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Abstract: In this work, we investigate the effect of the number of available adsorption sites for
diffusing particles in a liquid confined between walls where the adsorption (desorption) phenomena
occur. We formulate and numerically solve a model for particles governed by Fickian’s law of
diffusion, where the dynamics at the surfaces obey the Langmuir kinetic equation. The ratio between
the available number of adsorption sites and the number of total particles are used as a control
parameter. The investigation is carried out in terms of characteristic times of the system for different
initial configurations, as well as the cases of identical or non-identical surfaces. We calculate the
bulk and surface densities dynamics, as well as the variance of the system, and demonstrate that the
number of sites affects the bulk, surface distributions, and diffusive regimes.

Keywords: diffusion; adsorption–desorption; langmuir

1. Introduction

The kinetics of diffusing particles in confined space with adsorption (desorption) by
solid substrates represent an important class of problems that is readily applied from basic
sciences to industrial separation processes [1–7]. One basic approach to model adsorption–
desorption phenomena is to use the simple, yet very powerful, Langmuir adsorption [8],
often referred to as Langmuir kinetics [9,10]. At the same time, the diffusion process is
described by Fick’s law [11]. Indeed, in any practical application where any transport takes
place, adsorption–desorption is likely to occur, even in very simple geometries [12,13].
However, from an analytical point of view, it is not easy to solve the coupled equations
representing diffusion and Langmuir’s kinetic altogether. In many cases, due to the nature
of adsorbents, first- and second-order kinetic equations are employed to analyze experimen-
tal data [14–17]. Such equations account, for example, for diffusion within the adsorbing
wall [18]. In other cases, a linearization process is performed to the Langmuir kinetic
equation, in which the number of available sites for adsorption is much larger than the
number of particles in the system [3,13,19,20]. Such an approach is convenient for studying
the relation between diffusing particles in bulk samples adsorbed by confining walls.

Several systems of interest have been studied within the scope of the linearized Lang-
muir kinetic equation coupled to the diffusion equation. For example, it was used to study
general aspects of bulk and surface dynamics [3], characterize diffusion in different geome-
tries [12,13], to probe time-dependent diffusion coefficients [20], to insert memory effects
and distinguish adsorption kind [21,22], to study adsorption and diffusion in systems with
non-identical surfaces [23] and in systems with augmented surfaces [24], analyze adsorption
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in systems with space-dependent diffusion coefficient [25], and to study adsorption effects in
electrolyte cells in the context of impedance spectroscopy [3,26]. However, in the above cases,
the importance of the number of particles to the number of adsorbing sites ratio is neglected.

This article aims to provide a simple yet general model to study the diffusion of neutral
particles in an isotropic liquid confined by adsorbing (desorbing) walls that obey Langmuir’s
kinetic. In this sense, a broad spectrum of phenomena arises by combining diffusion and
a limited number of adsorbing sites, including how the bulk and surface dynamics take
place and the effect of Langmuir’s kinetic on diffusive regimes on the bulk. Furthermore,
we demonstrate how memory effects can be included within Langmuir’s kinetic equation to
account for more general scenarios related to the number of particles, number of adsorbing
sites, and the dependence of the previous state of the particle on the next one.

2. Model

Since we want to study diffusing particles diluted in a liquid in contact with adsorbing
(desorbing) walls, we assume a sample in the shape of a slab where the only relevant
direction is the z−axis. Such geometry is similar to experimental situations such as those
found in liquid crystal displays, for example, where the adsorption and desorption of
particles is known to play critical roles in the organization of the material [3]. The cell has
thickness L, and the substrates are located at z = −L/2 (left side) and z = +L/2 (right
side), as shown in Figure 1. Particles in bulk obey the diffusion equation, here assumed to
be diluted so the Fickian approach can be used, that is

∂ρ

∂t
=

∂

∂z

[
D

∂ρ

∂z

]
, (1)

where D is the diffusion coefficient, here assumed to be constant in space, and ρ(z, t) is
the time- and space-dependent bulk density of particles. At the walls limiting the sample,
we assume that for t = 0, all the particles are in the bulk (all adsorption sites are vacant),
and that particles may be adsorbed–desorbed according to the well-known Langmuir’s
kinetic equation: dσi

dt
= κaiρ(1−

σi
σ0i

)− κdiσi. (2)

