
Citation: Peglow, T.J.; Vieira, M.M.;

Padilha, N.B.; Dalberto, B.T.; Silva

Júnior, H.d.C.; Rodembusch, F.S.;

Schneider, P.H. Pyridine-Based

Small-Molecule Fluorescent Probes

as Optical Sensors for Benzene and

Gasoline Adulteration. Photochem

2023, 3, 109–126. https://doi.org/

10.3390/photochem3010008

Academic Editor: Anna Cleta Croce

Received: 30 January 2023

Revised: 13 February 2023

Accepted: 15 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Pyridine-Based Small-Molecule Fluorescent Probes as Optical
Sensors for Benzene and Gasoline Adulteration
Thiago Jacobsen Peglow, Marcelo Marques Vieira, Nathalia Batista Padilha, Bianca T. Dalberto ,
Henrique de Castro Silva Júnior , Fabiano Severo Rodembusch * and Paulo Henrique Schneider *

Laboratory of Molecular Catalysis (LAMOCA), Instituto de Química, Universidade Federal do Rio Grande do
Sul (UFRGS), P.O. Box 15003, Porto Alegre 91501-970, RS, Brazil
* Correspondence: rodembusch@iq.ufrgs.br (F.S.R.); paulos@iq.ufrgs.br (P.H.S.)

Abstract: Here we present simple fluorophores based on the pyridine core, obtained with straight-
forward synthetic methodologies. These compounds present in solution absorption maxima in the
UV region and fluorescence emission of between 300 and 450 nm, depending on the solvent and
chemical structure of the fluorophore. The nature of the solvent was shown to play a fundamental
role in their excite-state deactivation, which allowed successful exploration of these compounds as
optical sensors for benzene and fuel adulteration in gasoline. In ethanolic solution, upon the addition
of benzene, in general the fluorophores presented fluorescence quenching, where a linear correlation
between the emission intensity and the amount of benzene (quencher) was observed. In addition,
the application of an optical sensor for the detection of fuel adulteration in commercial standard
and premium gasoline was successfully presented and discussed. Theoretical calculations were also
applied to better understand the solvent–fluorophore interactions.

Keywords: organylethynylpyridine; fuel adulterants; benzene sensing; commercial gasoline;
optical sensor

1. Introduction

Although renewable fuels have been widely used in our daily lives, petroleum-based
fuels are still an energy source of global importance. In this context, the high dependence
on these fuels makes their illegal adulteration a highly lucrative endeavor. The addition of
industrial solvents as adulterants in petroleum-based fuels is stimulated by price disparities,
usually caused by different taxation between them. However, illegal adulteration can have
several impacts, such as increased toxic emissions and vehicle malfunctions [1–4].

Fuel adulteration, especially of commercial gasoline, involves the addition of or-
ganic solvents, methanol, or ethanol in concentrations higher than those established by
current legislation. Thus, numerous analytical techniques have been used in the litera-
ture to evaluate and detect possible adulterations in fuels. Approaches based on simple
physicochemical methods can be carried out, such as relative density measurements and
evaporation/distillation methods. However, more complex analytical methods such as
techniques based on the use of chemiresistors [5] and gas chromatography–mass spectrom-
etry [6] (GC–MS) can be used to obtain more reliable results. These techniques usually
require experienced professionals for the operation and data processing; in addition, they
are dangerous techniques using flammable systems, expensive, and time-consuming. This
makes it extremely important to develop new and easy-to-implement technologies to
monitor fuel compliance. Other strategies employed are based on polymeric electronic
gas sensors [7], polydiacetylene (PDA) paper-based colorimetric sensors [8–10], optical
fiber sensors [11], membrane-type surface stress sensors [12], and quartz crystal microbal-
ance (QCM) sensors [13–15]. In this way, a promising and easy-to-execute alternative is
based on the use of organic dyes as optical sensors or marking materials. This technique
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is based on the absorption and/or emission properties obtained according to changes
in dye concentration. Some fluorescent compounds have already been reported in the
literature, such as rhodamine [16], polymethine [17,18], squaraine [19], anthraquinone [20],
4-dimethylamino-4-nitrostilbene [21], and 2,1,3-benzothiadiazole (BTD) derivatives [22].

Based on the photophysical properties of pyridine-based compounds, our proposal
presents differences concerning the chemosensors presented in the literature for this appli-
cation, such as the investigated fuel (diesel, kerosene, and jet fuel) or even the identification
methodology (test strip) [23,24]. However, taking the adulteration in gasoline using ethanol
into account, similar studies can be found, using flavonoid dyes [25], Rhodamine 800, and
Atto 680 dyes [26] (Figure 1). In addition, UV-Vis studies have also been reported using
pyridinium N-phenolate betaine dyes (Figure 1) [27–29].
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In this context, recently described BTD derivatives (Figure 1) [22] were used as sol-
vatochromic dyes in a similar way to the one presented here, being easy to perform and
with high linearity, as well as showing low sensitivity to concentration by fluorescence
spectroscopy. However, the fluorescent compounds used as fuel sensors still represent a
small group of structures, usually formed by complex and/or expensive molecules, and
obtained through multiple reaction steps. In this way, the use of small fluorescent molecules
as chemosensors could become a cheap and easily obtainable alternative in the evaluation
of possible fuel adulteration.

