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Abstract: In the context of wearable technology, several techniques have been used for the fabrication
of radio frequency identification (RFID) tags such as 3D printing, inkjet printing, and even embroidery.
In contrast to these methods where the tag is attached to the object by using sewing or simple sticking,
the E-Thread® technology is a novel assembling method allowing for the integration of the RFID tag
into a textile yarn and thus makes it embeddable into the object at the fabrication stage. The current
E-Thread® yarn uses a RFID tag in which the antenna is a straight half-wave dipole that makes the
solution vulnerable to mechanical strains (i.e., elongation). In this paper, we propose an alternative
to the current RFID yarn solution with the use of an antenna having a helical geometry that answers
to the mechanical issues and keeps quite similar electrical and radiative properties with respect to
the present solution. The RFID helical tag was designed and simulated taking into consideration
the constraints of the manufacturing process. The helical RFID tag was then fabricated using the E-
Thread® technology and experimental characterization showed that the obtained structure exhibited
good performance with 10.6 m of read range in the ultra high frequency (UHF) RFID band and 10%
of tolerance in terms of elongation.
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1. Introduction

Radio frequency identification (RFID) is a very popular standardized technology that
is mainly employed for the identification purposes of objects or people. More precisely,
an object associated with a RFID tag is remotely identified by the means of a RFID reader.
The communication principle is based on the tag’s load modulation of the backscattered
electromagnetic wave [1–3], which implies that in most of the cases, the RFID tag is passive
(i.e., it uses the transmitted energy from the reader without the need for any additional
energy source). RFID is a very interesting concept that contributes to the Internet of
Things (IoT) development and, more generally, it is considered as a key technology for
humanity [4,5]. The advantages that are offered by RFID tags such as communication
without line of sight, low cost, small size, and unique identification have made them an
essential candidate for a wide range of applications, for example, logistics, retail, access
and identity cards as well as wireless payment systems.

Recently, the emergence of electronic devices that can be worn in, on, or near the
body called “wearables” has allowed for the possibility of recovering various physiological
information from a human body and transmitting it wirelessly to a processing unit or
even to a smartphone [6]. The information obtained from a wearable device can be very
useful in a wide range of applications, especially in the health care sector and one of
the required operations is the unique identification of the device. For this purpose, in
the last years, many efforts have been undertaken in order to develop wearable RFID
tags that can be associated with clothing or an accessory in a way that is non-invasive,
comfortable, and invisible for the wearer. Popular considerations during the design of
wearable RFID tags are usually the impact of deformation on the RFID tag’s performance,
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the effect of the human body’s proximity to the tag’s electrical and radiative properties or
the tag’s washability [7–11]. However, in the encountered studies, the RFID tag’s topology
is often kept unchanged from the conventional one (i.e., planar antenna on a substrate with
properties that are specific to the application). In fact, the link between a RFID tag and the
object it is associated to, is often neglected and the concept of integrating the tag into the
object since the manufacturing phase is part of the “Industry 4.0” era.

One of the technologies that supports this idea is E-Thread®, in which the RFID tag’s
form factor is reinvented as a RFID textile yarn. The patented technique [12] consists of
an automated assembling process during which the RFID chip is associated with a half-
wave dipole antenna in a repeated operation. The obtained cascaded RFID tags are then
wrapped by a textile material to constitute a spool of textile RFID yarns. When isolated
from the spool, one RFID yarn operates in the European Ultra High Frequency (UHF) band
(865.5− 867.5) MHz and exhibits a reading range of 12 m [13]. The current E-Thread®

RFID yarn constitutes a very interesting solution as it can be integrated within an object
during the fabrication stage and offers great advantages with its slender configuration such
as invisibility and comfortable for the user. However, a RFID wearable tag has to be robust
to any kind of mechanical constraints such as the elongation, which is lacking in the actual
RFID yarn.

