzing Cu (II)
complexes with nitrogen and oxygen donors. XPS can provide information about the
chemical composition and electronic state of the elements in the sample. When performing
XPS analysis, the sample is bombarded with X-rays, which cause the emission of electrons
from the surface of the sample. The energies of the emitted electrons are then measured
to determine the binding energy of each element in the sample. By analyzing the binding
energies of the Cu, nitrogen, and oxygen atoms in the complex, information can be obtained
about the chemical bonding in the sample. In Cu (II) complexes with nitrogen and oxygen
donors, the Cu atom is typically coordinated to one or more nitrogen or oxygen atoms,
forming a complex with specific coordination geometry. The XPS spectra of these complexes
show peaks corresponding to the Cu 2p, nitrogen 1s, and oxygen 1s electron orbitals. The
positions and intensities of these peaks can be used to determine the electronic state of the
Cu atom and the chemical environment of the nitrogen and oxygen atoms.

The Cu 2p XPS peak for a Cu (II) complex with Cl-substituted Schiff’s base ligand
shifted to a slightly higher binding energy compared to the peak for a complex with a
nonsubstituted Schiff’s base ligand. The nitrogen 1s and oxygen 1s peaks can also provide
information about the bonding between the ligand and Cu atom, and any changes in the
electron density around the ligand due to the presence of the Cl atom, as shown in Figure 2.
Similarly, the Cu 2p XPS peak for a Cu (II) complex with an F-substituted Schiff’s base
ligand shifted to a slightly lower binding energy compared to the peak for a complex with a
nonsubstituted Schiff’s base ligand. The nitrogen 1s and oxygen 1s peaks can also provide
information about the bonding between the ligand and Cu atom, and any changes in the
electron density around the ligand due to the presence of the F atom, which is shown in
Figure 3; details of analysis are mentioned below.

The XPS spectrum of the C-1 complex displays peaks at 965.09, 955.76, 945.9, and
935.99 eV for the 2p1/2 and 2p3/2 states of Cu of Cu-O and Cu-N bonds, respectively [26,27].
The remaining peaks, such as 203.24 eV for Cl (2p); 534.09 and 531.91 eV for O (1s); and
399.13 and 400.33 eV for Cu-N and Ar-C=N-Ar N (1s) states [21,28], are also displayed. In
the case of the C-2 complex, 965.13, 955.55, 945.09 and 935.71 eV are indicated for the Cu-N
and Cu-O (2p1/2 and 2p3/2) bonds. Additionally, 688.01 for F (1s), 533.52 and 531.81 eV for
O (1s), and 399.24 and 400.48 eV N (1s) peaks are observed in C-2; three different peaks are
present in both the C-1 and C-2 complexes for C (1s), such as 285.27, 285.55, and 285.99 eV
for C-Cl, C-OAr, and -C=N-, respectively, for C-1; and for the C-2 complex, 284.80, 285.35,
and 286.31 eV for C-F, C-OAr and -C=N-, respectively, as revealed in Figures 2 and 3.