In general, the incorporation of a nitrogen atom in polycyclic aromatic structures
can induce or improve their electromagnetic, physicochemical, optical, and structural
properties [30–32]. Through chemical modification/doping of the π-conjugated system
with nitrogen, it is possible to control the main characteristics of the electronic structure,
including the band gap, optical absorption spectra, photoluminescence, and redox behavior.
As these parameters can be easily adjusted, many heteroaromatic compounds have been ap-
plied as NIR-active dyes [33], two-photon absorbers [34], and fluorescence sensors [35]. In
addition, nitrogen doping is employed as a means of band-gap adjustment in π-conjugated
polymers [36] and graphene nanoribbons [37], and to obtain small-molecule semicon-
ductors [38]. Finally, the literature also reports some interesting studies using push–pull
systems based on pyridine groups in dye-sensitized solar cells [39], hole-transport material
in perovskite solar cells [40–42], and as an optical sensor that can be used as a fluorescent
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probe for the detection of nitroaromatic explosives [43,44]. Recently, the electronic behav-
ior of small molecules has also been studied in ITIC, a new generation of non-fullerene
electron-accepting small molecules for organic photovoltaics (OPVs), due to nitrogen sub-
stitution/insertion in different positions of the molecule [45]. In addition, small nitrogen
compounds from 2-N-aminoquinazolines were also evaluated as fluorophores in solution
and solid state [46]. Our research group has focused attention on the influence of chalco-
gens on the reactivity and properties of organochalcogen compounds [47–49]. Finally, we
demonstrate here the photophysical characterization of 2-aryl-3-(organylethynyl)pyridine
derivatives (Figure 1), recently described by us as substrates in visible-light-promoted
selenocyclization reactions for the formation of Se-functionalized benzo[h]quinolines [50].
In addition, to broaden the scope of application of these compounds, based on their elec-
tronic features, they were successfully employed as optical sensors for the detection of
fuel adulteration in commercial standard and premium gasoline. It should be noted that
the application of small molecules is often not explored in depth, leaving a barrier of
knowledge behind molecules of “greater complexity”.

2. Materials and Methods
2.1. General Information

Unless otherwise stated, all reagents were purchased from commercial suppliers and
used without further purification. Compounds 1,4-dioxane and Et3N (triethylamine) were
purified and dried under classical methods [51]. Solvents used in liquid–liquid extraction
and as eluents for chromatographic purification were distilled before use. Reactions were
monitored by thin-layer chromatography (TLC) using silica gel 60 F254 aluminum sheets,
and visualization of the spots was carried out under UV light (254 nm) and stained with
iodine or with a mixture of 5% vanillin in 10% H2SO4 using heat as developing agent.
Column chromatography was performed on silica gel (230–400 mesh). Some 1H NMR
spectra were obtained on a Bruker Avance III HD 400 MHz (Billerica, MA, EUA) employing
a direct broadband probe at 400 MHz. The spectra were recorded in CDCl3 solutions.
The chemical shifts are reported in ppm and referenced to tetramethylsilane (TMS) as
the internal reference. Coupling constants (J) are reported in Hertz. Abbreviations to
denote the multiplicity of a particular signal are s (singlet), d (doublet), dd (doublet of
doublet), t (triplet), quint (quintuplet), and m (multiplet). Some 13C{1H} NMR spectra
were obtained on a Bruker Avance III HD 400 MHz employing a direct broadband probe
at 100 MHz. The chemical shifts are reported in ppm, referenced to the solvent peak
of CDCl3 (δ 77.0 ppm). Melting points were recorded on Buchi Melting Point M-560
equipment (Flawil, Switzerland). High-resolution mass spectra (HRMS) were recorded
on a Micromass Q-TOF spectrometer (Milford, MA, EUA), using Atmospheric Pressure
Chemical Ionization (APCI).

2.2. Synthesis
2.2.1. General Procedure for the Synthesis of Starting Materials 1a–e

The 2-chloro-3-(organylethynyl)pyridines 1a–e were prepared according to published
procedures [52–55] (Scheme 1). PdCl2(PPh3)2 (5 mol%, 0.105 g) and triethylamine (8.0 mL)
were added to a 50.0 mL two-mouthed flask equipped with magnetic stirring and reflux
system under argon atmosphere. After that, the respective 3-bromo-2-chloropyridine 4
(3.0 mmol) was added, followed by the addition of organylacetylene 5 (3.3 mmol), and
the mixture was stirred for 5 min at room temperature. Then CuI (2 mol%, 0.011 g) was
added, and the temperature was increased to 65 ◦C (oil bath). The reaction remained under
magnetic stirring for 24 h. After that, the reaction was extracted with ethyl acetate, and the
organic phase was washed with aqueous HCl 1% solution until complete neutralization of
the aqueous phase. The organic phase was separated, dried over MgSO4, filtered, and the
solvent evaporated under reduced pressure. The crude material was further purified by
column chromatography (hexanes/ethyl acetate) on silica gel.
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2.2.2. General Procedure for the Synthesis of 2-aryl-3-(organylethynyl)pyridines 3a–k

