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Abstract: The kinetics of relaxation of high-lying electronic states of porphycene (porphyrin isomer)
embedded in different cryogenic matrices were studied using picosecond time-resolved fluorescence
(TRF) and transient absorption (TA) techniques. The molecule was excited into the Soret band,
i.e., with a large energy excess compared to that of the lowest (Q) excited state. The TRF and TA
time profiles obtained for porphycene embedded in argon and methane matrices were remarkably
different: the overall relaxation in argon occurred in 64 ps, whereas the corresponding value for
methane matrix was 18 ps. Analysis of the evolution over time of different spectral ranges of TRF
spectra indicates the multidimensional character of relaxation kinetics.
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1. Introduction

When a molecule is electronically excited into a higher-lying state, it undergoes
complicated dynamic processes before reaching the thermally equilibrated S1 level. Energy
relaxation involves several intramolecular and intermolecular steps: (i) internal conversion
(IC), potentially including intermediate electronic states between the initially excited and
the emitting one; (ii) intramolecular vibrational redistribution (IVR); and (iii) thermalization
of S1, with outflow of energy from the molecule into the environment. These processes
usually occur over different timescales. Relaxation dynamics has been intensely studied
for porphyrins, which are molecules of biological relevance [1–21]. Excitation into the
high-energy Soret band is followed by ultrafast IC (tens to hundreds of femtoseconds),
IVR (subpicosecond to single picosecond regime), and cooling (10–20 ps). The relaxation
kinetics depends on various factors, such as the structure of the chromophore (e.g., planar
vs. nonplanar) or the excess energy acquired via photoexcitation.

Intermolecular relaxation channels are usually slower than intramolecular ones, oc-
curring on the time scale of single to tens of picoseconds in solutions or glasses. However,
relaxation can take even longer when the molecule is located in a specific environment,
such as cryogenic matrices [22–24]. Under these conditions, relaxation times of several
hundred picoseconds have been observed. We have previously demonstrated this by cou-
pling time-resolved fluorescence and transient absorption techniques with matrix isolation.
The investigated chromophores included a series of porphyrin isomers—porphycene (Pc,
Scheme 1) and its derivatives—embedded in rare gas and nitrogen matrices [25–28]. A large
difference in the time-resolved fluorescence profiles was observed for different excitation
wavelengths. When the sample was excited using the 355 nm laser line into the Soret band,
i.e., with high excess energy (about 11000 cm−1 above S1), fluorescence relaxation occurred
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on the time scale of 100 ps. In contrast, for low-energy excitation (593 nm, Q band), the
emission was fully relaxed less than 40 picoseconds after photoexcitation [25].
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Scheme 1. (Left) porphyrin (porphine); (right) porphycene. 
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helium cryostat (Advanced Research Systems Inc., Macungie, PA, USA). 

To record the transient absorption (TA) spectra, a home-built pump-probe picosec-
ond spectrometer was used. Pulses with a duration of 1.5 ps (1055 nm) and an energy of 
4 mJ, with a repetition of 33 Hz, are provided by a Light Conversion (Vilnius, Lithuania) 
Nd:glass laser. The third harmonic (352 nm) is used as the pump, whereas the probe, op-
tically delayed with respect to excitation, is the picosecond continuum (400–800 nm) gen-
erated in D2O. The detection unit consists of a Jasny polychromator, containing a Jobin 
Yvon grating with a flat focusing field, where a CCD matrix is fixed (Hamamatsu S7031, 
one stage TE-cooled, back-thinned CCD, 1024 × 128 pixels). The temporal resolution of the 
spectrometer is 2.5 ps. 

Time-resolved fluorescence (TRF) spectra were recorded by means of a home-made 
picosecond spectrofluorimeter, described in detail elsewhere [29]. In short, the first beam 
(352 nm, 1.5 ps) is used for excitation. The second beam passes through an optical Kerr 
shutter and opens it. The fluorescence can be transmitted by the shutter only for the time 
period in which the opening pulse penetrates the Kerr medium. The opening pulse is de-
layed with respect to the excitation by an optical delay line (maximum delay of 3000 ps, 
0.1 ps/step). The delay time is calculated with respect to the maximum of the excitation 
pulse. The fluorescence is transmitted by a quartz fiber to the detection system consisting 
of a polychromator (Acton SpectraPro-275, Acton Research Corporation, Acton, MA, 
USA) and a CCD detector (Princeton Instruments, Inc., Trenton, NJ, USA). The temporal 
resolution of the spectrofluorimeter is 6.5 ps. The spectra were corrected for the instru-
mental response. 

Time-dependent evolution of TRF spectra can contain artefacts generated by light 
velocity dispersion (LVD). To check that our results are free from such effects, TRF spectra 
were recorded for the solution of anthracene in cyclohexane at 294 K. These spectra did 
not exhibit any differences in the spectral distribution with different delay times. The nor-
malized kinetic curves describing the increased integrated TRF intensity evaluated for 
spectral intervals of 21,500–25,500, 240,00–25,500, and 21,500–22,700 cm−1 were identical 
within the margin of experimental error. The increase in the kinetic curves was strictly 
associated with the temporal resolution of the apparatus. 