To know the thermal stability and thermal decomposition path for both Cu (II) com-
plexes, thermogravimetric (TG) analysis of both complexes was investigated under a
nitrogen atmosphere from 50 to 750 ◦C with an evaporating rate of 10 ◦C min−1. The TGA
of the C-1 complex decomposed at 385 ◦C, whereas the C-2 complex started at 395 ◦C. Both
the Cu (II) complexes were decomposed in a single step, which designated that the ratio of
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ligand to metal is equal (1:1) [25] and revealed the conforming disintegration thermogram
in Figure 4. The experimental TG plots display that C-1 and C-2 complexes decompose
ligands in the solo stage with a weightiness loss of 84.38% (calcd. 84.56%) between 385
and 500 ◦C [25]. The TG curvature displays a mesa between 350–500 ◦C, and then there is
no further disintegration up to 750 ◦C. The values obtained agree, indicating that the end
material is pure CuO, which is confirmed by XPS and p-XRD data, as shown in Figure 5
and Figure S3 for the respective complex’s residual substance.
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FTIR was used to confirm the bonding vibrational modes of all the ligands and Cu (II)
complexes. The weak and strong peaks noticed at 1578 and 1452 cm−1 in the spectrum of the
ligand L-1 is known to be the vibrational stretching modes of the imine (-C=N-) group [24].
In both the Cu (II) complexes, vanishing of the phenolic groups as correlated to ligand
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spectra and azomethine group peaks are shifted to the higher wavenumber side, which
designates the complexation of the azomethine group. The two novel stretching modes in
the FTIR spectra of C-1 and C-2 complexes, one around 403 and 406 cm−1 and the other
around 504 and 502 cm−1, have been identified as n(Cu-N) and n(Cu-O), respectively. The
vibrational modes shown in the FTIR spectra of Cu (II) complexes signify that the Cu2+ ions
are complexed with L-1/L-2 via two -C=N-functional and two Ar-OH sets. The illustrative
FTIR spectra of Cu-complexes, C-1 and C-2, are revealed in Figures S4 and S5, respectively.
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The electron spin resonance (ESR) spectra of the Cu (II) complexes are presented in
Figure 6a,b. The spectra of the two complexes are anisotropic in nature, and each one
exhibits three peaks. The g|| and g⊥ were calculated from the spectra (Table 1). ESR
spectra of the complexes provide an excellent basis for distinguishing the unpaired electron
as being present in either the ground state dx2 − y2 or the ground state dz2. Thus, using the
equation (g2 − g1)/(g3 − y2), if the value of R is greater than one, the electron is present in
dz2, and if the value is less than one, the electron is present in dx2 − y2. In the case of C-1,
the R value is 0.263 and was found that g|| > g⊥ > 2 for both the complexes, indicating
that the unpaired electron is present predominantly in the dx2 − y2 orbital of the Cu (II)
ion. This indicates that these complexes are monomeric in nature, and that there are no
metal–metal interactions and exchange couplings [29].
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Table 1. ESR parameters of Cu (II) complexes.

Complex g|| g⊥ gave

C-1 2.36 2.088 2.224
C-2 2.38 2.099 2.239

3.1. Absorption and Emission Studies

The UV-visible spectra of the Schiff base ligands L-1 and L-2 were analyzed in DMSO
and showed absorption bands between 330 and 425 nm [24,30]. The onset bands of the
Schiff bases are at 504 and 512 nm for L-1 and L-2, respectively, indicating that the bandgap
of the Schiff bases falls between 2.43 and 2.42 eV. Upon complexation with Cu(II) ions, the
absorption bands of the Cu(II)-complex shifted to the higher wavelength side (Figure 7) [28–30],
indicating the occurrence of ligand–metal charge transfer and the strong interaction of
lone-pair electrons of donor N-atoms with Cu2+ ions. The bandgap energies of the Cu(II)
complexes were found to be lower than those of the pure Schiff base compounds, as shown
in Table 2. This suggests that complexation with Cu(II) ions could enhance the absorption
and utilization of visible light by the Schiff base ligands for photocatalytic applications.
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Table 2. Experimental λonset (nm), bandgap energies (in eV), and surface area of Cu (II) complexes.

Name λonset (nm) Bandgap Energy (eV) Surface Area (m2
/g)

L-1 504 2.46 5.8
L-2 512 2.42 6.9
C-1 584 2.12 45.6
C-2 599 2.07 62.3

Surface areas of the ligands L-1 and L-2 were far smaller than Cu (II) complexes C-1
and C-2, as given in Table 2 [31].

DFT and TD-DFT calculations were also performed to gain a deeper understanding
of the electronic excitations observed in the experimental UV-vis spectra of C-1 and C-2
complexes. The B3LYP functional with a mixed basis set was used for the Cu(II) complexes,
with the 6-31G (d, p) basis set applied to the H, C, N, F, Cl, and O atoms, and the LANL2DZ
basis set used for the copper metal [30,32,33].