The 2-aryl-3-(organylethynyl)pyridines 3a–k were prepared according to a published
procedure, with minor changes [56]. In a dried sealed Schlenk tube under argon atmosphere,
the appropriate 2-chloro-3-(organylethynyl)pyridine 1 (2.0 mmol), aryl boronic acid 2
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2-Phenyl-3-(phenylethynyl)pyridine (3a) [54,55]: purified by column chromatogra-
phy (hexane/ethyl acetate = 95:5); yield: 0.413 g (81%); brown solid, m.p: 69–71 ◦C; 1H
NMR (CDCl3, 400 MHz) δ (ppm) = 8.64 (dd, J = 4.8 and 1.7 Hz, 1H); 8.03–8.00 (m, 2H);
7.93 (dd, J = 7.8 and 1.7 Hz, 1H); 7.52–7.37 (m, 5H); 7.34–7.31 (m, 3H); 7.25 (dd, J = 7.8 and
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3-(Phenylethynyl)-2-(4-tolyl)pyridine (3b) [54]: purified by column chromatography
(hexane/ethyl acetate = 95:5); yield: 0.458 g (85%); yellowish solid, m.p: 52–54 ◦C; 1H NMR
(CDCl3, 400 MHz) δ (ppm) = 8.62 (dd, J = 4.8 and 1.8 Hz, 1H); 7.95 (d, J = 8.2 Hz, 2H);
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138.8, 136.5, 131.3, 129.2, 128.6, 128.5, 128.3, 122.9, 121.1, 117.6, 94.4, 87.6, 21.4.

2-(4-Chlorophenyl)-3-(phenylethynyl)pyridine (3c) [54,55]: purified by column chro-
matography (hexane/ethyl acetate = 95:5); yield: 0.364 g (63%); white solid, m.p: 121–123 ◦C;
1H NMR (CDCl3, 400 MHz) δ (ppm) = 8.62 (dd, J = 4.8 and 1.7 Hz, 1H); 7.99 (d, J = 8.5 Hz,
2H); 7.92 (dd, J = 7.8 and 1.7 Hz, 1H); 7.46 (d, J = 8.5 Hz, 2H); 7.43–7.38 (m, 2H); 7.35–7.32
(m, 3H); 7.24 (dd, J = 7.8 and 4.8 Hz, 1H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 158.1,
148.5, 140.9, 137.7, 134.9, 131.3, 130.7, 128.8, 128.4, 128.0, 122.5, 121.6, 117.7, 94.9, 87.0.

2-(4-Methoxyphenyl)-3-(phenylethynyl)pyridine (3d) [54,55]: purified by column chro-
matography (hexane/ethyl acetate = 90:10); yield: 0.445 g (78%); yellowish oil; 1H NMR
(CDCl3, 400 MHz) δ (ppm) = 8.60 (dd, J = 4.8 and 1.5 Hz, 1H); 8.03 (d, J = 8.6 Hz, 2H); 7.89 (dd,
J = 7.8 and 1.5 Hz, 1H); 7.45–7.41 (m, 2H); 7.34–7.30 (m, 3H); 7.18 (dd, J = 7.8 and 4.8 Hz, 1H);
7.01 (d, J = 8.6 Hz, 2H); 3.86 (s, 3H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 160.2, 159.0,
148.4, 140.8, 131.9, 131.3, 130.7, 128.5, 128.3, 122.9, 120.8, 117.2, 113.2, 94.3, 87.7, 55.3.

2-(Naphthalen-2-yl)-3-(phenylethynyl)pyridine (3e): purified by column chromatog-
raphy (hexane/ethyl acetate = 95:5); yield: 0.336 g (55%); yellowish solid, m.p: 76–78 ◦C; 1H
NMR (CDCl3, 400 MHz) δ (ppm) = 8.69 (dd, J = 4.8 and 1.7 Hz, 1H); 8.60 (s, 1H); 8.16 (dd,
J = 8.6 and 1.7 Hz, 1H); 7.98–7.89 (m, 4H); 7.55–7.49 (m, 2H); 7.40–7.36 (m, 2H); 7.31–7.24 (m,
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4H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 159.3, 148.6, 140.9, 136.7, 133.4, 133.0, 131.4,
129.1, 128.6, 128.4, 127.6, 127.4, 126.9, 126.6, 126.1, 122.7, 121.4, 118.1, 94.8, 87.6. HRMS
(APCI-QTOF) calculated mass for C23H16N [M + H]+: 306.1283, found: 306.1272.

3-(Phenylethynyl)-2-(2-tolyl)pyridine (3f) [54,55]: purified by column chromatogra-
phy (hexane/ethyl acetate = 95:5); yield: 0.490 g (91%); yellowish oil; 1H NMR (CDCl3,
400 MHz) δ (ppm) = 8.58 (dd, J = 4.9 and 1.7 Hz, 1H); 7.83 (dd, J = 7.8 and 1.7 Hz, 1H); 7.41
(d, J = 7.5 Hz, 1H); 7.33–7.24 (m, 3H); 7.21–7.14 (m, 6H); 2.26 (s, 3H). 13C{1H} NMR (CDCl3,
100 MHz) δ (ppm) = 161.8, 147.7, 139.4, 138.9, 135.9, 131.1, 129.8, 129.1, 128.3, 128.1, 128.0,
125.1, 122.4, 121.3, 119.4, 94.5, 86.5, 19.4.