Scheme 1. (Left) porphyrin (porphine); (right) porphycene.

The purpose of the present work is to check to what extent the rate of energy flow
from an excited chromophore to the environment can be affected by the structure of the
latter. For that purpose, we compared the relaxation kinetics obtained for porphycene
in matrices consisting of atoms (Ar) and molecules (CH4). We observe a clear difference
between the relaxation times in the two media. Moreover, the kinetic profiles of the
fluorescence evolution strongly depend on the probed spectral range, demonstrating the
multidimensional character of the energy relaxation.

2. Materials and Methods

Solid gas matrices were obtained after depositing a stream of gas containing vapors
of the investigated compound onto a sapphire window held at 5–30 K in a closed-cycle
helium cryostat (Advanced Research Systems Inc., Macungie, PA, USA).

To record the transient absorption (TA) spectra, a home-built pump-probe picosecond
spectrometer was used. Pulses with a duration of 1.5 ps (1055 nm) and an energy of 4 mJ,
with a repetition of 33 Hz, are provided by a Light Conversion (Vilnius, Lithuania) Nd:glass
laser. The third harmonic (352 nm) is used as the pump, whereas the probe, optically
delayed with respect to excitation, is the picosecond continuum (400–800 nm) generated
in D2O. The detection unit consists of a Jasny polychromator, containing a Jobin Yvon
grating with a flat focusing field, where a CCD matrix is fixed (Hamamatsu S7031, one
stage TE-cooled, back-thinned CCD, 1024 × 128 pixels). The temporal resolution of the
spectrometer is 2.5 ps.

Time-resolved fluorescence (TRF) spectra were recorded by means of a home-made
picosecond spectrofluorimeter, described in detail elsewhere [29]. In short, the first beam
(352 nm, 1.5 ps) is used for excitation. The second beam passes through an optical Kerr
shutter and opens it. The fluorescence can be transmitted by the shutter only for the
time period in which the opening pulse penetrates the Kerr medium. The opening pulse
is delayed with respect to the excitation by an optical delay line (maximum delay of
3000 ps, 0.1 ps/step). The delay time is calculated with respect to the maximum of the
excitation pulse. The fluorescence is transmitted by a quartz fiber to the detection system
consisting of a polychromator (Acton SpectraPro-275, Acton Research Corporation, Acton,
MA, USA) and a CCD detector (Princeton Instruments, Inc., Trenton, NJ, USA). The
temporal resolution of the spectrofluorimeter is 6.5 ps. The spectra were corrected for
the instrumental response.

Time-dependent evolution of TRF spectra can contain artefacts generated by light
velocity dispersion (LVD). To check that our results are free from such effects, TRF spectra
were recorded for the solution of anthracene in cyclohexane at 294 K. These spectra did
not exhibit any differences in the spectral distribution with different delay times. The
normalized kinetic curves describing the increased integrated TRF intensity evaluated for
spectral intervals of 21,500–25,500, 240,00–25,500, and 21,500–22,700 cm−1 were identical
within the margin of experimental error. The increase in the kinetic curves was strictly
associated with the temporal resolution of the apparatus.
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3. Results and Discussion
3.1. Time-Resolved Fluorescence

The time-resolved fluorescence spectra of porphycene in an Ar matrix are shown in
Figure 1. The evolution of the shape of the emission can be clearly observed. Initially (6 ps
delay), the spectrum consists of a broad band with the maximum at about 15,600 cm−1. At
36 ps delay, it blue shifts by ca. 300 cm−1; traces of a vibrational structure appear, which
become clearly visible after 76 ps. Then, these vibronic features shift to higher energies and
become narrower. The fully relaxed spectrum is observed for delay times longer than ca.
150 ps.
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Figure 1. TRF spectra of Pc in argon at 6 K recorded as a function of the delay time: 6, 36, 76, 156, and
2700 ps. The spectra offset was shifted vertically for better visualization. Bg indicates the background.

In our former work [25], time-resolved spectra of the same system at 15 K were
recorded, with a time resolution of 30 ps. The present improvement (to 6.5 ps) made it
possible to observe changes in the spectral profile occurring during the initial several tens
of picoseconds. As shown below, this was crucial for the methane matrices.

