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Abstract: In this work, we monitored the fluorescence quantum efficiency (η) and the fluorescence
lifetime (τ) of natural dye extracts from the leaves of Tradescantia pallida purpurea. The natural dye was
extracted from leaves in aqueous solutions as a function of the potential of hydrogen (pH). The η was
determined from conical diffraction (CD) pattern measurements due to thermally-driven self-phase
modulation. The fluorescence spectra and time-resolved fluorescence measurements corroborate the
CD results, and the average η ≈ 0.28 and τ ≈ 3.1 ns values were obtained in the pH range 3.96–8.02.
In addition, the extracted natural dye was tested as a possible colorimetric and/or fluorometric pH
indicator in milk.

Keywords: natural dye; thermal effects; fluorescence quantum yield; time-resolved spectroscopy;
fluorescence; pH indicator

1. Introduction

The growing concern about the environment and the health of the population has
expanded the search for more sustainable, natural, and healthy products [1–4]. Natural
dyes have gained the attention of both consumers and researchers due to their potential
antioxidant, anticarcinogenic, antimicrobial, fungicidal, biochemical, and pharmacological
effects, and due to their biodegradable and renewable sources [5–8]. Moreover, the use of
synthetic dyes has some disadvantages, such as the possibility of carcinogenic agents, water
pollution during the dyeing process, non-renewable sources, and degradation time [9–12].

Anthocyanin is an important source of natural colorant and this dye has been extracted
from different plants, flowers, fruits, and tubers [5,13,14]. Anthocyanins are derived
from the flavonol compounds with the basic structure of a flavylium ion (C15H11O+),
or anthocyanidins that do not have glycated groups [14]. Anthocyanidins consist of a
substance with an aromatic ring (A) that is attached to a heterocyclic ring (C). Ring (C)
has oxygen, which is responsible for making a carbon–carbon bond to a third aromatic
ring (B) [14,15]. When anthocyanidins are found in their glycosylated form, they are called
anthocyanins [14]. Anthocyanins strongly absorb the visible region of the electromagnetic
spectrum, generating a variety of colors in plants such as red, blue, and purple, according
to the different patterns of hydroxyl and methoxyl groups that are attached to the aromatic
ring (B), and the sugars and acylated sugars [14–16]. Furthermore, anthocyanins have a
wide field of applications in health, such as suppression of neuroinflammation, neuronal
degradation, and brain aging [17]. These natural dyes also hold promise in preventing
diseases such as cancer [18], cardiovascular illness [19], obesity [20], and diabetes [21], and
improving visual health [22] due to the possibility of anthocyanins having antioxidant,
antiangiogenesis, and antimicrobial effects [23]. In addition, anthocyanin has the potential
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for applications in other areas, such as the pharmaceutical [14], food processing [14],
cosmetics manufacturing [24], solar cell development [4], and as pH indicators [25–28].

The possibility of adapting the optical properties of anthocyanins is relevant to the
interest in the application of this class of compounds as colorimetric sensors [25–30].
The chemical environment that is involved in anthocyanin extraction causes changes
in spectroscopic characterization, stabilization, and thermal parameters, as well as other
properties [31]. Currently, the functional mechanism of anthocyanin pigments and their
optical characterization is not well understood, despite recent experimental [31–33] and
theoretical [34–36] efforts. Therefore, to achieve a better understanding of the optical
properties and possible applications, it is necessary to obtain specific spectroscopic and
thermo-optical characterizations for the extraction of natural dyes using different solvents.
The present work reports on the spectroscopic and optical characterizations of natural dye
that was extracted from the leaves of Tradescantia pallida purpurea at different values of
potential of hydrogen (pH), ranging between 3.96 and 8.02, for bio-applications. The conical
diffraction (CD) technique was applied for the determination of fluorescence quantum
efficiency (η). Furthermore, for η determination, it is necessary to know the thermo-optical
coefficient (dn/dT) of the natural dye. The parameter dn/dT was determined by using the
Mach–Zehnder interferometric technique (MZI) [7,37,38]. The fluorescence spectra and
time-resolved fluorescence lifetime (TRFL) results were also measured to corroborate the
CD results that were obtained for natural dye that was extracted at different pH values.
The η parameter plays an important role in studying fluorescent materials and developing
new materials for light-emitting devices [39,40]. In addition, the extracted natural dye was
tested as a possible probe for milk prepared at different pH values to simulate adulterated
food, due to its colorimetric and/or fluorometric properties that change as a function of
pH, which allows future use as a possible pH-dependent biosensor [29,30,41].