In Equation (2), the subscript i = ±L/2 represents the set of parameters characterizing
either the surface on the left side or the surface on the right side of the sample. Moreover,
σi(t) is the density of adsorbed particles and κai is a parameter representing the rate of
adsorption, while κdi represents the rate (or time) of desorption. Furthermore, σ0i is the
number of adsorption sites available at surface i. The Langmuir kinetics assumes that
the adsorption rate (dσi/dt) is proportional to the difference between adsorption and
desorption rates and that both rates are the same at equilibrium. Figure 1 shows the system
studied here, including the occupied and free sites at the walls.

Figure 1. System studied in this work. It consists of a liquid with diluted neutral particles (diffusing
particles) that diffuse in the z−direction and may be adsorbed (desorbed) following Langmuir’s
equation. Notice that the left surface is located at z = −L/2, while the right surface is at Z = L/2. Gray
spheres represent occupied sites on the surfaces, while green spheres represent free adsorption sites.
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Notice that if we consider an infinity number of sites available for adsorption
(σ0i → ∞), we recover the linearized version previously used in different works [21]. More-
over, if the total density of particles is ρ0, and are initially in the bulk, i.e., ρ(z, t = 0) = ρ0,
we can introduce the normalized quantities ρR = ρ/ρ0 and σRi = σi/σ0i, and, at equilib-
rium, arrive at the Langmuir isotherm:

σRi =
αiρR

1 + αiρR
, (3)

where αi = κaiρ0/(κdiσ0i) is a parameter governing the steady-state equation for each
substrate. The set of Equations (1) and (2) are solved with the aid of the current density at
the walls, that is,

D
∂ρ

∂z

∣∣∣∣
z=±L/2

= ∓dσi
dt

, (4)

which implies that the number of particles must be conserved, that is

2σi +
∫ L/2

−L/2
ρdz = ρ0L. (5)

To account for memory effects, we modify Equation (2). We introduce a kernel dependence
as follows:

dσi
dt

= κaiρ(1−
σi
σ0i

)− κdi

∫ t

0
K(τ)σi(τ)dτ, (6)

where K(τ) is a kernel introduced to represent distinct scenarios related to the adsorption-
desorption phenomena. An equation such as (6) has been widely used to describe memory
effects and non-Debye relaxations [21,22,27,28]. It has been used to describe chemisorption,
physisorption, or a combination of both depending on the choice of K(τ) [21,22]. Although
we introduced the kernel in the desorption term of Equation (2), it is important to stress
that a memory effect represents that the previous state of the particle is important for the
next state, so the kernel modifies the whole dynamics of the surface. Unfortunately, the
process of solving Equations (2), (5) and (6) is difficult and does not have an analytical
solution, so we employ a numerical method to solve it (see, for example, refs. [29,30]). We
first introduce reduced quantities in such a way that Equation (1) becomes

∂ρR
∂t∗

=
∂2ρR

∂Z2 , (7)

where ρR = ρ/ρ0, Z = 2z/L, t∗ = 4t/τD, and τD = L2/D is the diffusion time. Regarding
Equation (2), we first notice that the parameter 1/κdi has the dimension of time; thus, we
write it as τi (now i = ±1, which we call either l or r, meaning left or right side, respectively)
from now on. Second, we have to choose the form of the kernel K(t) to proceed with the
solution procedure. As proposed in [21], the form K(t) = 1/(τai)e−t/τai , which is a non-
localized function of time, is an excellent choice to represent memory effects, such as may
occur during multiple collisions of particles with the surfaces, in which energy is lost after
each collision, and therefore the previous state of the particle is important in determining
the next state. This memory time, represented by τai, reproduces the adsorption–desorption
phenomena often found in physisorption or mixed processes [21]. If τai → 0, we recover
the original kinetic equation, Equation (2), which is better suited to describe chemisorption
processes. Numerically, it is more convenient to work with differential equations than with
integral equations. We therefore take the time derivative on both sides of Equation (6) and
apply the kernel K(t) = 1/(τai)e−t/τai to arrive at:
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d2σRi
dt∗2

− (1− σRi)

