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Abstract: Stretch fabric provides good formability and does not restrict the movement of the body
for increased tension levels. The major expectations of a wearer in an apparel fabric are a high
level of mechanical comfort and good aesthetics. The prediction of shrinkage in stretch fabric is a
very complex and unexplored topic. There are no existing formulas that can effectively predict the
shrinkage of stretch fabrics. The purpose of this paper is to develop a novel model based on an
artificial neural network to predict the shrinkage of stretch fabrics. Different stretch fabrics (core-spun
lycra yarn) with stretch in the weft direction were manufactured in the industry using a miniature
weaving machine. A model was built using an artificial neural network method, including training
of the data set, followed by testing of the model on the test data set. The correlation of factors, such
as warp count, weft count, greige PPI, greige EPI, and greige width, was established with respect to
boil-off width.
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1. Introduction

Stretch textiles, which range from infant clothes to upholstery, provide a better fit
for a wide range of products. Some fabrics offer tremendous control, while others offer
ease of movement or a comfortable fit. These stretch fabrics can be divided into two types.
One type is power stretch, which can be found in support garments, swimsuits, and other
items. The other is comfort, sometimes known as action stretch. It can be found in athletic
and casual wear, and other products with a lot of mobility and a smooth fit [1,2]. Stretch
fabric is a fabric that stretches when force is applied in a single or several directions during
normal wear. Power stretching is well known, while comfort stretching is a relatively
recent notion [3]. Stretch fabric is made from materials that have specialized extension
qualities, with at least 20% elongation in the warp direction [4]. Cotton fabrics are used
along with spandex to provide greater stretch and recovery than cotton alone can provide.
Cotton/spandex blends are most common in women’s clothing, but are now spreading
into other product categories, such as knit products, skirts, leggings, and tops, as well as
almost all sorts of woven fabrics, such as stretch jeans. Spandex is typically found in woven
textiles as a core spun yarn; however, the form in which the spandex is used relies on the
fabric construction, performance needs, and designer’s knowledge. Cotton knit fabrics
with spandex often have stretch qualities ranging from 50 to 100%; this figure is typically
15 to 50% for woven structures.

In general, a ’stretch fabric’ is defined as a material with a minimum stretch of 20%
in the warp direction. Natural rubber is the main choice for adding elasticity to fibers,
and mercerization and texturization are used to process normal woven fabrics to develop
elasticity. Since conventional rubber is used, there is a need for other synthetic materials
to take on increasing demand, and spandex has emerged as a solution to this problem.
A popular way to produce stretch fabrics is to use elastane yarns, because the desired
properties can be achieved by using 2–3% of elastane yarns. Spandex-containing stretch
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fabrics are less stiff, more easily stretchable, and more recoverable than non-spandex fabrics.
Value may be added to garments due to spandex by emerging properties such as wash and
wear, which add comfort during wear [5].

Stretch fabrics have lower drapability and wrinkle recoverability. Stretch textiles
can be compressed more than others and have larger surface volumes when it comes to
compression. Furthermore, their higher compression recovery reflects the inherent property
of stretch materials as opposed to non-stretch fabrics in general [6]. Stretch fabric is either a
two-way stretch or a four-way stretch. According to researchers, a stretch range of 20 to
45% from the wearer’s comfort viewpoint depends on the end use [7]. Stretch fabrics can
be woven as well as knitted fabrics. The various methods used in the production of stretch
fabric can be listed as slack, the mercerization of fabrics, weaving fabric with high twist
yarn, using textured synthetic yarn, using covered rubber yarns, using spandex yarns, and
so on [8]. In one study, the linear density of weft threads and the preliminary tension of the
ground yarn, which produced a pillar stitch, were found to affect the stretch qualities of
elastic warp knitted fabrics, the full deformation, and the constituent parts [9].

As spandex is generally used in the weft direction in stretch fabrics, the properties
based on weft input become crucial in testing the performance of stretch fabrics. These
parameters include fabric growth, fabric stretch, and elastic recovery of the stretch fabric.
Stretch fabric is popular among sportswear companies. Stretch fabrics have a wide range
of applications in sports apparel, including yoga suits, bicycle shorts, skiwear, swimsuits,
leotards, sports bras, and all other types of apparel designed for intense stretching of
body parts.