2. Materials and Methods
2.1. Sample Preparation

Anthocyanin was extracted from the leaves of Tradescantia pallida purpurea that were
collected from the city of Uberlândia (state of Minas Gerais, Brazil). The process that
was carried out to extract the natural dye consisted of washing the leaves with tap and
distilled water [7,31] and drying them on absorbent paper. After this, the leaves were cut
into small strips and their mass (17 g) was determined by a Shimadzu analytical balance
(Model AUW220D, Shimadzu Brazil, SP, Brazil). Next, the leaves were manually macerated
at room temperature using a mortar and pestle for approximately twenty minutes with
20 mL of aqueous solution at a specific pH. The homogeneous mixture was then sieved
and filtered with paper filter to obtain the dye solution. The aqueous dye was centrifuged
for 1.5 h at 7200 rpm (BioPet Model 8011154, Biosigma, SP, Brazil). Then, the samples
were stored and refrigerated (~5 ◦C). A similar procedure was repeated for natural dye
extraction in aqueous solutions at different pH values (2.87, 3.66, 5.97, 10.05, 10.30, and
10.80). Distilled water with different concentrations of acetic acid (Sigma-Aldrich) was
used for the preparation of acidic solutions, and ammonium hydroxide (NH4OH) (Synth)
was used for the alkaline solutions. The natural dye was tested as a possible pH indicator
in whole ultra-high-temperature (UHT) milk (Itambé Alimentos SA, Patos de Minas, Minas
Gerais, Brazil) and powdered milk (Nestlé Brasil Ltd.a, Ituiutaba, Minas Gerais, Brazil).
The powdered milk samples were prepared using 5 mL of distilled water (at different pH
values) and 625 mg of powdered milk. The natural dye (at 0.85 g/mL) was inserted in
milk at different pH values, and the samples were homogenized using a magnetic stirrer
for 1 h. pH values of 3.47 to 10.43 were used for the natural dye that was inserted in milk
that was prepared from powdered milk. A similar procedure was performed using 5 mL
of whole UHT milk and natural dye (pH range used between 3.47 and 10.43). Aqueous
solutions of natural dye were inserted into the milk samples with different pH values, at a
concentration of 40% of natural dye, for fluorescence and lifetime measurements.
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2.2. Spectroscopic Techniques

Absorption spectra measurements were performed using a 1 cm quartz cuvette in a
portable spectrometer that was equipped with a halogen lamp (Ocean Optics USB2000+,
Dunedin, FL, USA) at room temperature. Fluorescence spectra (excitation wavelength
at 532 nm) were obtained using a portable spectrometer (DPSSL Driver model MGL532,
Midvale, UT, USA). The pH values were determined using an HI 2221 pH meter from
Hanna Instruments. Fourier transform infrared (FTIR) spectroscopy was performed using
a Perkin–Elmer Frontier spectrometer (resolution of 2 cm−1, PerkinElmer Brazil, SP, Brazil).
Time-resolved fluorescence lifetimes (TRFL) were performed by using a light source PLS 450
LED (λ = 460± 10 nm, 40 µW average power at 40 MHz and 800 ps). TRFL results for liquid
samples were analyzed within a FluoTime 100 time-resolved fluorescence spectrometer
from PicoQuant (Berlin, Germany) using a 1 cm thick quartz cuvette [41]. A Ludox solution
was used as a scattering sample for prompt measurements [41,42].