[
τDβi
2τκi

∂ρR
∂t∗

+
ρRτ2

Dβi

8τκiτai

]
+

dσRi
dt∗

[
ρRτDβi

2τκi
+

τD
τai

]
+

τ2
DσRi

16τaiτi
= 0, (8)

where τκi = L/2κai is the adsorption time and βi = ρ0L/σ0i is a parameter that relates the
number of particles available in bulk to be adsorbed to the number of sites available at the
surfaces. Thus, if βi < 1, the specific surface has more sites than particles to be adsorbed,
whereas if βi > 1, there are not enough sites at the surface for all the particles in bulk. The
conservation of the number of particles, Equation (5), now becomes

σRl
βl

+
σRr
βr

+
1
2

∫ 1

−1
ρRdZ = 1, (9)

which also implies: (
2
βi

dσRi
dt∗

= ±∂ρR
∂Z

)
Z=∓1

. (10)

A summary of the main parameters and a brief description is given in Appendix A. Now,
in order to solve the set of Equations (7)–(9) (or (10)), we employ a numerical method
based on finite differences [31]. We use a mesh with nz points separated by a fixed distance
δz = L/(nz − 1). All derivatives were taken using a central difference with a second-
order approximation, using ghost points at the borders. Thus, including the two walls, it
results in a system of ordinary equations in t∗, with nz + 4 equations. The time integration
was performed with the 8th-order Dormand–Prince method implemented by the GSL
library [32]. To ensure that the simulations were performed without instabilities, we
monitored the conservation of the number of particles during each small increment in time
by checking if Equation (9) is still satisfied. Through all simulations, we used nz = 500, and
set the absolute error to be smaller than 10−9, allowing a free time step size, and retrieved
data at every ∆t∗ = 10−6. Moreover, we assumed the initial surface density for both walls
was zero (σRi(t∗ = 0) = 0). For the initial distribution in bulk, we used two different initial
configurations: 1—particles are uniformly distributed across the cell (ρR(Z, t∗ = 0) = 1),
or 2—particles are initially concentrated in a plane set in the center of the sample, that is,
the initial bulk distribution obeys a Dirac delta configuration. Finally, the characteristic
times used in this work come from experimental data of similarly confined systems [3].
The adsorption parameter, κai, is usually in the order of 10−6 ms−1 [3,33]. At the same time,
the desorption time was estimated to be nearly 0.01 s for liquid crystal samples and close
to 1 s for other isotropic samples [3,33]. A typical slab sample such as the one studied here
is around 10 µm thick, while the diffusion coefficient is in the order of D ≈ 10−11 m2s−1,
so τD ≈ 10 s. Last, the memory time was estimated from experimental results to be
τa ≈ 1 s [21]. It is important to notice that, as long as the system obeys Fick’s law and
Langmuir’s kinetic, it in principle can be investigated within the scope of this model.

3. Results and Discussion

We start by analyzing how bulk and surface distributions change over time as the
characteristic parameters of the system change. In particular, we want to understand
how the parameter β, which gives the ratio between particles available to be adsorbed
and the number of sites available for adsorption, affects the bulk distribution of particles.
Indeed, previous attempts to model adsorption–desorption with diffusing particles in a
limited system [21] have used a kinetic equation that considers the number of sites to
be infinity, so we can check here the importance of having a limited number of sites on
the dynamics of the system. Furthermore, in our model, we can treat both surfaces as
being non-identical; that is, each surface has its dynamics, so the model becomes more
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closely related to experimental situations (where it is difficult to assure both surfaces are
completely identical) and to other cases where adsorption is present and substrates are
non-identical, such as in fuel cells (hybrid microfluidic fuel cells, for example) [34], hybrid
aligned liquid crystal cells [35], wetting layers [36], liquid crystals doped with dyes [37],
and polymer adsorption in confined regions [38].