Cotton and spandex fabrics will always default to a lower energy level. Relaxing the
cloth from intrinsic construction and processing tensions improves dimensional stability.
The boil-off bath should contain a good textile detergent or the scouring agents to be used
in processing. A useful way to quickly determine the relaxed state is to "boil-off" a two
yard long, full-width sample. Following the boil-off, the samples can be dried in a sample
oven and the fabric width measured. This is the absolute smallest width to which the fabric
will shrink. This understanding will prohibit the finisher from attempting to complete the
fabric at a width less than the relaxed width.

Stretch fabric, when subjected to heat and moisture during processing, tends to release
its internal stresses and shrink to a certain extent. This shrinkage is dependent on the
following parameters: yarn count, fabric construction (EPI, PPI), weave structure, the
percentage content of spandex in the fabric, loom width, and so on. Shrinkage occurs when
moisture, heat, and mechanical action (movement during fabric formation, drying, and
washing) are mixed [3,10–12]. The combination of these factors causes the fibers to release
the stresses created during the fabrication of the stretch fabric. Higher moisture content also
increases the rate of shrinkage. There are two methods to control fabric shrinkage. First,
shrinkage is appropriately controlled at feeding and is reduced with length and width to
apply clothing with lower or greater feed speed. The maximum is controlled using 70–75%
shrinkage. Second, shrinkage fiber is raised to its original position in the thermoplastic and
cooled after the reaction of a hot steam process [13–15]. This process will mold the fiber
to its original position. Shrinkage percentage plays a very important role in stretch fabric
manufacturing as the stretch of the fabric is indirectly dependent on it, and stretch is very
important in specific end-use fabrics, such as sportswear and infant wears. Therefore, it is
very essential to predict the shrinkage percentage of stretch fabrics in the manufacturing
textile industries.

In one study based on the basic fabric constructional variables, it was discovered that
an artificial neural network can accurately assess the tear strength of a bed sheet fabric. The
weave structure of the material was discovered to be significantly related to the tearing
strength properties. Including the weave factor parameter as a training input can improve
prediction performance even further. Therefore, artificial neural networks have great
importance in the textile industry for advanced fabric manufacturing, product development,
etc., wherein developing new specialty fabrics is vital (Ahirwar and Behera, 2022).
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Artificial intelligence (AI) is a machine’s abiltiy to carry out tasks in a way that would
be considered smart. The AI approach is founded on the assumption that data are fed
into machine learning models which then gain intuition on their own, with no manual
intervention [16–19]. ANNs, or artificial neural networks, are forms of neural networks
based on a collection of units called artificial neurons which are connected to the next
layer’s units, as shown in Figure 1. Arrows represent the connection or interchange of
information through an arrow from one layer to another, and on the other side, we obtain
the output of our neural network [20–23]. This design is based on our brains. Numerical
information from these neurons passes on through deeper layer neurons.
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Figure 1. Two input, one output model.

Algorithms in machine learning are primarily based on methods to easily process a
wide variety of data that are difficult to process manually. In the production of stretch fabric,
stretch yarns were used. These yarns are very sensitive to low-standard spinning methods
compared with core-spun yarns. Due to improper heat settings or machine parameters,
some problems may occur, such as variation of dyeability or shrinkage throughout the
fabric or color fading or stripe effect. Since a two-dimensional fabric is used to mimic the
surface of a three-dimensional body, the result can be problematic, and the main important
thing is the shape and the frequent posture of the person and how our fabric performs in
that condition. The shrinkage in the stretch fabric is dependent on every factor that comes
into account in its production. A lot of these variables are unable to derive a formula for
shrinkage manually. Additionally, other studies predict fabric properties that are hard to
predict manually using machine learning models. This gives us a direction of research for
predicting shrinkage using machine learning. In light of the above discussion, the present
study focuses on predicting the shrinkage of stretch fabrics by using machine-learning-
based artificial neural networks.

2. Materials and Methods
2.1. Materials

Stretch fabrics (core-spun lycra yarn) with stretch in the weft direction were manufac-
tured by Vardhman Industries, India. The fiber blends used were 96–98% cotton and 2–4%
elastane. Different samples were manufactured in an industry using a miniature weaving
machine. The parameters and their numerical range are given in Table 1 and were used as
the data points in the artificial neural network.