In this paper, we propose an alternative solution that consists of using for the tag’s
antenna, a helical geometry that has similar mechanical properties to a string. A helical
antenna is mainly fabricated by winding a conductive material and its geometrical pa-
rameters have an important impact on its electromagnetic properties in terms of input
impedance and radiation pattern. Usually, these helical antenna properties are exploited
for several scenarios such as phased antenna arrays for millimeter waves and wireless
power transfer applications [14,15], wireless sensor nodes in smart agriculture [16] as well
as biomedical applications [17–19]. However, to the authors’ knowledge, in the literature,
very few examples can be found where a helical antenna has been used in a RFID tag. For
example, the study in [20] focused on the development of a helical RFID tag to be integrated
into a vehicle tire. In this case, the impedance matching between the antenna and the chip
was achieved using a transmission line. Meanwhile, in the study presented in [21], a helical
antenna was developed for and RFID tag in which the impedance matching was achieved
by tuning the geometrical parameters of the antenna.

In a previous work [22], the latter method was employed in order to design a helical
antenna for the RFID tag yarn without the use of any additional elements in order to
perform the impedance matching. The RFID helical tag exhibited a maximum read range
at 1040 MHz, which is higher than the frequency of interest and 1 m of read range in the
European UHF RFID band. As explained, the observed result is due to manufacturing
process constraints and one of the given improvement solutions was to design a helical
antenna with a spacing between turns that is higher while increasing the antenna’s half-
length h.

In this paper, the new UHF RFID helical tag-based textile yarn includes two significant
improvements: (i) the helical RFID tag was designed while taking into consideration
the manufacturing constraints (the nature of the employed materials and the physical
dimensions’ limits), and (ii) the integration of a stretchable core material as a support for
the elongation. Compared to the previous version of the helical RFID tag, the suggested
methodology design also allows for a manufactured structure to be obtained for which the
dimensions and the electromagnetic characteristics are close to the simulated ones. This is
possible through a more accurate modeling of the materials’ characteristics in the design
process. The rest of this paper is organized as follows. In Section 2, the topology of the
helical antenna when integrated into a textile yarn is presented together with the design
methodology including electrical and manufacturing specifications. Moreover, criteria for
the helical RFID tag characterization using simulation and experiments are given. Section 3
highlights the simulation results in terms of reflection coefficient and radiation pattern.
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Moreover, the fabricated prototypes as well as the experimental characterization’s results
are presented. Finally, conclusions and future work are drawn in Section 4.

2. Materials and Methods
2.1. Topology of the RFID Textile Yarn Integrating a Helical Antenna

In free space, the helical antenna is characterized by its geometrical parameters, which
are the diameter D; the half-length h; the turns number N; the pitch s; and the wire radius a,
as shown in Figure 1a. As stated, these parameters impact the electromagnetic properties as
follows: the diameter D and the pitch s mainly have an impact on the impedance matching
while the half-length h and turns number N mainly modify the resonance frequency.
Moreover, a helical antenna with a diameter much smaller than the wavelength allows a
radiation pattern to be maintained with a normal mode similar to the dipole antenna of the
current solution [23].

Figure 1. (a) Helical antenna configuration; (b) Cross section of the RFID textile yarn integrating the
helical antenna.

The RFID helical tags presented in this paper were fabricated using the E-Thread®

technology. The E-Thread technology consists of an automated assembling process where
a dipole antenna is associated with a RFID chip for which the package was modified
beforehand. On the RFID chip edges, two grooves receive two copper wires that form the
tag’s antenna [12]. This technique allows for several cascaded RFID tags to be obtained
that can have a textile finishing during a wrapping process [13]. Furthermore, in order to
obtain the helical shape, an additional step is required. This step consists of wrapping the
textile material containing the cascaded RFID tags around a core material giving the helical
aspect; here, a stretchable material is employed as the core of the helical antenna offering
elongation capabilities. Details on the practical fabrication are given in [22]. Preliminary
parametric simulations testing different dielectric constants for the used core material
has allowed us to conclude that when the dielectric constant of the core increases, the
impedance matching frequency shifts toward the low frequencies. Thus, it is important to
identify and characterize the nature of the used material as the core during the antenna
design. Indeed, any change after the manufacturing process is very difficult and may
strongly deteriorate the RFID yarn.