We start by showing a simple example where the role played by the parameter β
can be clearly understood. For this first case, we consider both surfaces to be identical
(so σRl = σRr, βl = βr and so on) and that the initial bulk distribution is uniform, i.e.,
ρR(Z, t∗ = 0) = 1. Figure 2a reproduces the surface density (in Z = −1) vs. t∗ for
τD/τl = 100, τκl/τl = 10 and for two values of τal/τl , that is, 0.1 or 20, meaning in the first
case very short memory time and in the second case a long memory time, which results in
the oscillations seen during the adsorption phenomena [21]. As discussed elsewhere [21],
memory effects occur when the adsorption process depends on the previous state of the
particle being adsorbed. For example, if a particle falls into an adsorbing well, it may be
desorbed and eventually adsorbed again. Since the energy landscape changes after each
process, the next phenomenon depends on the previous state, which in such a dynamic
model it is represented by the parameter τa [21,22]. We used two different values of β,
0.2 and 2, meaning in the first case there are five times more sites on the surfaces to adsorb
than particles to be adsorbed, while in the second case, there are two times more particles
in bulk to be adsorbed than available sites. Since τκi < τi, the desorption rate is larger than
adsorption, so the equilibrium density is fairly low. However, in the case of β > 1, the
surfaces reach a larger value, as expected (see Equation (3)). It is also interesting to note that
the adsorption peak position (t∗), related to memory effects, also changes depending on β,
which is indicative that memory effects are also sensitive to the ratio between the number
of particles to the available number of adsorbing sites. To the best of our knowledge, this is
the first time memory effects are considered in Langmuir kinetics. The inset shows the bulk
density for t∗ = 0.6, indicating that for larger β there is a tendency of larger bulk density
at all times. Figure 2b shows the left-side surface density for τD/τl = 100, τκl/τl = 1 and
τal/τl = 0.1 and several values of β. Since the adsorption and desorption rates are the
same, the surface coverage is more extensive and determined by the parameter β. For
example, if the number of particles is ten times larger than the number of sites, the surfaces
are nearly filled to maximum once the equilibrium is achieved. Clearly, the surface density
for β = 10.0 reaches saturation quicker when compared with β = 0.2.
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Figure 2. Role played by the parameter β = ρ0d/σ0 on the surface dynamics. (a) shows the left
surface (Z = −1) vs. t∗ for τD/τl = 100, τκl/τl = 10 and for two values of τal/τl , that is, 0.1 or
20 and β = 0.2 and β = 2. The inset shows the bulk density ρR vs. Z when t∗ = 0.6 for β = 2 (in
red) and β = 0.2 (black). (b) shows the left surface (Z = −1) vs. t∗ for τD/τl = 100, τκl/τl = 1, and
τal/τl = 0.1 for several values of the parameter β.

We now start investigating the cases in which the surfaces are not identical. This is
particularly interesting because one can see how one surface affects the other and the bulk
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distribution. Moreover, it is helpful to understand the effect of β on such distributions if
the substrates are seen individually. For our study, we fixed the left substrate (Z = −1)
with the following parameters: βl = 1.0, τκl/τl = 1 and τal/τl = 0.01. Furthermore, we
kept the diffusion time the same for all the analyses, that is, τD/τl = 10.0.

Figure 3a shows a case in which all the parameters are the same for both substrates,
except the parameter β. We chose τD/τi = 10.0, τκi /τi = 1.0, τai/τi = 1.0, βl = 1.0,
and varied βr. The substrate on the left side (parameters are always the same) is shown
in the main figure, while the inset shows the substrate in Z = 1. As βr gets larger, the
coverage in Z = 1 grows, which is expected since larger β represents more particles to
be adsorbed compared with the number of sites on that specific surface. The left-side
surface also saturates at higher concentration values when the parameter β of the right-
side surface increases. Since the right side has fewer sites for adsorption (as β increases),
the left-side surface has more particles to adsorb, since βl = 1.0. This trend can also be
understood by Equation (9). If βr = 0.2, σRl = 1− 5σRr − bulk/2, whereas for βr = 10.0,
σRl = 1− 0.1σRr − bulk/2, where “bulk” stands for the final concentration in the bulk.
Since the number of particles in bulk is never larger than 1, σRl saturates at higher values
as βr increases. In Figure 3b, we keep the surface in Z = −1 with the same parameters as
in Figure 3a but used the parameters τκr/τr = 10, τar/τr = 20 and βr = 0.2 and βr = 2.0.
Notice that the adsorption time is ten times larger than the desorption time, so the overall
coverage is low for the right surface. In this case, changing βr does not affect the left surface.
Thus, for βr = 0.2, the surface has five times more sites than particles available, and the
resulting coverage is small. If βr = 2.0, the right surface has room for only half of the
particles, so the coverage is higher. Moreover, since the memory time is longer, the right
surface displays oscillations in the adsorption–desorption process. The inset shows the
bulk density for three different times, where the black curves represent βr = 0.2 and the
red curves βr = 2.0. In the initial moments, both cases are identical. As time passes, for
t∗ = 0.5, the bulk density near the right surface for β = 2.0 is slightly higher because the
right surface has fewer sites to adsorb, so there is an excess of particles when compared
with the case where βr = 0.2. As time increases, the bulk densities for the two values of β
become very similar, being only slightly higher for βr = 0.2 due to the limited capability of
the right surface to adsorb the particles.