2-(2-Chlorophenyl)-3-(phenylethynyl)pyridine (3g): purified by column chromatog-
raphy (hexane/ethyl acetate = 95:5); yield: 0.324 g (56%); yellowish oil; 1H NMR (CDCl3,
400 MHz) δ (ppm) = 8.63 (dd, J = 4.8 and 1.7 Hz, 1H); 7.90 (dd, J = 7.8 and 1.7 Hz, 1H);
7.53–7.46 (m, 2H); 7.38–7.34 (m, 2H); 7.30–7.19 (m, 6H). 13C{1H} NMR (CDCl3, 100 MHz) δ
(ppm) = 159.3, 148.0, 139.1, 138.8, 133.0, 131.3, 130.9, 129.6, 129.4, 128.5, 128.2, 126.4, 122.4,
122.2, 120.1, 95.0, 86.0. HRMS (APCI-QTOF) calculated mass for C19H13ClN [M + H]+:
290.0737, found: 290.0731.

2-Phenyl-3-(4-tolylethynyl)pyridine (3h): purified by column chromatography (hex-
ane/ethyl acetate = 95:5); yield: 0.484 g (90%); yellow solid, m.p: 65–67 ◦C; 1H NMR (CDCl3,
400 MHz) δ (ppm) = 8.61 (dd, J = 4.8 and 1.7 Hz, 1H); 8.03–8.00 (m, 2H); 7.89 (dd, J = 7.8
and 1.7 Hz, 1H); 7.50–7.40 (m, 3H); 7.28 (d, J = 8.0 Hz, 2H); 7.20 (dd, J = 7.8 and 4.8 Hz,
1H); 7.11 (d, J = 8.0 Hz, 1H); 2.33 (s, 3H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 159.4,
148.2, 140.6, 139.2, 138.8, 131.2, 129.3, 129.1, 128.8, 127.8, 121.4, 119.7, 118.1, 94.8, 86.8, 21.5.
HRMS (APCI-QTOF) calculated mass for C20H16N [M + H]+: 270.1283, found: 270.1272.

3-((4-Chlorophenyl)ethynyl)-2-phenylpyridine (3i): purified by column chromatog-
raphy (hexane/ethyl acetate = 95:5); yield: 0.399 g (69%); yellowish solid, m.p: 89–91 ◦C;
1H NMR (CDCl3, 400 MHz) δ (ppm) = 8.66 (dd, J = 4.8 and 1.7 Hz, 1H); 8.00–7.98 (m, 2H);
7.92 (dd, J = 7.8 and 1.7 Hz, 1H); 7.51–7.44 (m, 3H); 7.32–7.25 (m, 5H). 13C{1H} NMR (CDCl3,
100 MHz) δ (ppm) = 159.8, 148.7, 140.7, 139.3, 134.7, 132.6, 129.3, 128.9, 128.8, 127.9, 121.4,
121.3, 117.6, 93.3, 88.4. HRMS (APCI-QTOF) calculated mass for C19H13ClN [M + H]+:
290.0737, found: 290.0723.

3-(Oct-1-yn-1-yl)-2-phenylpyridine (3j): purified by column chromatography (hex-
ane/ethyl acetate = 97:3); yield: 0.268 g (51%); yellowish oil; 1H NMR (CDCl3, 400 MHz) δ
(ppm) = 8.56 (dd, J = 4.8 and 1.7 Hz, 1H); 7.96–7.93 (m, 2H); 7.77 (dd, J = 7.8 and 1.7 Hz,
1H); 7.45–7.36 (m, 3H); 7.13 (dd, J = 7.8 and 4.8 Hz, 1H); 2.33 (t, J = 7.0 Hz, 2H); 1.51 (quint,
J = 7.0 Hz, 2H); 1.37–1.21 (m, 6H); 0.88 (t, J = 7.0 Hz, 3H). 13C{1H} NMR (CDCl3, 100 MHz)
δ (ppm) = 159.3, 147.7, 140.9, 139.4, 129.1, 128.4, 127.6, 121.1, 118.5, 96.1, 78.4, 31.2, 28.4,
28.1, 22.4, 19.5, 14.0. HRMS (APCI-QTOF) calculated mass for C18H22N [M + H]+: 264.1752,
found: 264.1730.

6-Methyl-2-phenyl-3-(phenylethynyl)pyridine (3k): purified by column chromatog-
raphy (hexane/ethyl acetate = 95:5); yield: 0.360 g (67%); yellowish solid, m.p: 101–103 ◦C;
1H NMR (CDCl3, 400 MHz) δ (ppm) = 8.01–7.98 (m, 2H); 7.78 (d, J = 7.9 Hz, 1H); 7.49–7.34
(m, 5H); 7.29–7.26 (m, 3H); 7.06 (d, J = 7.9 Hz, 1H); 2.61 (s, 3H). 13C{1H} NMR (CDCl3,
100 MHz) δ (ppm) = 159.0, 157.6, 140.7, 139.5, 131.2, 129.3, 128.6, 128.3, 128.2, 127.8, 123.0,
121.1, 114.7, 93.6, 87.7, 24.7. HRMS (APCI-QTOF) calculated mass for C20H16N [M + H]+:
270.1283, found: 270.1269.