For the simulation purpose, the textile material used for wrapping and the core
material were modeled simply as dielectric materials characterized by their permittivity
constant provided by the industrial partner. The dielectric constants for the employed nylon
and lycra are εr = 3.6 and εr = 1.5, respectively. A cross section of the helical RFID textile
yarn is shown in Figure 1b: Dext is the external diameter of the helical tag integrated in the
textile; Dint is the diameter of the cylindrical core material; and 2a is the helical antenna
wire’s diameter.
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2.2. Design Specifications

In order to design a helical antenna for the RFID textile yarn, electrical specifications
have to be guaranteed. In addition to these conditions, manufacturing constraints in terms
of dimensioning are imposed by the manufacturing process.

2.2.1. Electrical Specifications

• The helical RFID tag has to operate, here (but without loss of generality on the concept),
within the European UHF RFID band (865.5− 867.5) MHz; and

• The considered RFID integrated circuit (IC) is the Monza R6 [24] and its impedance is
Zchip = 15− j150 Ω at 865 MHz. This RFID IC is used by the industrial partner for the
current commercialized solution. However, the design methodology is independent
from the IC choice.

2.2.2. Manufacturing Constraints

In order for the RFID helical tag design to be compatible with the E-Thread® manu-
facturing process, some of the helical antenna’s geometrical parameters have to respect
certain limitations (which for the most part are therefore fixed according to manufacturing
constraints):

• The helical antenna’s pitch has to be higher than 0.7 mm. As explained in [22], the
value of this parameter depends on the rotation speed of the conductive filament
around the core material. Consequently, the value that meets the manufacturing
process and employed for our design methodology was s = 1.2 mm;

• The core material around which the copper conductive wire was wound had a diame-
ter of 1 mm. A lower diameter strongly alters the impedance matching while a high
value leads to a complex winding process. Consequently, this condition allows us to
make a compromise between the manufacturing process and the helical RFID tag’s
performance;

• The external diameter Dext, which depends on the textile material thickness, is pro-
vided by the industrial partner as Dext = 1.35 mm; and

• The conductive wire diameter was fixed to 2a = 0.1 mm and corresponded to the
copper’s diameter used in the E-Thread® process.

Hence, the geometrical parameters of the helical antenna that can be varied in order
to design a helical RFID tag while meeting the specifications are: the half-length h and the
turns number N. Table 1 summarizes the variable and the fixed geometrical parameters.

Table 1. Geometrical parameters of the helical antenna integrated into a textile yarn.

Geometrical Parameters Value [mm]

Dext 1.35

Dint 1

s 1.2

a 0.05

h Varied

N Varied

2.3. Helical Antenna’s Simulated Structure

All the presented simulations were performed using CST Microwave Studio 2018,
electromagnetic simulation commercial software.

The described helical RFID tag was configured in 3D and a full view is shown in
Figure 2a. In addition, a vertical cross section is illustrated in Figure 2b. The pitch s and
the diameter D that strongly impact the impedance matching of the helical antenna have
been fixed for manufacturing constraints and thus, only the resonance frequency can be



Textiles 2021, 1 551

modified. For this purpose, the number of turns N and the half-height h are simultaneously
varied in order to obtain a resonance frequency in the UHF RFID band.

Figure 2. Helical antenna in 3D. (a) Full view of the structure. (b) Vertical cross section of the structure.

2.4. Characterization of the Helical RFID Tag

Here, the designed helical RFID tag was characterized in two ways. First, by simula-
tion, and more precisely by evaluating its impedance matching and its radiation pattern.
Second, the tag was evaluated by experimental tests through the measurements of the read
range and by estimating its robustness to stretching.