2.2. Methodology
2.2.1. Process Sequence

The grey fabrics were processed using the standard process settings used in commer-
cial production, as shown below.

Grey fabric→ Grey wash→ Heat Set→ Pre-treatment→Mercerization→ Peach→Wash→ Dry pad
→ Pad steam→ Finish→ Dry
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Table 1. Particulars of fabric samples.

Parameters Minimum Maximum Average

Warp count (Ne) 7 50 22
Weft count (Ne) 6 50 18

Spandex in weft core (Ne) 7 140 68
Ends/inch (EPI) 50 186 101
Picks/inch (PPI) 38 108 65

Greige width (cm) 125 210 180
Boil-off width (cm) 38 177 130

Areal density (g/m2) 96 327 199

2.2.2. Artificial Neural Network to Predict Shrinkage

Machine learning-based artificial neural networks, are now widely being used to
forecast the performance of any parameter. The artificial intelligence (AI) concept is based
on the idea that data are supplied to machine learning models which then learn intuitively,
on their own, with no manual intervention [16–19]. Artificial neural networks are varieties
of neural networks based on a collection of units called artificial neurons that are connected
to the next layer’s units [20–23].

The important steps in the ANN methodology include the building of the model,
training, and testing of data points, and authentication of the model. These steps are to be
performed very specifically to obtain precise results. The characterization of properties is
considered for the shrinkage of stretch fabrics. The input parameters, such as yarn count,
construction parameters, weave structure, and on-loom width were measured. Spandex%
was also taken into consideration. Shrinkage% is measured using the ANN model. These
five input parameters and one output parameter data were stored in MS Excel and were fed
to the model accordingly. As weave structure cannot be represented in a numerical value,
weave factor is used as a numerical representation of the weave structure. It is the number
of interlacements of warp and weft in each repeat. The formula used for weave factor is:

M = E/I

E = number of threads per repeat;
I = number of interactions per repeat.
In the case of irregular weave patterns, the weave interlacements of warp and weft

yarns may be different; hence, two weave factors, M1 and M2, are considered:

M1 = E1/I2 M2 = E2/I1

where E1 and I2 can be measured by observing a pick in fabric, and E2 and I1 can be
measured by observing ends in the repeat.

2.2.3. Significance of Backpropagation

Backpropagation is a learning technique used by artificial neural networks to generate
a gradient descent for weights. A comparison is made between the desired and realized
system outputs, and then connection weights are adjusted to reduce the discrepancy as
much as is feasible. In this method, weights are changed in reverse order, from output
to input. The different factors that need to be taken into consideration while training a
machine learning model are very important, as they can significantly affect the prediction.
A wide range of factors that could affect the shrink age behavior were considered, and then
later ranked based on their affectability. The different input parameters selected here are,
warp and weft count, ends/inch, and picks/inch, spandex percentage, and greige width of
the fabrics. Following that, the fabric was cleaned and preprocessed using several scikit-
learn data pre-processing packages. Preprocessing data is an important step in machine
learning since it enhances the quality of the data and makes it easier to extract meaningful
information. Data preprocessing in machine learning is the process of preparing raw data
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for use in the building and training of machine learning models. Data pre-processing in
machine learning is essentially a data mining strategy that converts raw data into a more
comprehensible and legible form. Standardization and normalization are used to ensure the
accuracy of a dataset. As the precursor to many machine learning models, standardization
is an important pre-processing step that is used to equalize the range of features in the
input data set.

2.2.4. Building a Machine Learning Model to Predict Shrinkage Behavior Using ANN

Traditionally, neural networks have only three layers, which are the input layers,
hidden layers, and output layers. Input layers are fed external data and, output layers
feed their data to an external output, which is used in prediction. All these three layers are
commonly referred to as dense layers. All the neurons are connected to each neuron in the
next layers, and the output neuron has no forward connection to another layer, as shown in
Figure 2.
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Figure 2. Model architecture for shrinkage prediction.