2.3. Thermo-optical Techniques
2.3.1. Conical Diffraction (CD)

The CD technique takes advantage of the ring pattern that arises due to thermally-
induced self-phase-modulation (TSPM) effects [7,37,43,44], behind the cuvette of liquid
samples when a relatively high-powered laser beam is focused on a sample. These rings
usually emerge when the photothermal phase shift (∆ϕTH) that is induced is high enough
(∆ϕTH >> 2π). TSPM effects can be understood as the ability of the excitation beam to
induce spatial variations in the refractive index, which leads to a phase shift that depends
on the transverse distance from the beam axis [45–47]. For a thermally-induced phase
change, the number of rings (N) can be determined in the from [45,48]:

N ≈ ϕαLeff Pe

2πKλ

(
dn
dT

)
(1)

where Pe is the power of the excitation laser beam, K is the thermal conductivity, α (cm−1) is
the optical absorption coefficient at the excitation wavelength (λ), Leff = (1 − exp(−αL))/α
is the sample effective length, and L is the sample thickness. The fraction of energy that
is converted into heat (ϕ) is related to the fluorescence quantum yield η parameter by the
expression [37,43]:

ϕ = 1− η (λ/ < λem > ) (2)

where <λem> is the average emission wavelength. Here, the CD technique was applied
using a linearly polarized argon-ion laser at 514.5 nm that passes through a rotating linear
polarizer that is controlled by a step motor to modulate the light intensity. The laser beam,
after passing through a focusing lens (f = 20 cm), is folded vertically by a mirror and
impinges on a quartz cuvette (2 mm thick) that is placed horizontally [37]. Typical ring
patterns were observed when the sample was positioned at the focus of the pump beam
due to TSPM effects [37,43–45].

2.3.2. Single Arm Double Interferometer

The refractive index temperature coefficient (dn/dT) was determined by using a single-
arm double interferometer [37,38]. The Mach–Zehnder interferometric technique (MZI) at a
wavelength value of λ = 532 nm was applied for liquid samples, and dn/dT was determined
using the expression [37]

dn
dT

= λ/2L∆T (3)

where L is the cuvette thickness (L = 1 mm) and ∆T is the temperature spacing between
two consecutive fringes.
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3. Results and Discussion

Figure 1 presents the absorbance spectra and photos of the natural dye solutions
that were extracted from the leaves of Tradescantia pallida purpurea in different pH values
(3.93–8.02). The absorption bands were observed at (508 ± 2), (545 ± 1), and (586 ± 1) nm
for all-natural dyes that were extracted in different pH values (Peaks 1, 2, and 3, respectively,
as shown in Figure 1). The typical absorbance peaks that were obtained were similar to
the results that were reported for the anthocyanin natural dye that was extracted from
Tradescantia pallida in different solvents as aqueous solutions, sodium citrate buffer (in the
pH range of 4–7), ethanol, and acetone [7,31,49,50]. The relationship between absorbance
peaks 2 and 3 for the extracted natural dyes as a function of pH are presented in Table 1.
The typical absorption bands that were observed in the 500–590 nm region and mainly at
586 nm (peak 3, Figure 1) correspond to B-ring substituted anthocyanins with a quinonoidal
base structure [49–51], associated with color stability proprieties due to complex acylation
patterns [51]. The pH increases of the aqueous solutions that were used in the natural
extraction process promoted a decrease in absorbance peak 2 (Figure 1), as shown in Table 1.
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Figure 1. Absorbance and photos of dye that was extracted in aqueous solutions from the leaves of
the Tradescantia pallida purpurea plant at different pH values: (a) 3.93, (b) 5.28, (c) 5.45, (d) 6.00, (e) 6.83,
and (f) 8.02 (concentration of 0.85 g/mL and 2 mm quartz cuvette).

Table 1. The pH values of natural dye solutions that were extracted from Tradescantia pallida purpurea.
The relationship of absorption peaks used Ref (Figure 1) as a reference, <λem> and Stoke′s shift.

