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Abstract: The emergence of unexpected properties in two-dimensional materials, interfaces, and
nanostructured materials opens an exciting framework for exploring new devices and applications.
Recent advances in materials design and the nano structurization of novel, low-dimensional materials,
surfaces, and interfaces offer a novel playground to design efficient multifunctional materials-based
devices. Low-dimensional materials exhibit peculiarities in their electronic, magnetic, and optical
properties, changing with respect to the bulk when they are layered down to a single layer, in addition
to their high tunability. Their crystal structure and chemical bonds lead to inherent unique mechanical
properties. The fabrication of van der Waals heterostructures by stacking materials with different
properties, the better control of interfaces, and the tunability of the physical properties by mechanical
strain, and chemical and electronic doping allow for the exploration of multifunctional devices with
superconducting, magnetic, and optical properties and unprecedented degrees of freedom in terms
of fabrication and tunability.

Keywords: superconductivity; magnetism; hybrid devices; two-dimensional materials; multifunctional;
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1. Introduction

The possibility of fabricating devices with highly controllable accuracy at nanoscales is
essential for manipulating and tailoring the physical and electronic properties of multifunc-
tional devices. The materials’ electronic properties exhibit novel features when their sizes
are scaled down to the two-dimensional limit, or comparable features to the characteristic
lengths determining their physical properties, similar to the case of superconducting and
magnetic materials [1,2].

The isolation and re-discovery of graphene by Novoselov and Geim in 2004 [3] and
the following emergence of other two-dimensional (2D) materials [4,5] paved the way to
design devices based on van der Waals heterostructures [6] at will with semiconducting,
insulating, magnetic, and/or superconducting properties with an unprecedented degree of
freedom [7]. Such freedom in designing and fabricating heterostructures of materials with
different properties opens a framework for investigating the interactions of the fundamental
properties and functionalities at the nanoscale. Moreover, when the thickness is reduced
to a single atomic layer, 2D materials exhibit properties that differ from those in bulk or
with a higher number of layers. This is the case of MoS2, which becomes a direct bandgap
semiconductor when the thickness is reduced to one single mono-layer (ML) [8]. This
change in the energy band structure and, therefore, in their optoelectronic properties repre-
sents a new scenario to explore new effects characterized by these one-layer particularities.
Furthermore, superconductivity and magnetism, which are not only competitive effects,
but are also combined in hybrid devices at the nanoscale, coexist under certain regimes,
exhibiting interesting collaborative effects, which are still unexplored when assembled in
2D van der Waals heterostructures [9].
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In hybrid superconducting–magnetic devices, two order parameters compete, with
partial or total order suppressing [10]. On the other hand, low-dimensionality magnetic
or/and superconducting materials, either obtained by nanofabrication techniques or as
ultra-thin films at the two-dimensional (2D) limit, are an outbreak with new, emerging
effects [11]. Such nanoscale hybrid devices have shown unique competitive and collab-
orative features between superconductivity and magnetism. The presence of periodical
arrays of nanomagnetic features leads to commensurability effects between the supercon-
ducting vortex lattice and the magnetic array. These commensurability effects occur when
the periodicities and sizes of the nanomagnetic features are of the order of the supercon-
ducting coherence length and Abrikosov lattice parameter [12,13] Superconductivity and
magnetism are, in general, antagonistic phenomena, but the interplay between them, de-
pending on the different structural parameters of the superconducting/magnetic materials
and the oscillating behavior of the superconducting order parameter within the magnetic
layers, allows for novel effects under these two competing orders [14]. Among them, new
developments in cryogenic memories exploit the superconducting and magnetic proper-
ties, similar to the case of a two-layer magnetic spin valve integrated within a Josephson
junction [15–18]. The exchange field suppression of the superconducting order parameter
is a tunable and switchable behavior scalable to the dimensions of nanometer devices. With
thin enough superconducting spacing layers, the superconductivity can be controlled by
the magnetic order of the ferromagnetic layers [19]. The superconducting proximity effect
leads to the leakage of superconducting correlations in magnetic proximity layers and the
superconducting transition temperature can be tuned as the Josephson current [20–23].

