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Abstract: The tautomerism in the title compound as a potential long-range proton transfer (PT) switch
has been studied by using the DFT and TD-DFT approaches. The data show that in aprotic solvents,
the enol tautomer dominates, while the increase in the content of the keto tautomer (short-range PT)
rises as a function of polarity of the solvent. In ethanol, due to specific solute–solvent stabilization
through intermolecular hydrogen bonding, a substantial amount of the keto forms exists in solution.
The irradiation leads to two competitive processes in the excited state, namely ESIPT and trans/cis
isomerization around the azomethine bond as in other structurally similar Schiff bases. The studied
compound is not suitable for bistable tautomeric switching, where long-range PT occurs, due to the
difficult enolization of the coumarin carbonyl group.

Keywords: 7-hydroxy-coumarin; 7-hydroxy-3-methylcoumarin; Schiff base; tautomerism; DFT;
TD-DFT; solvent effect; molecular switching; proton crane; proton transfer

1. Introduction

Excited-state intramolecular proton transfer (ESIPT) is a feature of organic molecules,
containing strong proton-donating/accepting groups, which, due to the increased acid-
ity/basicity in the excited state, exchange a proton over the short distance of pre-existing
hydrogen bonding [1–10]. ESIPT-exhibiting molecules have become a field of active re-
search in recent decades, due to their applications as light-emitting materials and laser
dyes [11–15], optical sensors [16–27], organic light-emitting diodes [20,21,28–36], optical
storage devices [37] and photo stabilizers [38]. The same process underlies a special class
of bistable photo switches [39], called proton cranes, where the ESIPT is accompanied by
intramolecular rotation [40], leading to the transport of a movable proton from one side of
the molecule to another.

The overall process of switching in proton cranes is outlined in Scheme 1. The proton,
which is located at the proton donor site of a PT frame (PTF), undergoes ESIPT to the proton
crane unit (PCU) upon irradiation. In this way, the proton is separated from the PTF, in
which two free proton acceptor sites remain. The competition between them is the driving
force of the rotation of the PCU, which can lead to the delivery and release of the proton to
the other side of the PTF. The overall process can be classified as long-range intramolecular
proton transfer.

Depending on the extent of conjugation between PTF and PCU, and more importantly,
on the possibility for tautomeric proton exchange between PTF and PCU, the switching
mechanism can be very different [41,42]. In 1 [43,44], the ESIPT (i.e., the transition from I* to
II*) leads to tautomeric structural re-arrangement, which changes the nature of the axle from
a single to a double bond. This causes twisting around the axle to a structure where the PFT
and PCU are perpendicular each other, and relaxation to the ground state occurs through
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conical intersection. As a result, II and III are populated simultaneously, leading (at suitable
relative energies) to a population of I and IV, respectively. In 2 [42,45–47], the initial ESIPT
leads to II*, which has a zwitterionic structure (i.e., intramolecular deprotonation occurs).
The nature of the axle remains unchanged and the long-range PT occurs entirely in the
excited state, which leads to IV*, where the PTF is protonated again. Then, the relaxation
to the ground state populates IV. In 3 [48–50], there is also possibility for tautomeric re-
arrangement in the first stage of the process, but due to the highly unstable zwitterionic
nature of IV, the end state has never been reached [49,50].
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tautomer is substantially more stable, while the NH tautomer has been experimentally 
observed only in protic organic solvents or in the presence of water and results from the 
intermolecular, solvent-assisted PT mechanism [43,61]. Previous computational studies 
suggested that the reversible long-range PT process could be observed for a series of 7-
hydroxy-quinoline-based switches and oxazine [41,62] and other six-membered ring 
heterocycles [62], pyridines [62,63,64], the carbaldehyde group [43], and CO-BF2 [65,66] as 
proton cranes units. Recently, we have reported several classes of proton cranes, where 
the azomethine group plays the role of a PCU, providing intramolecular PT to III, and in 
limited cases to IV, upon irradiation [67,68]. 