2.3. Photophysical Characterization

Spectroscopic-grade solvents benzene, ethanol, dichloromethane, and hexane were used
for photophysical characterization. UV-Vis absorption spectra in solution (10−5 mol·L−1)
were acquired on a Shimadzu UV-2450 spectrophotometer (Kyoto, Japan) and steady-state
fluorescence spectra were obtained on a Shimadzu spectrofluorometer model RF-5301PC.
The maximum absorption wavelength was used as the excitation wavelength to acquire
the respective fluorescence emission spectra. All measurements were performed at room
temperature (25 ◦C). Based on the emission intensities in benzene and ethanol, additional
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exploratory fluorescence titrations were performed in ethanol at different amounts of benzene.
In this way, ethanolic solutions of selected synthesized compounds at a concentration of
~10−5 M were prepared. To this solution, amounts of 10% benzene (v/v) were added up to
100% benzene (v/v). For these experiments, the absorption maxima in ethanol were used as
excitation wavelengths.

2.4. Fuel Adulteration Sensing

Brazilian commercial gasoline (standard or premium) was previously treated as de-
scribed in the literature [22]. This procedure is essential since commercial gasoline in Brazil
presents 27% (standard) or 25% (premium) of anhydrous ethanol. Briefly, the ethanol
content was removed by the salting-out methodology. A second treatment was necessary
since commercial gasoline presents tagging dyes, which are added for fiscal and security
purposes and must be removed before experiments. In this sense, the samples were passed
in a column containing silica 60 (230–400 mesh), collected in an Pyrex®narrow-mouth grad-
uated Erlenmeyer flask (Corning, EUA), and kept under stirring in presence of activated
charcoal for 2 h. The mixture was filtered to produce colorless gasoline, which was stored
at 4 ◦C. Solutions of selected synthesized compounds at a concentration of ~10−5 M were
prepared using the treated standard and premium types of gasoline (4 mL). To this solution,
amounts of 5% ethanol (v/v) were added up to 50% ethanol in gasoline (v/v). For these
experiments, the absorption maxima in gasoline were used as excitation wavelengths.

2.5. Theoretical Calculations

All Density Functional Theory calculations used in this work were performed with the
quantum chemistry package ORCA v5.0.3 [57–59]. The compounds 3a, 3e, 3f, and 3j were
chosen as models for the calculations. The initial molecular geometries for the molecules
were obtained by conformational sampling performed by the semiempirical CREST soft-
ware [60] with the ALPB implicit solvation module [61] active to simulate benzene and
ethanol environments. The most stable conformers were subsequently reoptimized using
the ωB97X-D3 [62]/Def2-TZVP [63] level of theory with tight convergence criteria and the
Conductor-like Polarizable Continuum Model (CPCM) [64] implicit solvation active. The
resulting relaxed geometries have no imaginary vibrational modes (3a, 3e, and 3f), or the
imaginary vibrational mode remaining (3f) is less than −20 cm−1, which is characteris-
tic of numerical noise and not the formation of a saddle-point. Absorption spectra, from
which the electronic density difference was obtained, used the sameωB97X-D3/Def2-TZVP
level of theory for the first 80 electronic transitions with Tamm–Dancoff approximation
active [65].

3. Results and Discussion
3.1. Synthesis

The synthesis of 2-aryl-3-(organylethynyl)pyridines 3 is little explored in the literature.
We found two protocols starting from halopyridines (Scheme 3). The first, described
by Shibata and coworkers [66], adopts two distinct Suzuki-type cross-coupling reactions
using 3-organylethynyl-2-chloropyridines 1 (obtained by Sonogashira-type cross-coupling
reactions) and aryl boronic acids 2 (1.2–1.5 equiv) (Scheme 3a). The second, described by
Shestakov and coworkers [67], presents an inverse reaction proposal, initially obtaining 4
by a Suzuki-type cross-coupling reaction. Then, these 2-aryl-3-bromopyridines 4 were used
together with organylacetylenes 5 in a Sonogashira-type cross-coupling reaction to give 3
(Scheme 3b).
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(AMPHOS)2PdCl2 (5 mol%), K2CO3 (2.0 equiv), toluene:H2O (10:1), 100 ◦C. Condition II: PEPSSI-IPr
(5 mol%), tBuOK (1.3 equiv), iPrOH, 40–60 ◦C.

To begin our studies, we performed the synthesis of commercially unavailable 3-
organylethynyl-2-chloropyridines 1. For this, based on a procedure described in the lit-
erature, a Sonogashira-type cross-coupling reaction was promoted using the respective
organylacetylene 5 (1.1 equiv), PdCl2(PPh3)2 (5 mol%), CuI (2 mol%) in triethylamine under
an argon atmosphere at 65 ◦C for 24 h to give the 3-(organylethynyl)-2-chloropyridines 1a–h
(Scheme 1). The next synthesis step consists of a Suzuki-type cross-coupling reaction, based
on the literature. Thus, the reaction was between 3-(organylethynyl)-2-chloropyridines
1 and arylboronic acids 2 (2.0 equiv), using Pd(PPh3)4 (5 mol%) as a catalyst and K3PO4
(2.0 equiv) as a base in 1,4-dioxane at 90 ◦C under an argon atmosphere in a sealed flask.
By this method, eleven 2-aryl-3-(organylethynyl)pyridines 3 were obtained in 55–91% yield
after 24 h of reaction (Scheme 2, Figure 2).
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boronic acids 2a–q (4.0 mmol), Pd(PPh3)4 (5 mol%), K3PO4 (2.0 equiv), 1,4-dioxane (8 mL) at 90 ◦C
(oil bath) under an argon atmosphere was kept under magnetic stirring for 24 h in a sealed flask.
2 Isolated yields.