Sample pH
(± 0.005) Peak3/Peak2 <λem>

(nm) Stoke′s Shift (nm)

a 3.960 0.394 656 25
b 5.280 0.567 648 24
c 5.450 0.394 652 26
d 6.000 0.514 650 25
e 6.830 0.593 651 23
f 8.020 1.215 655 27

In Zebrina anthocyanin solution (at pH 1.37), it has been reported that the pigment
exists only as the flavylium cation, with a maximum wavelength of 537 nm, and when the
acidity of the natural dye decreases, the cation is converted to the quinoidal base [49]. The
B-ring substituted anthocyanins completely converted to the quinoidal base are reported at
pH ~5.5 [49,50]. Another important aspect of anthocyanin to be addressed is the change
in its color due to pH, which is due to the ionic nature of the dye structure. In general,
at more acidic pH values (pH 1), the structural base of anthocyanins is the flavylium
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cation (red color). With a change in pH values, the dye structure becomes a carbinol
pseudobase, with quinonoidal and chalcone structures [6,15]. Anthocyanin color (inserted
in Figure 1) is reported to be dependent on the structure, pH values, temperature, and other
factors [6,15,52]. Furthermore, studies show that anthocyanins can undergo degradation at
higher alkaline pH values, depending on the substituent groups that are attached to the
structure [6].

Figure 2 presents the fluorescence spectra at an excitation wavelength of λ = 532 nm,
for the aqueous dyes that were extracted from the leaves of Tradescantia pallida purpurea at
different pH values (~3.9–8.0). The values of <λem> and Stoke´s shift wavelength (∆λ) for
each natural dye sample (a–f) are presented in Table 1, and the average result for all the
natural dye solutions that were extracted in different pH values were <λem> = (652 ± 3)
nm and ∆λ = (25 ± 1) nm, respectively. The peak emission wavelengths that were obtained
were positioned at (611 ± 2) nm and (648 ± 1) nm for all natural dyes that were extracted
in different pH values. The fluorescence spectra of natural dyes that were extracted from
Tradescantia pallida purpurea in distilled water and <λem> = 648 nm were reported [7]. The
decrease in the fluorescence intensity for more alkaline extractions of the natural dye can
be justified due to possible degradation effects [6,52].
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Figure 2. Fluorescence of dyes that were extracted in aqueous solutions from the leaves of the
Tradescantia pallida purpurea plant at different pH values: (a) 3.96, (b) 5.25, (c) 6.83, and (d) 8.02
(λ = 532 nm, Pe ≈ 50 mW, concentration of 0.85 g/mL and 1 cm quartz cuvette).

Fourier-transform infrared (FTIR) spectra for the powder of natural dyes that were
extracted in different pH values are presented in Figure 3. The main vibrational modes
were observed in the 700–3500 cm−1 range at 3187, 1555, 1380, 1085, and 820 cm−1 for all
the natural dyes in different pH values. For powdered anthocyanin that was extracted
in distilled water [7], the main bands that were assigned were reported at 3342 cm−1,
attributed to the stretching vibration of hydroxyl (-OH); 1558 cm−1, due to the stretching
vibration in the aromatic rings of carbonyl groups (C=C) or (C=O) for anthocyanin dye;
and 1081 cm−1, attributed to the C-O-C vibration for anthocyanin dye [7,53,54]. A band at
1380 cm−1 belongs to the fingerprint region (1542–965 cm−1), where different IR bands
exist due to C-O, C-C, C-H, and C-N bonds [55], and additional bands at 820 cm−1 caused
by ring vibrations C=C-C [55]. The anthocyanin structure is supported by the presence of
these functional groups, such as the benzene ring, double bond, carbonyl group, C-H bond,
and OH group [54]. The broad OH peaks are also characteristic of anthocyanin [55].
The discrete band at 3023 cm−1 and 2926 cm−1, due to a methyl group (C-H3), can
be attributed to aliphatic CH vibrations [55], and with decreasing pH values, peaks at
~3187 cm−1 increased, and other peaks at ~3023 cm−1 and 2926 cm−1 appeared. Similar
results were reported for anthocyanin in methanol solution with different pH values, where
with the decrease of pH (from 3 to 1), the O-H peak gradually shifted from 3310 cm−1 to
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3270 cm−1 due to the hydroxyl groups of methanol changing into the hydroxyl groups of
anthocyanin [56]. The C-O group was detected at 1022 cm−1, and the absorption band in the
region of 2950–2840 cm−1 can be attributed to the C-H absorption stretching with the sugar
group. The peak at 656 cm−1, due to the presence of aromatic C-H bonds, is more apparent
when the pH is more acidic [57]. Furthermore, the anthocyanin cyanidin compound has
been reported to absorb in the range 3100–3400 cm−1 due to O-H, 2900–2840 cm−1 due to
aliphatic C-H, 675–870 cm−1 due to aromatic C-H, and 1660 cm−1 due to the presence of
aromatic C=C [57,58].
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(b) 5.45, (c) 6.00, (d) 6.83, and (e) 8.02.