7-hydroxy-coumarin and its derivatives (including 4, Scheme 2), also possess a 
proton donor group (O-H) at a large distance from the proton acceptor group (C=O), 
making direct intramolecular PT impossible. The substantially more stable enol form is 
observed in organic solvents, while the keto form appears in the presence of alcohols, 
water and organic bases as for 7-hydroxy-coumarin [69,70,71,72,73,74] as well as for 4 
[74,75,76,77,78,79]. As reported for 4, concentration-assisted PT takes place in the gas 

Scheme 1. Sketch of a molecular switch, based on a long-range intramolecular PT. The red color
indicates proton donor sites, while blue is used for proton acceptor sites. The twisting axle is shown
in green. Below, three compounds, as experimentally studied examples, are shown.

7-hydroxy-quinoline is one of the most frequently studied examples for long-range
intramolecular proton transfer [51–61] and is a very suitable structure for PTF, where the
proton donor OH group and the proton acceptor N atom are far apart to provide condi-
tions for truly intramolecular proton exchange. The enol tautomer is substantially more
stable, while the NH tautomer has been experimentally observed only in protic organic
solvents or in the presence of water and results from the intermolecular, solvent-assisted
PT mechanism [43,61]. Previous computational studies suggested that the reversible long-
range PT process could be observed for a series of 7-hydroxy-quinoline-based switches
and oxazine [41,62] and other six-membered ring heterocycles [62], pyridines [62–64], the
carbaldehyde group [43], and CO-BF2 [65,66] as proton cranes units. Recently, we have
reported several classes of proton cranes, where the azomethine group plays the role of a
PCU, providing intramolecular PT to III, and in limited cases to IV, upon irradiation [67,68].

7-hydroxy-coumarin and its derivatives (including 4, Scheme 2), also possess a proton
donor group (O-H) at a large distance from the proton acceptor group (C=O), making
direct intramolecular PT impossible. The substantially more stable enol form is observed
in organic solvents, while the keto form appears in the presence of alcohols, water and
organic bases as for 7-hydroxy-coumarin [69–74] as well as for 4 [74–79]. As reported for
4, concentration-assisted PT takes place in the gas phase [80] as well. Quite interestingly,
in 7-hydroxy-4-(trifluoromethyl)coumarin in toluene, the addition of 1-methylimidazole
leads to excited-state intermolecular long-range PT in the picosecond time scale, where the
base acts as a proton-transfer shuttle from the hydroxyl group to the carbonyl [81].
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Scheme 2. Enol (4E) and keto (4K) tautomers of 7-hydroxy-4-methylcoumarin (up). Possible tau-
tomeric forms and mechanism for intramolecular long-range PT in the Schiff bases, discussed in the
current study (down). The skeleton important for the switching is given in bold lines. The twisting
angle a is indicated in magenta.

In spite of its structural suitability as a PTF, 7-hydroxycoumarine and its derivative
4 have never been considered in the design of proton cranes. Very recently, the syn-
thesis and spectral properties of 5 have been reported, along with some photochemical
information [82,83]. This creates a solid background for detailed theoretical studies that can
reveal the ground-state tautomeric properties and excited-state PT in 6 as simplified models
of 5. Bearing in mind that the Ph rings in the Schiff bases are partially out of planarity,
the effect of weak substituents like OMe on the tautomeric state is negligible [84]. In the
current investigation, the tautomerism of 6 in the ground and excited state is studied in a
variety of solvents, and the applicability of 7-hydroxy-coumarine Schiff bases as proton
cranes is considered.

2. Computational Details

Quantum-chemical calculations in the ground state were performed using the Gaus-
sian 16 C.01 program suite [85]. All structures (in both the ground and excited state) were
optimized without restrictions, using tight optimization criteria and an ultrafine grid in
the computation of two-electron integrals and their derivatives. The true minima were
verified by performing frequency calculations in the corresponding environment. The
implicit solvation was described using the Polarizable Continuum Model [86] (the integral
equation formalism variant, IEFPCM, as implemented in Gaussian 16). The transition states
were estimated using the Berny algorithm [87] and again verified by performing frequency
calculations in the corresponding environment.