We analyzed the kinetic profiles of the spectral changes in emission using two ap-
proaches. First, the evolution of the mass center (MC) of the TRF spectra was plotted
versus delay time (Figure 2). It could be fitted well with a single exponential risetime of
64 ± 2 ps. In the next step, the evolutions of individual bands were considered separately
(Figure 3 and Table 1). The spectral range encompassing the whole emission is labeled
P0. P1 corresponds to the 0–0 transition, whereas P2 and P3 denote the features due to
the 3Ag and 4Ag vibrational modes, respectively [30–32]. These totally symmetric modes
involve in-plane bending of the pyrrole units. The observed kinetic profiles of integrated
intensity are completely different: a biexponential rise is obtained for the integration of
the whole emission (P0). In contrast, the low-energy portion (P3) exhibits a rapid rise,
followed by a long decay before reaching a plateau (most probably, corresponding to the
fluorescence lifetime of about 15 ns). The profile associated with the (0–0) transition (P1) is
even more complex, showing an initial delay before the rise, with a time constant similar to



Photochem 2022, 2 302

that obtained for the whole emission. These results reflect the multidimensional movement
of the initially launched wavepacket.
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Table 1. Kinetic parameters for Pc incorporated in argon matrix at 6 K, evaluated from the experi-
mental kinetic curves (see Figure 3). D: decay, R: rise.

<Spectral Region>\cm−1 τ\ps Amplitude τ\ps Amplitude

P0 15,486–16,029 58 ± 2 (R) 8123 ± 80 5 ± 3 (R) 1660 ± 150

P1 15,834–16,029 63 ± 3 (R) 6500 ± 120 - -

P2 15,700–15,834 18 ± 1 (R) 2680 ± 90 300 ± 31 (D) 2540 ± 100

P3 15,486–15,700 6 ± 0.5 (R) 2474 ± 94 400 ± 45 (D) 2187 ± 47

The same procedures were repeated to analyze the fluorescence of Pc in methane.
A shorter relaxation time is evident: the initially (7 ps) broad emission already becomes
structured after 37 ps delay, and reaches its final shape at 76 ps (Figure 4). The spectrum
recorded after 37 ps delay resembles that in argon obtained after 76 ps. One should also note
that the maximum of the broad band observed just after the excitation is separated from
the maximum of the relaxed fluorescence by 120 cm−1, whereas the corresponding value
for argon was 340 cm−1 (Figure 1). This may be explained by the faster relaxation in CH4,
so that the “initial” spectrum in this matrix is in fact more relaxed that the corresponding
spectrum in argon. The evolution of different bands (Figure 5, Table 2) exhibits a pattern
similar to that observed for argon: the risetimes increase in the order P3 < P2 < P1; however,
the values are definitely shorter for methane. Both P2 and P3 exhibit a decay before reaching
a plateau. These decays are about 10 times shorter than in argon.

Table 2. Kinetic parameters for Pc incorporated in methane matrix at 8 K, evaluated from the
experimental kinetic curves (see Figure 5). D: decay, R: rise.

<Spectral Region>\cm−1 τ\ps Amplitude τ\ps Amplitude

P0 15,432–15,952 12 ± 0.4 (R) 10,430 ± 152 1653 ± 321 (D) 10,980 ± 132

P1 15,760–15,952 28 ± 2 (R) 8854 ± 585 380 ± 75 (D) 9072 ± 611

P2 15,606–15,760 8 ± 0.4 (R) 5200 ± 100 24 ± 1 (D) 2761 ± 30

P3 15,432–15,606 5 ± 1 (R) 2560 ± 600 20 ± 7 (D) 1213 ± 640
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3.2. Transient Absorption

An alternative way of probing the relaxation kinetics is to use transient absorption
(Figures 6–8). The signal is dominated by ground state bleaching. However, the features
P2 and P3, corresponding to 3Ag and 4Ag vibrational modes, appear in the stimulated
emission. The kinetic profiles of these bands, indicated by arrows in Figure 6, are in
agreement with the data obtained from TRF analysis. Thus, in argon matrix, they are barely
visible at a pump-probe delay of 76 ps and become well-structured after 176 ps. In methane,
the spectral evolution is faster, so that fully relaxed vibronic features are observed at 76 ps.
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TA spectra were also obtained for Pc embedded in solid krypton (Figure 8). Here, the
situation is different: the stimulated emission is practically not observed, except perhaps
for very weak signals at 276 ps delay. We attribute the lack of the signal to the heavy atom
effect of the matrix, leading to enhanced intersystem crossing to the triplet state, which
results in the efficient quenching of fluorescence. Our unpublished data for Pc in xenon
reveal nearly 100% triplet formation efficiency.

4. Summary

The time-resolved fluorescence and transient absorption spectra obtained for por-
phycene embedded in low-temperature argon and methane matrices indicated that S1
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relaxation, involving the outflow of energy from a chromophore photoexcited to high
above S1, can be as slow as tens or even more than a hundred picoseconds. The relaxation
kinetics is significantly dependent on the type of matrix, being considerably faster in solid
methane than in argon. At least two factors may be responsible for this difference: (i) the
presence of molecular vibrations in methane that can act as energy accepting modes; (ii)
the different phonon characteristics of the two matrices. The relaxation kinetics is different
for different spectral regions, reflecting the complicated nature of relaxation dynamics. We
believe that these experimental data may provide a good starting point for theoretical sim-
ulations of intra- and intermolecular energy relaxation processes. What makes porphycene
a good candidate for such studies is the fact that the vibrational structure of this molecule
is well known for both S0 and S1 electronic states [31–33].
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