2.4.1. Helical RFID Tag’s Impedance Matching

Unlike other RF scenarios in which the antenna’s impedance has to be matched to
50 Ω, in RFID, the antenna’s impedance has to be matched with the IC’s impedance. The
impedance matching is evaluated through the complex power wave reflection coefficient Γ,
which can be expressed as in Equation (1):

Γ =
Zchip − Zant∗
Zchip + Zant

(1)

where Zant is the helical antenna’s input impedance.

2.4.2. Helical RFID Tag’s Read Range

In most applicative contexts of UHF RFID, the read range is a very important criterion
to describe the performance. In order to compare the experimental result to the one
obtained by simulation, the read range can be calculated using the theoretical expression
obtained from the Friis transmission equation:

R = (λ/4π)·

√
PtGtGrχτ

Pth
(2)

where λ is the wavelength; Pt is the power transmitted by the reader; Gt is the reader’s
antenna gain; Gr is the tag’s antenna gain; χ is the polarization loss; Pth is the tag’s activation
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threshold that represents the power needed for the IC to start operating; and τ is the power
transmission coefficient defined as:

τ = 1− |Γ|2 (3)

It is worth noting that the quantity PtGt represents the equivalent isotropic radiated
power (EIRP). Its maximum value depends on the geographical location, for instance, the
value imposed by the European Telecommunications Standards Institute (ETSI) is 3.28 W,
whereas the tag’s activation threshold is specific to the chosen IC.

In the presented work, the Voyantic Tagformance commercial test bench [25] was used
to measure the read range.

2.4.3. Helical RFID Tag’s Robustness in Terms of Stretching

In order to measure the helical RFID tag’s tolerance to elongation, the Voyantic Bench
test was also used after performing some modifications in order to correspond to our
application. More precisely, both the antenna extremities are attached to a basic textile
filament that is wound around two spools. As shown in Figure 3, the spools’ rotation,
clockwise and counter clockwise, allows for the application of an elongation on the tag.
The read range is then measured for each considered elongation.

Figure 3. Modified Voyantic test bench for the measurement of the helical RFID tag’s reading range
when elongation efforts are applied.

3. Discussion of the Simulation and Measurement Results
3.1. Helical RFID Tag’s Reflection Coefficient Γ and Its Radiation Pattern

After optimization, the helical RFID tag’s geometrical parameters were: h = 50 mm;
N = 42, in addition to the fixed ones given in Table 1. The reflection coefficient obtained
from simulation is shown in Figure 4. It can be observed that the tag’s antenna exhibited a
minimum value of the reflection coefficient Γ of −6.27 dB at 865 MHz.
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Figure 4. Reflection coefficient Γ obtained by simulation at the antenna feed point.

The radiation pattern obtained by simulation is shown in Figure 5, where the antenna
is positioned along the z-axis and has a maximum gain of 1.27 dB. It can be seen that the
radiation pattern was omnidirectional in the xoy plan, which is identical to a half-wave’s
dipole radiation pattern. Moreover, through the obtained axial ratio (AR) as shown in
(Figure 6), defined as Eθ

Eϕ
= 35.8 dB for the main lobe (Eθ and Eϕ being the orthogonal

components of the radiated electric field), the antenna is elliptically polarized with a vertical
major axis [23].

Figure 5. Helical RFID antenna’s radiation pattern.
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Figure 6. Helical antenna’s axial ratio for an azimuth angle ϕ = 90◦. The axial ratio is independent
of the azimuth angle.

3.2. Helical RFID Tag’s Experimental Characterization
3.2.1. Fabricated Prototypes

Figure 7a presents the fabricated textile yarn obtained from the modified E-Thread®

assembling process. The spool of the textile filament is composed of helical RFID tags,
which are cascaded. Note that in practice, each tag can be cut at the appropriate length in
order to be operational at the desired frequency. One helical RFID tag was isolated from
the spool by cutting at the length that allowed it to have a resonance frequency in the UHF
RFID band.

Figure 7. Fabricated helical RFID tags. (a) Spool of cascaded helical RFID tags. (b) RFID helical tag
after isolation from the spool.