The architecture of the model is very important for the prediction of numerical output
using machine learning. This architecture depends on how much depth the input data are
related to the output data. The number of interrelated parameters might be the best choice
for the number of deep layers in the neural network. The deeper the layer, the greater
the number of weights required to manage a deeper neural network, which can result in
predicting a good result. Four layers of neural networks were chosen, three of which will be
hidden. Five neurons are chosen for each layer, and the output neuron will have shrinkage
as an output. The number of epochs will be taken as four initially and will be changed as
the model becomes accurate.

2.2.5. Training the Artificial Neural Network Model

Training a model for predictive analysis gives the model an intuition about how the
output parameters will depend on input parameters. Data points are divided into two sets:
one is a train set, and the other is a test set. Train sets were used to train the model, and a
test set to test the model for unseen data and prediction. The number of times this process
is repeated is the number of epochs. A higher number of epochs will increase time but also
increase accuracy for current data. Training a model takes most of the time, and models
are generally deployed on cloud storage, such as AWS and Google Cloud. These cloud
storages are also equipped with TPU (tensor processing unit), which is very good for matrix
multiplication and other operations. Nvidia GeForce GTX 1050 was used in this study.

2.2.6. Testing the Model on a Test Data Set

After building and training the model, the model accuracy was tested. The data set
was divided into a test set and a train set. Twenty percent of the data were used for the
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test set. The model will predict the accuracy of model prediction on test data for each
epoch. If low accuracy is obtained for the train set, then the time hyperparameters are
changed accordingly, and if both the train and test set have low accuracy, then a different
architecture for the model is to be developed. This will determine how the model predicts
the test set data.

2.2.7. Authentication and Using the Model for the Prediction of a New Data Set

Experimental testing data are used for evaluating the accuracy of the model. This will
give an idea of the error of the model concerning real-world scenarios, and corrections
will be incorporated according to the type of error. These errors are mainly there if there
is an unknown factor that exists, but is not in our inputs. Generally, these errors are
negligible, but in case of very high accuracy, this can be added to the model as an input.
The development of stretch fabric is an important factor as the prediction of the model’s
performance is based on these results. The error in the development of the fabric will lead
to an error in the evaluation of the model. The error measurement of the machine learning
model was used with respect to experimental results as a factor in this evaluation. If there
are no significant results in the model, then the model architecture and parameters are
reshaped. Evaluating the model is the final step in this study. Statistical results, such as the
p-test, were used to test our model’s accuracy and significance. The evaluation gives an
idea about how much the model is reliable and precise in a real-world scenario.

3. Results and Discussion
3.1. Error Backpropagation Algorithm for Shrinkage Percentage

The algorithm related to the error backpropagation method to determine shrinkage
percentage is given below.

The error signal at the output neuron j at the iteration n is defined by ej(n) = dj(n) −
yj(n).

The internal activity level vj(n) produced at the input vj(n) = ∑i = 0
p wji(n)yi(n).

The output of the neuron j at iteration n is yj(n) = ϕj (vj(n)).
The local gradient is δj(n) = [dj(n) − oj(n)] oj(n) [1 − oj(n)].
For the hidden neuron j, the local gradient is δj(n) = yI(n) [1 − yI(n)] ∑k δk(n) wkj(n).
The correction ∆wji(n) applied to the synaptic weight is ∆wji(n) = η × δj(n) × yi(n).
In forward pass, the synaptic weights remain unaltered throughout the network. In

nonlinear functions, the below functions were included:
The log function is yI(n) = 1/(1 + exp(−vj(n)).
The hyperbolic tangent function is ϕj (v) = 2a/(1 − exp(bv)) − a.
The momentum constant is ∆wji(n) = α∆wji (n − 1) + η δj(n) yi(n).