The Suzuki-type cross-coupling reaction was tolerant of a variety of neutral, electron-
donating, and electron-withdrawing substituents at the aromatic ring of the 3-phenylethynyl
and 2-aryl moieties of pyridines, allowing the synthesis of several 2-aryl-3-(organylethynyl)
pyridines 3 in moderate to excellent yields (Figure 2, 3a–i). It should be noted that a bulky
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boronic acid (naphthalen-2-ylboronic acid) could also be used; in this case, 3e was obtained
in 55% yield. We also prepared a derivative containing an aliphatic chain (oct-1-yne) in the
3-ethynyl portion of pyridine, giving 3j in 51% yield under standard reaction conditions
(Figure 2, 3j). Finally, we evaluated the insertion of a methyl group attached to the pyridine
core, giving 3k in 67% yield (Figure 2, 3k).

3.2. Photophysics and Optical Sensing

The photophysical characterization in solution was performed using benzene, ethanol,
dichloromethane, and hexane. The choice of solvents was based on the possible inter-
actions that could occur with the fluorophores, comprising aromatic, non-polar, polar
protic, and aprotic solvents. Figures 3 and 4 present the photophysical characterization
of selected compounds, which were chosen based on their electronic properties. The rel-
evant photophysical data are highlighted in Table 1. It can be observed that the main
absorption bands are located between 250 and 350 nm, with maxima around 300 nm. These
compounds presented different shapes and intensities based on their electronic structure.
No significant solvatochromic effect was observed for these compounds, indicating an
almost absent charge-transfer character in the ground state. A particular behavior was
observed in compound 3j (Figure 3e), where there is a large variation in the absorption
maximum position depending on the solvent, indicating that the phenyl group attached
to the triple bond, absent in this derivative, plays an important role in the location of the
absorption maxima of these compounds. Finally, the high molar absorptivity coefficient
values (ε~104 cm−1·M−1) indicate that the observed electronic transitions are spin and
symmetry-allowed 1π-π* transitions. In general, the other derivatives presented similar
photophysical behavior (Figures S23–S28).
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Table 1. Photophysical data of pyridine-based fluorophores 3a–3k in solution, where λabs and λem

are the absorption and emission maxima (nm), respectively, ε is the molar extinction coefficient
(M−1·cm−1), and ∆λST is the Stokes shift (nm/cm−1).

Fluorophores 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k

Benzene
λabs 298 300 300 296 308 303 306 301 303 278 299
ε 15,300 10,691 15,155 13,381 12,963 15,972 12,214 16,554 16,634 9706 15,051
λem 355 360 368 375 378 346 368 363 364 317 365

∆λST 57/5388 60/5556 68/6159 79/7117 70/5942 43/3592 62/5506 62/5674 61/5531 39/4425 66/6048

Ethanol
λabs 294 296 295 302 305 305 304 298 299 295 295
ε 15,938 9829 15,684 12,860 10,484 14,123 14,278 15,174 16,634 10,802 15,532
λem 361 357 373 376 377 340 357 369 365 340 367

∆λST 67/6313 61/5773 78/7089 74/6517 72/5760 35/3375 53/4884 71/6457 66/6048 45/4487 72/6650

Hexane
λabs 296 298 298 302 308 305 304 299 302 266 297
ε 13,706 11,898 16,917 15,814 13,153 14,459 12,730 17,244 16,802 10,802 15,532
λem 337 338 338 358 370 337 339 338 359 310 338

∆λST 41/4110 40/3971 40/3971 56/6658 62/6082 32/3113 35/3396 39/3859 57/5257 44/5336 41/4084

Dichloromethane
λabs 297 298 298 302 309 297 306 300 302 265 297
ε 10,838 13,450 16,388 16,162 11,819 11,433 14,794 16,899 15,962 8610 15,692
λem 360 361 373 378 379 346 368 372 364 344 365

∆λST 63/5892 63/5856 75/6747 76/6658 70/3461 49/4768 62/5506 72/6452 62/5640 79/8666 68/6273

The fluorescence emission spectra of the selected compounds are presented in Figure 4.
The relevant data are also summarized in Table 1. The spectra were acquired using the
absorption maxima as excitation wavelengths. The compounds present fluorescence emis-
sion between 300 and 450 nm, with maxima depending on their electronic structure, as
well as the environment polarity. Although the ground-state results do not present very
significant photophysical differences between the fluorophores and studied solvents, these
compounds in the excited state show a very interesting behavior. Once again, the other
derivatives presented similar photophysical behavior (Figures S23–S28).
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A significant variation in the maxima location could be observed as a function of the
polarity of the medium, especially when comparing the same fluorophore. For instance, in
hexane the emission maxima lie with higher energies. On the other hand, in highly polar
solvents, the emission maxima shift to longer wavelengths (positive solvatochromism),
suggesting that these compounds are more polar in the excited state. Moreover, in benzene
and dichloromethane, these values tend to be similar, indicating that regardless of the lower
polarity of benzene, more effective interaction with this solvent compensates for the higher
polarity of dichloromethane. Finally, in ethanol, a solvent that exhibits more specific and
strong interactions such as hydrogen bonding with fluorophores, the emission maxima
values are also shifted towards the red, as expected. An exception to these observations is
found in compound 3j, probably due to its lower π-conjugation provided by the absence
of the phenyl linked to the double bond. In this case, no clear tendency is observed
between the location of the emission maxima toward the solvent, indicating a diverse
polarity of this derivative in comparison with its analogs. A relatively large Stokes shift
indicates significant energy loss in the excited state. Based on these results, we can conclude
that the electronic structure of these fluorophores, which is relatively simple, affects their
photophysical properties in the excited state.