The M06-2X [88,89] density functional with the TZVP [90] basis set was used for the
structure optimizations in the ground state. This fitted hybrid meta-GGA functional with
54% HF exchange was especially developed to describe main-group thermochemistry
and non-covalent interactions. The use of M06-2X provides very good predictability of
the ground-state tautomerism [68,91,92] in tautomeric compounds and proton cranes in
solution, as well as the E/Z isomerization ratio in rotary switches.

The TD-DFT method [93,94] was used for singlet excited-state optimizations. CAM-
B3LYP [95] with the TZVP basis set was used for the optimizations (NStates = 6). The selec-
tion of CAM-B3LYP was based on its better performance (in comparison with a variety of
density functionals, including M06-2X) in describing electronic excitation energies, excited-
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state geometries, dipole moments and oscillator strengths in a variety of systems [96–99],
including ESIPT ones [100], as well as from our own previous experience [68,101].

Bearing in mind that M06-2X systematically underestimates vertical transition
energies [102], the UV-Vis spectral data were predicted by the B3LYP [103] functional
(6-311 + G(2d,p) basis set) using the M06-2X optimized ground-state geometries. The
corresponding spectral curves (presented as molar absorptivities) were constructed from
the theoretically obtained band positions and oscillator strengths by using Gauss band
shape [104] according to Equation (1) as follows:

ε(λ) = ∑n
i=1 εmax,i·e

−ln (2)·1014·(
1

λmax,i
− 1

λ

∆ν1/2
2

)

2

(1)

where n is the number of the transitions taken into account, λmax,i is the predicted position
of the band of the ith transition in nm and εmax,i is the calculated maximal intensity of the
ith band according to Equation (2) from the oscillator strength fi [105].

εmax,i =
fi

7.04 × 10−9·∆ν1/2
(2)

A half-band width (∆ν1/2) value of 3500 cm−1 was used for all bands.

3. Results and Discussion

The possible tautomeric forms of 5 and 6 are given in Scheme 2. According to the data,
obtained by Liubimov and co-authors [82], the E tautomer of 5, absorbing in the near UV
range (340 nm), is substantially more stable in aprotic solvents like toluene. The KE form
has an absorption maximum around 450 nm, the intensity of which arises in protic solvents.
The same behavior is typical for the tautomeric Schiff bases derived from 2-naphthol (7,
Scheme 3) [84] and 7-hydroxy-quinoline (8) [68], which feature intramolecular hydrogen
bonding and increased aromaticity in the OH-containing part.
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The absorption spectra of the possible tautomers of 6, as a model of 5, are shown in
Figure 1 and Figure S1 in toluene and acetonitrile, respectively. In line with the experiment,
the E tautomer absorbs around 330–340 nm, which corresponds very well to the experi-
mental data in these two solvents [82,83]. The existence of the keto tautomers (KE, KK
and K) should be manifested by the appearance of red-shifted absorbance, each of them
with their own signature. According to the relative stabilities of the tautomers, shown in
Figure 2 and, in detail, in Table S1, the energy difference between E and KE suggests a
very small amount of the latter is presented in toluene and acetonitrile, with more in the
latter. The energies of KK, and especially of K, are too high to be observed in solution.
According to the spectrum of 5 in toluene [82], a very low intensive tail is observed in the
range 400–500 nm, while in acetonitrile [83], the red-shifted band is well defined at 450 nm,
which corresponds to the suggested spectra of KE and KK. As discussed above, due to the
high relative energy (>6 kcal/mol in respect of E, Table S1), the KK tautomer should be
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excluded. In the case of 6, the appearance of KE has an individual feature, which differs
from the E to KE transitions in 7 and 8. While in 7 and 8, the increase in the content of the
KE form leads to a decrease in the intensity of the band assigned to the enol [68,84], in the
case of 6, as very clearly seen from Figure 1 and Figure S1, the increase in the keto form
should also lead to a rise in the absorption at 340 nm, due to the overlapping between the
S0-S1 transition of E and the S0–Sn transitions in KE, with the latter having larger oscillator
strength. Actually, this is observed for 5, comparing the molar absorptivities at 340 nm in
toluene and ethanol [82]. The intensity of the band in toluene is ~23 000 M−1·cm−1, which
nicely corresponds to that in Figure 1. The same value in ethanol, where the content of KE
is substantially higher, is much larger. Based on the predicted theoretical data for the KE
maximum in ethanol with molar absorptivity around 9 000 M−1·cm−1 (Figure S2) and the
measured value in ethanol (4 500 M−1·cm−1), it can be estimated roughly that the amount
of 5KE is between 40 and 50%. This is surprisingly high compared to the predicted relative
energies in ethanol as a medium (Table 1), suggesting that this tautomeric state can be only
attributed to a specific solute–solvent stabilization.
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Table 1. Relative energies of the 1:1 and 1:2 complexes of 6 with ethanol molecules in the ethanol
environment. The corresponding values for the single tautomers in the same environment are given
in brackets.