0 1 2 3 4
t*

0

0.05

0.1

0.15

0.2

0.25

0.3

σ
R

l

β
r
=0.2

β
r
=1.0

β
r
=2.0

β
r
=10.0

0 1 2 3 4t*
0

0.25

0.5

0.75

σ
R

r

(a)

0 1 2 3 4 5 6 7
t* 

0

0.05

0.1

0.15

0.2

0.25

σ
R

i

σ
Rl, 

β
r
=0.2

σ
Rr, 

β
r
=0.2

σ
Rl, 

β
r
=2.0

σ
Rr, 

β
r
=2.0

-1 -0.5 0 0.5 1
Z

0.5

0.6

0.7

0.8

0.9

1

ρ
R

t*=0.05

t*=0.50

t*=1.50

β
r
=0.2

β
r
=2.0

(b)

Figure 3. Effect of β on non-identical surfaces. For both figures, the left surface uses βl = 1.0,
τκl/τl = 1 and τal/τl = 0.01, and the diffusion time is τal/τl = 0.01. In (a), all the characteristic
times of the surface at Z = 1 are the same as the surface at Z = −1, except the parameter βr. The
main figure shows the time evolution of σRl , while the inset shows σRr. In (b), the left surface uses
the same parameters as in (a), but the right surfaces uses τκr/τr = 10, τar/τr = 20 for βr = 0.2 and
βr = 2.0. Both surface dynamics are plotted against t∗ in the main figure, while the inset shows the
bulk distribution for three different values of t∗ and both values of βr.

To demonstrate that a larger β represents a lower overall density of particles compared
with lower β cases, in Figure 4, we show the density of adsorbed particles for both surfaces
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normalized by their respective β. For this figure, we used the same parameters for the left
surface as in Figure 3. For the right surface, we used τκr/τr = 0.01 and τar/τr = 0.01, so
the right surface has a high adsorption rate and neglectable memory effects. As expected,
for both βr = 0.2 and βr = 2.0, the right surface reaches higher coverage values when com-
pared with the left side, which is a consequence of the high adsorption rate. However, when
βr = 2.0, both surfaces reach the equilibrium (the left coverage is still slowly decreasing
for t∗ = 3.5) much more quickly when compared with βr = 0.2, which is due to the quick
filling of the available sites when βr = 2.0. On the other hand, for βr = 0.2, the system is
still evolving (filling the adsorption sites) when t∗ = 3.5. Figure 4 clearly shows that the
equilibrium point depends on the number of available sites rather than just adsorption and
desorption rates. The inset of Figure 4 shows the bulk dynamics three different times for
both values of β. Initially, when most particles are still in bulk, the distribution for both
cases is the same. For t∗ = 1.0, the distribution near the left side is the same, whereas, near
the right surface, the bulk distribution is lower for βr = 0.2 when compared with βr = 2.0.
As the system continues evolving, the case for βr = 2.0 quickly reaches an equilibrium
value, which is larger when compared with βr = 0.2, where even for t∗ = 5.0, the bulk
distribution is still not at equilibrium (which is also seen from the surface curves).