We would like to highlight that the most significant photophysical behavior in these
compounds was the relative emission intensity as a function of the solvent. In ethanol, it
was observed that the fluorescence intensity was 2-fold (3d), 3-fold (3a–3c, and 3k), 5-6-
fold (3e, and 3g–3h), and even 39-fold (3f) higher if compared to the intensity in benzene.
Similarly, the fluorescence intensities change depending on whether ethanol or hexane
are used. Intensities of 2-fold (3g and 3h), 3-fold (3e and 3i), 4-fold (3d), and 5-fold (3f)
higher were also observed in ethanol if compared to hexane. On the contrary, intensities of
2-fold (3a–3b, and 3k) and 5-fold (3j) higher were also observed in hexane if compared to
ethanol. These observations allowed us to investigate some selected compounds for optical
sensing. Benzene is recognized as one of the contaminants with the clearest evidence of
carcinogenicity [68]. This compound is classified as carcinogenic to humans (Group 1) by
the International Agency for Research on Cancer [69], and as highlighted by Lachenmeier
et al., since the early 1990s, concerns about benzene contamination of food have been raised.
In this way, since this compound can be found in processed foods and beverages [70,71], its
detection is worth investigating.

Regarding the spectrophotometric titrations in ethanol, upon the addition of benzene,
in general, the fluorophores presented fluorescence quenching (Figures S29–S34). However,
as presented in Figure 4, three fluorophores (3c, 3e, and 3i) showed a linear correlation
between the emission intensity and the amount of benzene (quencher). Fluorophores 3c and
3i presented linearity in the studied concentration range of benzene (0–80% benzene), with
R2 values around 0.993 (3c) and 0.989 (3i). It is worth mentioning that compound 3e showed
two linear correlations, the first in the range of 10 to 45% of added benzene (R2 = 0.991) and
the second in the range of 30 to 80% of benzene (R2 = 0.985). Based on this behavior, the
respective Stern–Volmer quenching constants (KSV) were calculated from the above titration
experiments [72]. In this proposal, since the fluorophore concentration was constant in all
mixtures, the benzene molecule was taken as the quencher. From the linear Stern–Volmer
plots (Figure 5, bottom), the KSV constants were obtained as the slope of the linear plot with
values around 0.05 M−1 (Table 2). In addition, the respective bimolecular quenching rate
constants (kq = KSV/τ0) were obtained, using a fluorescence lifetime of benzene in ethanol
of around 10 ns [73]. Values around 5 × 106 M−1·s−1 were obtained, which are three orders
of magnitude smaller than the diffusion rate constants (kdiff ~109 M−1·s−1), according to the
Smoluchowski–Stokes–Einstein theory [74], suggesting a dynamic mechanism (collisional
quenching). Finally, the respective limits of detection (LOD) were also calculated.
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Table 2. Quenching constants and detection limits of fluorophores 3c, 3e, and 3i.

Fluorophores Range
(Benzene %)

KSV
(M−1)

kq
(M−1·s−1)

LOD 1

(Benzene %)

3c 0–80 0.090 9.0 × 106 4.6
3e 10–45 0.021 2.1 × 106 6.0
3e 30–80 0.054 5.4 × 106 12.1
3i 0–80 0.051 5.1 × 106 7.4

1 from [75].

On the other hand, fuel adulteration, particularly of commercial gasoline, is one of the
major illegal practices nowadays involving the addition of organic solvents or alcohol in
different amounts than those recommended by the legislation [22]. Again, in this specific
issue, it is desirable to develop sensors for fuel-quality monitoring. As already observed in
this investigation, the good solubility of the fluorophores in hexane, as well as their tailored
intensity in this solvent and ethanol, allowed us to explore their ability to sense gasoline.
This application is particularly interesting in our country since Brazilian gasoline presents
27% of anhydrous ethanol for standard and 25% for premium types of gasoline [76]. In
this way, fluorophore 3f was chosen as a model, and its photophysical behavior was first
investigated in real samples of commercial gasoline and anhydrous ethanol, as shown
in Figure 6a. It can be observed that 3f presented a similar behavior if compared to
hexane/ethanol, with increased emission in anhydrous ethanol (4-fold) if compared to
commercial common gasoline (Figure 6a).