Structure

Relative Energetics
[kcal/mol]

(M06-2X/TZVP)
Structure

Relative Energetics
[kcal/mol]

(M06-2X/TZVP)

∆E ∆∆G ∆E ∆∆G
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As seen from Table 1, the relative stability of the tautomers in ethanol (as implicit
solvation) suggests around 5% of KE, which is much lower than the observed value. Even
a very simple explicit solvation model with one molecule solvent attached changes the
situation substantially. The relative stability of KE increases to almost 15%, which shows
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the reasons for substantial stabilization in alcohols. The increase in the number of attached
solvent molecules would probably shift the equilibrium further to the keto tautomer, as
shown in the case of two ethanol molecules being attached, where the solvent stabilization
of KE is substantial. Although the structure of the KK + EtOH and K + EtOH complexes,
shown in Table 1, suggest that a channel for the exchange of the proton between KK and K
potentially exists, the energy of the latter is too high to be really populated in solution. It is
especially interesting to mention that this solvent channel actually works in the direction
of the more stable KK, as seen from the 1:2 complex of K. Of course, the data, collected
in Table 1, represent a very simplified model of the reality in solution, but they show the
trends in the change in the tautomeric state as a result of the specific solvation.

The discussion up to now has been based on the theoretical simulations, which log-
ically raises the concern of how reliable these conclusions are, especially because there
are no quantitative data about the position of the tautomeric E–KE equilibrium in 5 and
6 to confirm the reliability of using the M06-2X/TZVP approach for the relative stability
prediction. On one hand, it was previously proved that the M06-2X/TZVP level of theory
predicts, in a reliable way, the tautomeric state and important structural characteristics
of azodyes and Schiff bases in aprotic solvents [91]. On the other hand, experimental
data are available for 7 and 8, where the same theoretical approach was used [68]. The
corresponding information to compare 6–8 is collected in Table 2.

Table 2. Theoretically predicted ∆E and ∆G values compared with the experimentally determined
∆G values at room temperature in toluene and acetonitrile (in brackets).

Structure

Relative Energetics
[kcal/mol]

6 7 8

M06-2X/TZVP M06-2X/TZVP [84] M06-2X/TZVP [68]

∆E ∆G ∆E ∆G ∆Gexp ∆E ∆G ∆Gexp

E 0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.0
(0.37)

0.0
(0.10) (0.52)

KE 2.8
(1.76)

3.5
(2.4)

1.70
(0.55)

1.80
(0.60)

1.42 *
(0.35)

0.52
(0.0)

0.62
(0.0) (0.0)

KK 7.3
(6.0)

8.0
(6.7)

9.0
(7.1)

9.8
(8.3) - 1.9

(0.70)
2.05

(0.63)
-

(1.0)

K 32
(30)

32
(29) - - - 7.6

(4.8)
7.5

(4.7) -

* in cyclohexane.