Now, we use the mean square displacement (MSD) to probe how the diffusive regimes
affect the number of sites at the surfaces. This is an important parameter because it is
related to the spreading of particles across the cell, which characterizes the time-dependent
diffusion coefficient, D(t). Thus, we are now interested in understanding how the number
of sites, hence the parameter β, changes the way particles diffuse in bulk. Indeed, it is
known that limiting surfaces may affect how particles diffuse in the bulk [24], which is
of particular importance mainly for transport in living cells [39,40], but in general, the
number of sites is neglected during the modeling. The MSD, which takes into account
the conservation of particles (bulk distribution does not remain normalized at all times
as particles leave the volume to be adsorbed at the walls), as in Equation (9), is given by
(∆Z)2 = 〈(Z− 〈Z〉)2〉 = 〈Z2〉 − 2σ〈Z〉2. In other words, the MSD is calculated as:

(∆Z)2 =
∫ 1

−1
Z2ρ̄(Z, t∗)dZ−

2σRi(t∗)/βi

(∫ 1

−1
Zρ̄(Z, t∗)dZ

)2

. (11)
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Figure 4. σRi/βi for two different values of βr. The left surface uses the same parameters as used
in Figure 3, while the surface at Z = 1 uses τκr/τr = 0.01 and τar/τr = 0.01. From this figure, it
becomes clear that increasing the β of a single surface changes the behavior of the opposite surface
and that larger values of β mean higher coverage but a smaller overall number of adsorbed particles.
The inset shows the bulk distribution for three different values of t∗ and for βr = 0.2 and βr = 2.0.
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In Figure 5, shows the MSD vs. time for different values of the parameter β for the
situations in which the surfaces are identical and the case where the surfaces are non-
identical. For all cases, we used τD/τl = 100. For the case of identical surfaces, depicted by
the solid lines, we used τk/τ = 1 and τa/τ = 20. Notice that when the MSD increases with
time, the bulk distribution is spreading up, while MSD decreasing with time means that
the distribution is shrinking; that is, particles are returning to the bulk. We first notice that
for all the curves, the initial behavior of the MSD is equal, which corresponds to the initial
spreading of particles from the center of the cell toward the surfaces. This initial diffusing
process is not affected by the surfaces and corresponds to the usual diffusion that occurs for
boundless samples. The black solid line represents βi = 0.2, while the solid red line shows
βi = 5.0, and the solid blue curve depicts the case βi = 10.0. For βi = 0.2, after the initial
free diffusion, the MSD decreases until t∗ ≈ 0.6. This is a consequence of the desorption
process that takes place together with the adsorption process (τκ = τ), which is favored by
the small number of particles remaining in bulk. After this minimum occurs for the MSD,
the adsorption process continues, favored by the larger number of sites compared with
particles in bulk, until an equilibrium is reached. For βi = 5.0, this minimum happens much
faster and is much less pronounced. At the same time, for βi = 10.0, it does not appear at
all, which is a consequence of a large number of particles compared with the available sites,
resulting in a much weaker desorption process of the high particle concentration in bulk at
all times. The dashed lines in Figure 5a represent the same values of the parameter β but for
non-identical walls. Here, the right surface is the same as used to produce the solid curves,
only βr is changed, but the left surface is fixed at βl = 1.0, τκl/τl = 1 and τal/τl = 0.01.
Interestingly, the bulk dynamic is also affected by the non-identical surface, not only by
changing how the spreading and shrinking of the distribution occurs but also by changing
the overall amount of particles to reach equilibrium in bulk, a direct consequence of the
ratio between the number of particles and number of sites.

Figure 5b shows the cases in which τκ/τ = 0.01, when the surfaces are identical, and
for the right surface (Z = 1) in the case of non-identical surfaces. The left surface for
non-identical surfaces remains the same as Figure 5a. Here, since the rate of adsorption
is much larger than the rate of desorption, it is expected that the surface quickly adsorbs
most of the particles, leaving the bulk with a low concentration. This is true for β = 0.2,
where the MSD is nearly zero for t∗ ≈ 2, meaning that the distribution continuously
decreases where most of the particles are trapped at the surfaces. However, as the number
of particles increases when compared with the number of available sites, this is no longer
true, which significantly affects how diffusion takes place in the bulk, indicating that
indeed the parameter β is essential, rather than just looking at the rates of adsorption and
desorption as usually performed. This is true for both identical and non-identical cases.