3.2. Correlation of Factors with Respect to Boil-Off Width

The correlation of factors with respect to boil-off width was established. The factors
include warp count, weft count, greige PPI, greige EPI, and greige width. The R-value and
p-value of fabrics were found with respect to boil-off width, and are given in Table 2. The
R-value donates the correlation between the boil-off width and the different construction
parameters of the fabric. The error matrices obtained from the machine learning model
with respect to experimental shrinkage and shrinkage predicted by using Equations (1)–(4)
are given in Table 3. The graphs depicting the correlation of warp and weft count with
respect to boil-off width are shown in Figure 3. A low degree of negative correlation was
observed between the boil-off width and warp count of 100% cotton. This means that as the
warp count increases and the fineness of the yarn increases, the boil-off width decreases.
A low degree of negative correlation was also observed between the boil-off width and
weft count of cotton-spandex. As the weft count increases and the fineness of the yarn
increases, the boil-off width decreases, and it can be seen from Figure 3 that the points are
scattered over the region, depicting low correlation. The graphs depicting the correlation
of greige EPI and PPI with respect to boil-off width are shown in Figure 4. A high degree of
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negative correlation was found between EPI and boil-off width. As the greige EPI increases,
the boil-off width of the fabric decreases. A high degree of positive correlation was found
between PPI and boil-off width. As the greige PPI increases, the boil-off width of the fabric
also increases. The graph depicting the correlation of spandex percentage with boil-off
width is shown in Figure 5. A low degree of negative correlation was observed between
boil-off width and spandex percentage in weft core. This means that as the percentage of
spandex in the weft yarn increases, the boil-off width of the fabric decreases. The graph
depicting the correlation of greige width with boil-off width is shown in Figure 6. A high
degree of positive correlation was observed between boil-off width and greige width. As
the greige width of the fabric increases, the boil-off width of the fabric also increases. It
can be witnessed from Figure 6 that a cluster of dense points occurs in the graph, depicting
high correlation.

Table 2. R-value and p-value of fabrics with respect to boil-off width.

Properties R-Value p-Value

Warp count −0.089 0.002
Weft count −0.048 0.088
Spandex% −0.119 2.136
Ends/inch −0.040 0.150
Picks/inch 0.071 0.012

Greige width 0.635 1.184
M1 −0.168 2.042
M2 −0.119 2.265

Table 3. The error values for experimental and predicted shrinkage.

Errors Values

Mean squared error 48.64
Mean absolute error (%) 4.21

Mean standard error 48.60
Root mean squared error 6.97
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Using an error measure, one may determine the forecasting model error. These are
used to objectively compare the performance of opposing models. The error metrics that
are employed here include MSE, RMSE, MAE, and MSE root mean squared error (RMSE)
(SE). The correlation coefficient “r” is a unit-free value between −1 and 1. The statistical
significance is indicated with a p-value.

Mean squared error (MSE) (average of the squares of the errors):

MSE =
1
n

n

∑
i=1

(Yi−Yi)2 (1)

where n is the number of data points, Yi is the observed value, and Yi is the predicted value.
Mean absolute error (MAE) (a measure of errors between paired observations express-

ing the same phenomenon):

MAE =
∑n

i=1|yi − xi|
n

(2)

where n is the number of data points, yi is the predicted value, and xi is the true value.
Mean standard error (SE) (standard deviation of its sampling distribution):

SE =
σ√
n

(3)

where n is the number of observations, and σ is the standard deviation.
Root mean squared deviation (RMSD) is a measure of the differences between values

(sample or population values) predicted by a model:

RMSD =

√
∑N

i=1(xi− xi)2

N
(4)

where i is a variable, n is the number of data points, xi is the observed value, and xi is the
predicted value.

The mean absolute error percentage was found to be 4.21, which is within the ac-
ceptable range; the root mean squared error was also within the acceptable bounds. As a
result, this model can accurately forecast the shrinkage behavior of stretch fabrics, allowing
industries to use this tool to predict shrinkage behavior prior to the beginning of actual
manufacturing. This is an advantageous tool for product development, quality assurance,
and advanced fabric manufacturing.

4. Conclusions

It was determined that the artificial neural network can accurately forecast stretch
fabric qualities based on basic fiber characteristics and fabric constructional parameters.
The main input parameters that were considered to influence fabric shrinkage percentage
were yarn count, construction of fabric (EPI, PPI), weave structure, the percentage content
of spandex in the fabric, and the on-loom width. These factors have a significant effect on
shrinkage percentage, which is predicted through the ANN model. The network prediction
correlates well with the actual experimental results. The prediction of fabric qualities
from constructional parameters has some uncertainty. The shrinkage properties are highly
correlated with the weave structure of the fabric. The network projected opposing trends
in a few cases, which are difficult to explain. However, the model prediction accuracy on
training data reached 99.2%; therefore, using ANN is effective for numerical prediction of
fabric parameters and determination of shrinkage percentage.
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