As seen from the data in Table 2, there is reasonable agreement between the theoreti-
cally obtained ∆E values and the experimental Gibbs free energies for 7 and 8. Of course,
as it was underlined above, this agreement is limited to aprotic solvents, since the implicit
solvation model does not account the specific solute–solvent interactions with the protic
solvents. This means, for instance, that the theoretical results for alcohols, obtained by
using the PCM solvation only, have to be interpreted with care. The information given in
Table 1 is a very convincing example.

The data collected in Table 2 allow to make conclusions about the effect of the PTF in
compounds 6-8. In all three compounds in toluene, the enol is the most stable form, but the
relative stability of the KE form increases from 6 to 8, from an almost negligible amount
in 6 to almost 1/3 of the total population in 8. The KK form is strongly destabilized in 7,
due to steric hindrance between the tautomeric NH and the C8H proton, and in 6, due
to the lack of stabilizing hydrogen bonding as in 8. The K tautomer does not exist in 7
and is very strongly destabilized in 6. The latter is a result of the difficult enolization of
the carbonyl group in the coumarin backbone and/or by the strong stabilization of the
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enol form within the 7-hydroxy-coumarin core. In structurally similar compounds, where
7-hydroxy-coumarin plays a role of potential PTF, and where benzothiazole [106,107] and
other conjugated nitrogen-containing heterocycles [22,108] are attached as PCU, there is no
evidence of the existence of KK and K switched forms.

According to the data reported by Liubimov and co-authors [82], in toluene 5 exhibits
a single emission band around 545 nm. The isolated PTU, 4, also show a single band,
but it is substantially blue shifted (at around 380 nm), which is attributed to the local
emission of the only existing in this solvent enol tautomer. Therefore, the substantial Stokes
shift (11 000 cm−1) in 5 suggests an ESIPT process from E* to KK* as the authors stated.
Additional irradiation does not lead to spectral changes in 5 in in this solvent.

In Figure 3, the ground- and first excited-state potential energy surfaces are sketched.
According to these, and also to the general understanding of long-range PT in similar
compounds [41], the excitation of the enol form through an energetically high Franck–
Condon state could lead either spontaneously to conical intersection (CI) relaxation in
the C=N bond isomerization region, yielding a mixture of ground-state E and Ecis, or
ballistically, through ESIPT, to KE*. Then, the excited KE* can emit or, by twisting around
the C-C bond (the axle in Scheme 2), can reach the twisting conical intersection region,
relaxing as a mixture of KE and KK. As shown above, KE almost immediately restores
to the predominant E, while KK can be accumulated due to the large relaxation barrier
back (~25 kcal/mol in respect of KK). Only in such a consequence of events could an
emission from KK be observed. Bearing in mind that no spectral changes are observed
upon irradiation, the accumulation of KK is less probable to be assumed. Therefore, the
observed red-shifted emission could be only attributed to KE*. The large Stokes shift of
this emission probably comes from the substantial stabilization of KE* in respect of the
enolic Franck–Condon state, as seen from the figure. Schiff base 8 also exhibits an ESIPT
emission in toluene around 490 nm with a Stokes shift of 7400 cm−1 [68], which comes
from it being lower in energy, compared to here, in the Franck–Condon state. An emission
in cyclohexane around 480 nm, attributed to the ESIPT process [109], is measured for 7, but
there are no theoretical data to make a more detailed interpretation.