Fluorescence titrations of anhydrous ethanol in commercial standard (Figure 6b) and
premium (Figure 6c) types of gasoline showed that by adding ethanol into the gasoline, the
fluorescence emission intensity increases, as expected. Dilution effects were excluded since
the addition of the respective gasoline into the initial samples (control experiment) led to
different results, where there was no observed increase in fluorescence. These preliminary
results corroborate the potential application of this fluorophore as fuel optical sensors
for adulteration by the addition of ethanol. In addition, in both gasoline samples it was
possible to observe a linear correlation in the range of 0–40% of added anhydrous ethanol
with limits of detection (LOD) of ~4% for both commercial standard and premium gasoline.



Photochem 2023, 3 120

This latter seems to be an interesting result since adulterated gasoline presents in general a
higher percentage of anhydrous ethanol than recommended by the Brazilian legislation.
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3.3. Theoretical Calculations

As stated in the “computational details” section, the lowest conformers were obtained
from a conformational sampling and were reoptimized using the density functional theory
with implicit benzene and ethanol solvation. The change in the solvation environment does
not significantly affect the resulting optimized geometries since the ground states obtained
for the studied compounds have negligible differences under benzene and ethanol, with
root-mean-square deviations (RMSD) of only ~0.04 Å. In addition, the resulting geometries
have nearly identical frontier orbital features under benzene and ethanol, with immediately
distinguishable π-conjugation spreading linearly through the triple bond over the molecule
and a much smaller electronic probability density spreading to the lateral substituents
(Figure 7). The HOMO–LUMO gaps under CPCM are also quite similar, with ethanol
affording a slightly greater stabilization and, consequently, a larger H–L gap by about
0.03 eV when compared to benzene, as depicted in Figure 7.

When optimized to the first excited state (S1), under CPCM, the geometric results re-
mained mostly solvent-agnostic with benzene and ethanol generating compatible displace-
ments. Compound 3a optimized to S1 experienced only a small displacement in benzene,
showing RMSD = 0.27 Å (ethanol = 0.32 Å) compared to S0. Compound 3e afforded S1
in benzene with RMSD equal to 0.55 Å (ethanol = 0.49 Å). Additionally, for compound 3f
an RMSD equal to 0.45 Å (ethanol = 0.52 Å) was found, while compound 3j showed the
smallest displacements of the series with an RMSD equal to 0.26 Å (ethanol = 0.28 Å), as
summarized in Figure 8.
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The first electronic transition, under CPCM, follows the same trend for all the studied
molecules: a higher than 90% HOMO→LUMO (π→π*) participation that largely involves
the electron-rich triple bond acting as a hole (electron donor) in a hole–particle system
depicted by electronic density difference (Figure 9, top). The repetitive behavior described
by implicit solvation with CPCM does not match the diversity of results observed in our
experimental results. These discrepancies underline the shortcomings of using implicit
solvation models [64] and the fact that the continuum scheme cannot correctly describe
important non-covalent interactions such as π-stackings [77] that may be active in a real
chemical environment.

Since the theoretical study of an emission spectra using explicit solvent molecules is
computationally too demanding, even on a supercomputer, as the systems easily reach
hundreds of atoms, a crude test simulating emission spectra for 3f and 3j using a simple
vertical gradient approach [78] with the CPCM method is unable to reproduce, even
qualitatively, the emission intensity experimentally observed. The test wrongly generates
approximately the same intensity for 3f and 3j in both solvation schemes (Figures S35), an
indication that the model is missing important components, probably from the absence of
intermolecular interactions. Even though the simulation of emission spectra with explicit
solvation is prohibitive due to computational costs, a nanocluster for absorption study
with an arbitrary number of explicit solvent molecules was built using the CREST software
and the procedure for optimization of non-covalent interactions. The new models, despite
being quite large, were calculated using analytic TDDFT to identify the different effects
using explicit solvation with intermolecular interactions on the first electronic transition.
As depicted in Figure 8, the addition of intermolecular interactions shows an immediate
impact on the electronic density difference for all systems, with a visually more remarkable
change in molecule 3a with benzene, in which the charge transfer to the left side of the
molecule appears inhibited while the right side sees an increase in electronic density.
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4. Conclusions

In conclusion, a new and efficient protocol was successfully developed for the synthesis
of 2-aryl-3-(organylethynyl)pyridines. The reaction showed high selectivity leading to
the formation of eleven derivatives with good to moderate yields (55–91%); of these, six
derivatives were unpublished in the literature. It is worth noting that these small molecules
are easily prepared, expanding the scope of this class of N-derivatives of great synthetic
relevance and wide photophysical potential. The photophysical characterization of these
compounds showed that the solvent seems to affect their excite-state deactivation. Based
on these results, the photophysical properties of these compounds were evaluated in
ethanol with different amounts of benzene, where a linear correlation between the emission
intensity and the amount of benzene (quencher) was obtained. In this investigation, the
observed fluorescence quenching could be related to a dynamic mechanism (collisional
quenching). These compounds were also investigated in real samples, using commercial
standard and premium gasoline with different amounts of anhydrous ethanol. The studied
compounds showed, in both gasoline samples, a linear correlation in the range of 0–40%
of added ethanol. This latter seems to be an interesting result since adulterated gasoline
presents in general a higher percentage of anhydrous ethanol than that recommended
by the Brazilian legislation. Theoretical calculations using TDDFT showed that while
the implicit conductor-like polarizable continuum model was unable to reproduce the
experimental solvent effects, there is strong evidence that intermolecular interactions are
preponderant factors that explain the experimental diversity on the emission spectra.
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