Natural dyes that were extracted from Tradescantia pallida purpurea in aqueous solutions
were already analyzed using a high-performance liquid chromatography system coupled
with a quadrupole time-of-flight high-resolution mass spectrometer, and the results were
described in our Reference [7]. The anthocyanin structures consisted mainly of cyanidin,
three glucose molecules, arabinose, and three ferulic molecules [7,59]. Furthermore, the
literature reports that the main anthocyanin structures of cyanidin-3,7,3′-triglucosides with
three ferulic acid molecules and an additional terminal glucose molecule were obtained
from dyes that were extracted from Tradescantia pallida leaves [51,60].

Figure 4 shows the results that were obtained using the conical diffraction technique;
the number of rings (N) is presented as a function of beam power (Pe). The linear behavior
of N versus Pe is presented in the inset of Figure 4, and the slope that was obtained was
(18.0± 0.5) W−1. The value of ϕ was determined for the natural dye using Equation (1), the K
parameters for aqueous solutions [37], and dn/dT determined using the MZI technique [37,38].
The average value that was obtained for dn/dT = −(0.92 ± 0.03) × 10−4 K−1 (at 22 ◦C) was
in good agreement with the value that was reported in the literature for the pure aqueous
solutions [7,37,61]. Using <λem> (Table 1), λ = 514.5 nm and Equation (2), the radiative
quantum yield η values were determined for the all-natural dye samples.

Figure 5 presents the results of ϕ and η for natural dyes that were obtained from
CD as a function of pH. The ϕ and η results were dependent on the pH of the aqueous
solutions that were used for natural dye extractions. The decrease of η (Table 2) for more
alkaline solutions can be attributed to the possible degradation [6,52], aggregation, and/or
co-pigmentation effects [62,63]. Self-aggregation has been reported for low anthocyanin
concentrations [62], and the weakening of their emission efficiency as typically observed
in AIE (aggregation-induced emission) active molecules could be due to the activation of
non-radiative decay by free molecular rotation [64]. Similar results were obtained for the
intensity of fluorescence spectra as a function of pH (Figure 2), which decreased at higher
pH values. The η average result for samples at different pH values in the range of (~4.0–8.0)
was η = (0.28 ± 0.02). For comparison, for annatto that was extracted from the fruit of the
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Bixa Orellana trees at a pH between 5.4 and 11.5, the average value of η = (0.40 ± 0.08) was
reported [41], and for the Carthamus tinctorius L. petal, η ≈ 0.004 was obtained for the main
colored species that was extracted [65].
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Figure 5. Fluorescence quantum efficiency (η) and absolute nonradiative quantum efficiency (ϕ) for
natural dye that was extracted as a function of pH at 514.5 nm.

Table 2. η, τ, and χ2 values for aqueous natural dye that was extracted from Tradescantia leaves as a
function of pH values.