The situation dramatically changes in both 4 and 5 going to an ethanol solution [82].
As seen from Figure 4, the emission spectrum of 6 depends on the excitation wavelength;
a single emission band with a maximum at 530 nm is observed when excited at 461 nm
(spectrum 3), whereas two emission bands with maxima at 442 nm and 530 nm are observed
when excited at 375 nm (spectra 2 and 5). According to the discussion above, in the ground
state, a substantial amount of KE exists in ethanol, expressed by the red-shifted band
at around 450 nm. Therefore, the emission observed upon excitation at 461 nm can be
attributed to the KE* as it is observed in toluene.
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Figure 4. Absorption spectrum (1), fluorescence spectra at λex = 332 (5), 375 nm (2, 7), and 461 nm (3),
and fluorescence excitation spectrum at λreg = 461 nm (4) before (1–5) and after (6, 7) UV irradiation
with the external source of high intensity of compound (4) in ethanol. Reproduced from [82] with
permission from the Springer Nature BV.

Since, in the region around 380 nm, both E and KE are absorbing, the excitation in this
region leads to an emission at 530 nm, attributed to the existing KE, and to an emission
at 442 nm (missing in toluene), which probably comes from the enol form, where the tau-
tomeric OH group is engaged in intermolecular hydrogen bonding with the solvent. From
the existing data, it is impossible to make a conclusion as to whether the intramolecular
O-H. . .N bonding is completely or partially broken by the solvent. As seen from Figure 4,
upon irradiation with an external light source, substantial spectral changes are observed,
associated with a rise in the emission at 440 nm. Basically, the irradiation can lead to
two processes, as shown in Figure 3—trans/cis isomerization to Ecis or switching—leading
to the accumulation of KK. The latter process should be more probable in toluene, where
switching relaxation back from KK to KE through TS(KE-KK) is expected to be slower.
The ground-state twisting transition state is very polar, and its energy decreases from
32 kcal/mol in toluene (Table S1) to 26 kcal/mol in ethanol, considered as an implicit
solvent. The real stabilization is probably higher because of the increased possibilities for
specific solute–solvent interactions in the transition state, in which the NH proton does not
participate in intramolecular hydrogen bonding. It is much more probable to assume trans
to cis isomerization with the accumulation of some amounts of Ecis. This form (as seen
from Figure S2) is blue shifted compared to E, and the intramolecular hydrogen bonding
is broken, which allows additional stabilization by the solvent. The relaxation back to E
proceeds through the inversion transition state (as predicted by the theoretical calculations,
Figure 3), in which energy does not depend on the solvent polarity. The process of cis/trans
isomerization has been already described in structural analogues of 6 by Traven and co-
authors [110,111]. A very recent study by Tang and co-workers describes the breakage of
the CO-O bond in alcohols under strong external irradiation [112] in 4. The same process is
theoretically predicted by Krauter at al [71], which creates an additional possibility in the
interpretation of the data from Figure 4.

4. Conclusions

The tautomerism of 7-hydroxy-4-methyl-8-((phenylimino)methyl)-2H-chromen-2-one
has been studied by using the density functional theory in ground and excited states, and
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the theoretical data were considered in comparison with the existing experimental results.
Although the studied compound can potentially exist as a mixture of four tautomers,
the enol form dominates in the ground state in aprotic solvents. Small amounts of the
short-range proton-transferred keto tautomer are observed as a function of the polarity
of the solvent. In ethanol, the content of the keto tautomer is substantial as a result of
its specific stabilization by the solvent. According to the theoretical data, the long-range
PT could not be observed due to the difficulty of the enolization of the carbonyl group
in the coumarin frame. Upon excitation, two competitive processes could be expected,
namely ESIPT and trans to cis isomerization, around the azomethine bond. However, the
existing experimental data and their theoretical interpretation suggest that the latter is
much more probable.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/physchem4010007/s1, Figure S1: Predicted absorption
spectra of the tautomers of 6 in acetonitrile; Figure S2: Predicted absorption spectra of the tautomers
and isomers of 6 in ethanol; Table S1: Relative energies of the tautomers of 6 and their spectral
parameters in toluene and in acetonitrile (in brackets) in the ground state.
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