It is noteworthy that the electronic excitations for both C-1 and C-2 complexes exhibit
a narrow range from 445 to 448 nm, as shown in Table S2. C-1 has an intense absorption
at 445 nm. When chlorine atom is replaced with fluorine atom, the absorption energy
red-shifts slightly, and C-2 has an intense absorption at 448 nm. In both complexes, the
main transition is from HOMO to LUMO.

The decrease in HOMO and LUMO energies was observed after replacing chlorine
with fluorine (Table S3). The HOMO and LUMO orbitals of the C-1 and C-2 complexes
are spread out over the ligand and the copper ion. This suggests that charge is transferred
from the ligand to the copper ion during the electronic transitions. The HOMO is primarily
located on the ligand, while the LUMO is localized on the copper ion (Figure S6), indicating
that the ligand donates electrons to the copper ion upon excitation.

The photoluminescence spectra of the Cu (II) complexes (C-1 and C-2) were measured
in solid phase using a 2 nm slit. The complexes were excited at their respective maximum
wavelengths, 550 nm for C-1 and 555 nm for C-2. The spectra showed that the rate of
recombination of electron–hole pairs was low, [30] indicating that there was a potential for
charge separation or charge trapping in the Cu (II) complexes [24]. The spectral emission
was caused by the excited h+ and e- recombination. A lower emission indicates a lower rate
of charge carriers’ recombination. The emission strength of C-2 was found to be six-fold
lower than that of C-1, indicating that C-1 had a lower rate of recombination compared to
C-2. The smaller emission energy of the C-1 complex suggests that it has a lower rate of
recombination of charge carriers, as shown in Figure 8.

As shown in Figure 9, FESEM images were said to be the most important evidence
after coordination for determining the shape of Cu (II) complexes. The consequence showed
that there were ample Cu (II) complexes in nanostrips and nanoribbons with a smaller
facet ratio, similar to dm (diameter) and flat surfaces. This was an imaginable spectacle
in the solvo-thermal preparation of Cu (II) complex nanostrips and nanoribbons [25].
Figure 9 exhibits the morphology of reported complexes stimulated in ethanol solution.
The outcome designated that Cu2+ ions were successfully coordinated with ligands, and
the morphology compared with ligands was entirely changed.

3.2. Photocatalysis

The photocatalytic activity of Cu (II) complexes is investigated by the photodegrada-
tion of methylene blue (MB) and methyl violet (MV) dyes below the visible-light treatment.
The time-based change in MB [20] and MV [24] concentrations with treatment time in the
blank (no catalyst) and existence of C-1/C-2 are revealed in Figure 10. As the irradiation
time rises, MB and MV photodegrade more quickly. In the absence of a photocatalyst,
MB and MV are observed to experience 2% photodegradation, which may be the result
of photolysis. Under the same experimental circumstances, the photodegradation of MB
dye is 5% and 2%, respectively, in the presence of simple ligands and blank [24]. However,
after 30 min of exposure to visible light, the photodegradation of MB and MV dyes with
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C-1 was approximately 56% and 72%, respectively. Similarly, with the C-2 complex, the
photodegradation was approximately 97% (MB) and 99% (MV) after 30 min of visible-light
irradiation. As a result, C-2 exhibits greater photocatalytic activity in the current study
against MB and MV photodegradation compared to the C-1 complex.
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The photocatalytic decay of organic dye contaminants in the existence of Cu (II)
complexes was initiated by the photogenerated electrons and holes, which ultimately
produced free radicals such as •OH and O2