Sample pH η
τ

(ns) χ2

a 3.960 (0.31 ± 0.02) (3.68 ± 0.06) (0.99 ± 0.04)
b 5.250 (0.28 ± 0.01) (3.24 ± 0.05) (1.11 ± 0.06)
c 5.500 (0.27 ± 0.02) (3.30 ± 0.06) (1.15 ± 0.05)
d 6.000 (0.24 ± 0.02) (3.17 ± 0.06) (1.11 ± 0.05)
e 6.890 (0.21 ± 0.01) (2.74 ± 0.04) (1.10 ± 0.04)
f 8.020 (0.16 ± 0.02) (2.39 ± 0.03) (1.07 ± 0.07)
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The time-resolved fluorescence (TRFL) spectroscopy measurements were also per-
formed for natural dyes that were extracted in different pH values. TRFL measurements of
the excited states were obtained and the experimental results were adjusted using the single
exponential A + B × Exp (−t/τ), where A and B are constants, and τ is the fluorescence
lifetime. The TRFL setup was tested by using the sodium fluorescein (Synth, molecular
weight 376.28) in an alkaline aqueous solution (pH 11.24), and the transient emission was
adjusted with a single exponential (τ = (4.13 ± 0.01) ns and χ2 = (1.03 ± 0.01)) [41,42].
Figure 6 shows the TRFL for aqueous natural dye that was extracted at different pH values
(Figure 6 (a) 3.98, (b) 5.34, (c) 6.75, and (d) 7.99) from ornamental leaves of Tradescantia
pallida purpurea. The fluorescence decays were well fitted with a single exponential, and the
χ2 value was less than 1.15 for all the natural dye aqueous solutions that were extracted as
a function of pH (Table 2).
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Figure 6. Decay of fluorescence for natural dye that was extracted in different values of pH (a) 3.98,
(b) 5.34 (c) 6.75, and (d) 7.99. The values that were obtained for τ were (a) (3.7 ± 0.1), (b) (3.3 ± 0.1),
(c) (2.7 ± 0.1), and (d) (2.4 ± 0.1) ns. The decay for Ludox is presented in (e).

The lifetime results that were obtained for aqueous natural dyes are dependent on
the pH (Figure 7), with τ increasing for more acidic solutions. A similar dependence on
pH was observed for the fluorescence area that was obtained from fluorescence spectra
(Figure 7) and η (Figure 5). The average lifetime that was obtained for aqueous anthocyanin
dyes that were extracted in different pH values (between ~4 and 8) was (3.1 ± 0.5) ns.
The decrease in the fluorescence response generally indicates increased quenching of the
emitting center [66], solution degradation, and/or aggregation [6,52,62]. For comparison,
the natural dyes from annatto that were extracted from the seeds of the tropical shrub Bixa
Orellana L. were reported present τ = (1.9± 0.3) ns when extracted in aqueous solutions with
different pH values (~5.6–11.5), and other typical probes (such as fluorescein, rhodamine
6G, and bacteriochlorophyll), and some fluorescent proteins, present lifetimes in the range
of 1–4 ns [41,42,67]. In addition, the fluorescent NIR dye cypate has been reported to
present a longer fluorescence lifetime when the pH of the dye changed from a neutral to an
acidic value [67].
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The natural dyes that were extracted from the leaves of Tradescantia pallida purpurea
were tested as a bioindicator of pH change. Figure 8 shows the fluorescence spectra
for anthocyanin (pH 5.450 ± 0.004) inserted in whole UHT milk that was prepared at
different pH values (range ~3.47–10.43). The change of the pH in milk was performed to
simulate adulterated milk due to bacterial contamination (such as Mycoplasma bovis and
some Salmonella serotypes) [68–70] or other types of contamination, such as urea, starch,
water, detergents, caustic soda, and milk from different species [71]. The change in pH
values in foods is reported to be due to microbial, chemical, and/or other adulteration
actions [30,41,72]. Similar results were obtained for the fluorescence spectra of anthocyanin
dye that was inserted into powdered milk at different pH values. The change of the color of
the aqueous natural dye that was previously extracted and inserted in milk with different
pH values is presented in the photos in Figure 8. For comparison, the results were reported
for a natural dye that was extracted from red resin that was removed from the pericarp
of annatto seeds [41]. However, in this case, the annatto powder was extracted in milk at
different pH values (6.64–10.86) [41]. In comparison with Figure 2, it is possible to observe
a change in the fluorescence spectra that is shown in Figure 8. The fluorescence spectra of
natural dye that was extracted at different pH values and the anthocyanin that is inserted
into milk are different for higher pH values (above ~8). For alkaline pH values, the natural
dye fluorescence decreases significantly (Figures 2 and 8), and possible milk fluorescence is
predominant.