The obtained RFID helical tag is shown is Figure 7b and has the following geometrical
parameters: h = 47.5 mm; N = 40, in addition to the ones given in Table 1. An error of 5%
can be observed regarding the height, which is due to the fact that in the simulation, the
material properties are known with a certain imprecision and the pitch s is not ideal. Thus,
the helical tag’s length has to be adjusted after fabrication.
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3.2.2. Measured Read Range of the Helical RFID Tag

Considering that the RFID reader has an EIRP of 3.28 W and the IC has a threshold
power Pth = −20 dBm, the measured read range and the one deduced from the simulation
using Equation (2) are shown in Figure 8. It was shown that the helical RFID tag exhibited
a maximum measured read range of 10.6 m at the frequency of 865 MHz. Moreover, the
RFID helical tag exhibited a wide band behavior as it can be operational in the U.S. UHF
RFID band (902− 928) MHz with a read range of 9 m. The measured result is coherent
with respect to the simulation as the maximum read range obtained by the simulation was
11.3 m at 865 MHz. It is also worth remarking that the gain value of the antenna helped to
compensate for the transmission coefficient and allowed a read range to be obtained closer
to that of the current E-Thread solution (12 m).

Figure 8. Helical RFID tag’s read range obtained by simulation and by experimental measurement.

Moreover, it can be remarked that compared to the simulation, a wider frequency
bandwidth was obtained in the experiment, which is very advantageous for an applicative
scenario. The difference in the results may be explained by the manufacturing process
(some inaccuracies in the dimensions and the permittivity values of materials), which does
not allow for an exact fit with the dimensions employed in the simulation.

3.3. Evaluation of the Helical RFID Tag’s Robustness in Terms of Stretching

The impact of the tag’s elongation on the read range was measured and the results
are presented in Figure 9. At the initial state (without elongation) for an antenna having
the total length of 9.5 cm, the maximum read range was 11 m at 865 MHz, which is higher
than the previously shown result. This small difference may be attributed to the fact that
in the previous measurement, the antenna was slightly bent; this also shows the impact
that the curvature will have for a tag in wire form. It can also be observed that up to a
length of 10 cm, the helical RFID tag’s read range is maintained at the frequency of interest.
However, beyond this length, the resonance frequency is shifted to lower frequencies, which
is coherent with the increase in the length of an antenna. At the maximum considered
length of 10.6 cm, the tag was still readable at a range of 9 m (18% of loss) at the frequency
of interest.
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Figure 9. Impact of the stretching on the helical RFID tag’s read range, obtained by experimental
measurements.

From these measurements, the robustness of the proposed antenna was confirmed in
terms of the read range performance as well as the structural aspect of the textile material.

4. Conclusions

In this paper, a helical RFID tag was designed to be integrated into a textile yarn using
the E-Thread® technology. The simulation results showed that fixing the parameters such
as the pitch s and the diameter D made a complex impedance matching process due to the
strong impact these parameters have on the helical antenna input impedance. However,
the tag’s read range maybe improved to reach a value close to the one obtained in the
current solution by ensuring an antenna gain that enables compensating the reflection
coefficient Γ. Another improvement solution might be adding lumped elements to achieve
an impedance matching with the inconvenience of a complex manufacturing process. From
the experimental measurements, the helical RFID tag exhibited a read range of 10.6 m,
which is an improvement considering the previous work [15]. Compared to the current
solution of the RFID yarn using a half-wave dipole that has a read range of 12 m, the helical
RFID tag offers a close read range with the advantage of being robust to elongation. Indeed,
as the experiments have demonstrated, up to an elongation of 10% from the initial length,
the helical RFID tag is still readable at 9 m.

The presented helical RFID tag may be used in a wide range of applications. The capa-
bilities of the helical RFID tag could also be expanded beyond the classical identification
purposes to some other functionalities, for example, using the antenna elasticity in order to
measure strain deformation and thus the textile helical RFID tag becomes a sensor.
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