•. The photodegradation rate is straightly
proportional to the possibility for the generation of these radicals on the photocatalyst
surface and their reaction with the dye molecules [24]. The formation of hydroxyl radicals
throughout the MB and MV photodegradation processes in the occurrence of Cu (II)
complexes has been determined experimentally using benzoquinone (BQ) as a superoxide
radical quencher [23,24,34,35]. Under equal conditions, photodegradation of MB or MV
is carried out by adding 0.5 g of BQ in the presence of C-2. The photocatalytic activity
of C-2 was inhibited for the first 5 min of irradiation with the addition of BQ. Even after
30 min of irradiation in presence of BQ, photodegradation of the MB dye was about 20%
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(Figure 11a). As a result, in addition to O2
•, other active species such as holes were

also involved in dye degradation. The possible MB and MV photodegradation processes
using Cu (II) complexes as photocatalysts are shown in Figure 11b. The photocatalytic
performance of the Cu (II) photocatalyst to photodegrade the organic dyes is directly related
to the degree of generation of active O2

• radicals throughout the visible-light irradiation
method [25]. Therefore, the greater photocatalytic activity of C-2 than C-1 can be attributed
to observations in this study.
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of C-2 complex.

The kinetic curves of the C-2 photocatalytic reaction indicated that it had enhanced
catalytic efficacy over C-1 and blank photocatalysts (Figure 12). The photoreaction kinetic
graph was plotted against ln(C/Co) vs. time because of the photodegradation efficiency
of MB and MV dye solutions, as shown in Figure 12a,b, and followed the pseudo-first
order rate constant (Equation (1)). The rate constant (k) of photodegradation of MB dye
was 4.4 and 158.4 min−1, which is more than 35 times higher for C-2 as compared with
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C-1 complex [24]. Similarly, the k value of photodegradation for MV dye was 2.3 and
201.2 min−1, which is more than 87 times higher for C-2 as compared with C-1 complex [24].

ln(C0/C) = kt (1)
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under visible-light irradiation.

The results from the transient photocurrent measurement suggest that the C-2 complex
has a higher charge-species separation and relocation efficiency than the C-1 complex under
visible-light irradiation (Figure 13a). The high transient photocurrent response of C-2
indicates that the complex can generate and separate charge carriers effectively. In contrast,
C-1 showed a lower transient photocurrent response and a quicker decay, which suggests a
greater recombination rate for the charge carriers. These results suggest that C-2 can utilize
visible light more efficiently than C-1 to generate and separate charge carriers, leading
to a higher photocurrent response. Overall, the transient photocurrent measurement
provides valuable insights into the charge separation and recombination dynamics of the
Cu-complexes under visible-light irradiation [24].
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Seven cycles of photocatalytic degradation were utilized to study the reusable nature
of the C-2 catalyst. The catalyst C-2 utilized in every cycle of the photodegradation reaction
was separated and cleaned with double-distilled water, vacuum desiccated, and repro-
cessed in the succeeding sequence of the degradation reaction. As revealed in Figure 13b,
the photocatalytic degradation amount of the MB dye solutions still accomplished 97%
after seven sequences of photoreaction. It has been established that the C-2 catalyst has
an outstanding reuse characteristic, to a certain point. After the seventh cycle of photo-
catalysis, the photocatalyst C-2 was collected, verified by FTIR, and compared with pure
C-2 catalyst, as revealed in Figure 14 [23,24]. As a result, the C-2 complex is highly stable
under photocatalysis.
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4. Conclusions

In conclusion, the copper (II) complexes were effectively synthesized and characterized
using a variety of different methodologies. Cationic dyes were used in the experiment to
test the photocatalytic potential of the complexes by seeing how they were degraded in
the light. According to the findings, the photocatalytic performance of the C-2 complex
was superior to that of the C-1 complex. This superiority may be attributed to the C-2
complex’s narrower bandgap energy, bigger surface area, lower rate of recombination of
charge carriers, lower emission strength, and stronger photocurrent sensing. Based on
these observations, it would seem that the C-2 complex has the potential to function as an
efficient photocatalyst in the process of degrading organic dye pollutants.
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