The TRFL results were performed in anthocyanin that was inserted in milk with differ-
ent pH values. The fluorescence decays were adjusted with one exponential
(χ2 < 1.2 were obtained for all samples), and the τ results that are presented in Figure 9a
were determined from natural dye that was inserted in milk with different pH values. Simi-
lar results were obtained for the area of fluorescence spectra (AFS) in the function of the
pH-changed milk (Figure 9b). The τ and AFS results as a function of the pH range available
between 3.47 and 10.43 are presented in Figure 9a,b, and these parameters changed by
~12 and 50%, respectively. The change in color (inserted in Figure 8) and fluorescence
of the anthocyanin-milk samples as a function of pH raises the possibility of using this
natural dye as a colorimetric and/or fluorimetric pH-biosensor probe [29,30,41]. Several
applications of natural dyes as possible biosensors for adulterated pH-dependent foods
have been reported (Table 3) [30,41,72–75]. For applications of natural dyes as possible
pH-biosensors, similar behavior of τ and ADF as a pH function were obtained (Figure 9a,b).
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However, as a possible parameter for biosensor analysis, the ADF versus pH results could
be the simplest technique for implementation.
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Table 3. Applications of natural dyes as pH indicators in foods.

Natural Dye Extraction Applications

Anthocyanin

Brassica oleraceae var. capitata (Red Cabbage)
[73]

Development of chitosan/PVA films doped
with anthocyanins to indicate food quality due

to pH change. Potential application in the
evaluation of milk quality [73].

Hibiscus rosa-sinensis L. flowers, Clitoria
ternatea flowers, Beta vulgaris roots, Opuntia

dillenii pricklypears [30]

Application of liquid coloring in raw milk to
measure microbiological quality control [30].

Black carrot [72] Starch film creation with anthocyanin to
evaluate milk shelf-life assessment [72].

Curcumin, Quercetin, and
Phycocyanin

Vegetable plants, and microalga Spirulina
[74]

Introduction of natural dyes in nanofibers for
use as pH colorimetric indicators as a function

of time to monitor food quality [74].

Annatto Seeds of the shrub Bixa Orellana L. [41]
The natural dyes were tested in adulterated

milk as colorimetric and/or fluorometric
pH-biosensor probes [41].

Litmus Lichens [75]

Development of a pH-sensing film from
polysaccharide extracted from tamarind and
litmus lichen, as an indicator of deterioration

of cream milk [75].

The natural dye that was extracted from the leaves of Tradescantia pallida purpurea was
tested in the present work, with a possible colorimetric and fluorometric pH-sensor using
different techniques such as AFS, TRFL, and CD. In this case, the aqueous solutions of
anthocyanin dye that were previously extracted were inserted in pH-changed milk. The
AFS, η, and τ results were obtained with the natural dye that was extracted from the leaves
of ornamental plants; these leaves are available in different locations. For comparison,
natural dyes that were obtained from annatto seeds were tested as pH sensors in milk [41].
However, in the case of our work [41], the natural dye needed to be extracted in the
milk sample at different pH values. The seeds were obtained from the tropical shrub
Bixa Orellana L., and these trees are restricted to tropical countries.

4. Conclusions

The fluorescence quantum yield (η), the area of fluorescence spectra (AFS), and the
fluorescence lifetime (τ) parameters were determined for anthocyanin that was extracted
from the leaves of Tradescantia pallida purpurea as a function of the potential of hydrogen.
The η, AFS, and τ results were dependent on the pH that was used (~3.96–8.02) for
aqueous natural dye extraction, with variations of ~48, 50, and 12%, respectively. The
effect of extractions of natural dyes at different pH values on photophysical and thermo-
optical properties allows the application of anthocyanin dye as a pH-dependent biosensor.
Preliminary results are presented for the insertion of aqueous anthocyanin in milk (pH
range 3.47–10.43), as a possible colorimetric and fluorometric pH-probe for food.
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