Figure 5b shows the cases in which τκ/τ = 0.01, when the surfaces are identical, and
for the right surface (Z = 1) in the case of non-identical surfaces. The left surface for
non-identical surfaces remains the same as Figure 5a. Here, since the rate of adsorption
is much larger than the rate of desorption, it is expected that the surface quickly adsorbs
most of the particles, leaving the bulk with a low concentration. This is true for β = 0.2,
where the MSD is nearly zero for t∗ ≈ 2, meaning that the distribution continuously
decreases, where most of the particles are trapped at the surfaces. However, as the number
of particles increases when compared with the number of available sites, this is no longer
true, which significantly affects how diffusion takes place in the bulk, indicating that
indeed the parameter β is essential, rather than just looking at the rates of adsorption and
desorption as usually performed. This is true for both identical and non-identical cases.
Notice how the dynamics of the MSD closely resemble the data observed for the diffusive
characteristics observed in some systems that are essentially anomalous and with limited
amount of adsorption sites to diffusing particles, such as in living cells [41] and in the
diffusion of gold-labeled dioleoylPE in the plasma membrane of fetal rat skin keratinocyte
cells [39].
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Figure 5. Mean square displacement (MSD) vs. t∗ for several values of β. The solid curves repre-
sent the case in which both surfaces are equal, while the dashed curves represent the MSD for the
Z = 1 surface in the case of non-equal surfaces. (a) shows the case in which τκi/τi = 1, while
(b) shows the case in which τκi/τi = 0.01 (identical surfaces and right surface for the non-identical
case). The dotted lines in (a) show examples of the exponent (ta) of the MSD, indicating the subdiffu-
sive behavior of the system.

Finally, noticing how the diffusive regimes change with the parameter β is interesting.
Accordingly, (∆Z)2 ∼ t∗a, where the power a is related to how particles diffuse, that is, if
a < 1, the diffusive regime is said to be subdiffusive, if a = 1, it is called usual, whereas
for a > 1, the diffusive regime is called superdiffusive. Usually, confined systems are
subjected to adsorption–desorption phenomena. However, the ratio β is not considered
when studying the diffusive regime. We observe that in the initial moments before particles
reach the surfaces, the diffusion is usual, that is, a = 1. Nonetheless, after interacting with
the surfaces, the diffusion becomes essentially subdiffusive and is heavily affected by the
parameter β. In Figure 5a, we show, as dotted lines, a few examples of exponents a for
certain time intervals in which the distribution spreads after a quick desorption process.
For example, for β = 0.2, a = 0.52, while for β = 5.0, a = 0.80, indicating that β changes
the diffusion regime. As it is well-known, molecular crowding is one source of anomalous
diffusion, especially in biological fluids [42], which, within this model, may be altered by
changing the parameter β. This fact shall be further explored in future studies.

In conclusion, we modeled a system composed of an isotropic liquid limited by
adsorbing surfaces where particles diffuse and may be adsorbed/desorbed following
the complete Langmuir’s kinetic equation. In the modeling process, we incorporated,
in addition to the natural parameters arising from the Langmuir kinetic equation such
as the ratios of adsorption, desorption, and number of available sites, memory effects
that may occur depending on the inherent nature of adsorbing walls, such as occurring
during chemisorption, physisorption, or a mixed process. We scaled all the variables in
terms of characteristic times of the system and kept as main parameter the ratio between
the available sites to the amount of particles in the bulk. It turns out that not only the
dynamics but the diffusive regimes are heavily affected by such ratio, which is often
neglected during adsorption dynamics. We hope our results may be helpful in describing
separation processes and other systems, such as in living mater, where the limited amount
of adsorption sites plays a crucial role.
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Appendix A. Table of Symbols

Here we present a table summarizing the main quantities used in this article (Table A1).

Table A1. Table of Symbols.

Symbol Definition

ρ(z, t) Bulk density of diffusing particles. It is a function of space (z) and time (t)
σ(t) Density of adsorbed particles. It is a function of time (t)
D Diffusion coefficient
L Cell thickness
ρ0 Total density of particles
κa Rate of adsorption
κd Rate of desorption

ρR = ρ/ρ0 Reduced bulk density
σ0 Number of available sites

σR = σ/σ0 Reduced surface density
τD = d2/D Diffusion time
τκ = d/2κa Adsorption time
τ = 1/κd Desorption time

τa Memory time
t∗ = 4t/τD Dimensionless time

(∆Z)2 Mean Square Displacement
β = ρ0L/σ0 Ratio of particles in the bulk to the number of available sites
Subscript i May be l (left) or r (right). Indicates the substrate considered.
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