Apart from many of these well-known phenomena, there is continuous activity related
to “unconventional” superconductivity mechanisms [24–27]. New materials and fabrication
methods are providing better quality and controlled interfaces with two-dimensional
characteristics, showing new emerging devices [24,25]. These led to an unexpected, or, at
least, not fully understandable, picture of the superconductivity mechanism description in
these devices in terms of conventional or unconventional superconductors. Additionally,
the capability to manipulate the scalability of devices down to a pure 2D limit provides an
interesting framework to explore superconductive phases in novel devices, even coexisting
phases, like magic-angle graphene, which becomes a ferromagnet by inducing a spin-orbit
coupling, both competing for superconductivity and magnetism when coexisting [28–30].

The motivation to search for high-temperature superconductors or superconducting
qubits as building blocks of a quantum computer has resulted in continuous discoveries.
Additionally, ultrathin materials may pave the way for personal-sized quantum devices
using superconducting qubits as building blocks of a quantum computer, such as boron
nitride (hBN) as a low-loss dielectric for superconducting quantum circuits and qubits [31].

This review is focused on the competing/collaborative effects that have emerged in
devices with their dimensions scaled down to relevant characteristic lengths of supercon-
ducting and magnetic fundamental parameters. There are different approaches to tailoring
the intrinsic properties of materials by nano-scaling devices. This review will be focused
on the results obtained by nanolithography techniques to design an interacting potential
landscape in materials (pinning). This approach can be implemented in many contexts
to enhance the interaction between materials with different properties and with external
fields or light [32–34]. In Section 1, devices fabricated by nanotechnological means exhibit
commensurability effects between superconducting vortices and periodic arrays of nano-
magnetic patterned features. This section highlights the importance of nanotechnology to
fabricate such devices with controllable sizes comparable to the characteristic lengths of
the fundamental inherent parameters of magnetism and superconductivity. This technique
can also be combined in the fabrication of new heterostructures based on 2D materials.
Section 2 reviews the appearance of new 2D magnetic and superconducting materials, the
properties of which differ from their bulk counterparts and exhibit novel features only
present in the 2D regime. The assembly of nanodevices and van der Waals heterostructures
by the deterministic placement of 2D materials [7] makes the combination of these novel
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2D materials with magnetic and superconducting properties in a new fashion, with high
tunability by different means, feasible. This section also reviews the interfaces and super-
lattices of different materials with a large diversity of types, properties, and forms, where
unique superconducting and magnetic phenomena arise from the two-dimensionality of
the system.

1. Superconducting/Hybrid Devices at the Nanoscale

Nanoscale devices produced by nanofabrication techniques open up scenarios in which
materials’ properties can be tailored and tuned at will. Competitive/collaborative effects
in superconductors and/or magnetic-based devices can be explored when their sizes are
scaled down to their relevant characteristic lengths in a controlled and combined fashion.

In this way, superconducting properties, such as vortex lattice pinning and dynamics,
related to the characteristic coherent lengths can be strongly modified by engineering hybrid
devices, as has been shown during the last few decades [35,36]. By using arrays of magnetic
nanofeatures with different sizes, shapes, geometries, and periodicities [14,37–41], effects, such
as superconducting vortex pinning, induced channeling motion, and superconducting
ratchet, have been reported for such hybrid samples [42–44].

By patterning arrays of periodic nanostructured features, a new landscape can be
set in the material in which they are embedded to modify its transport properties, pro-
vided that the periodicities and sizes of the nanostructured features are comparable to
the relevant dimensions that characterize the materials’ properties. By changing the sizes,
shapes, periodicities, and types of materials from which the nanofeatures are produced, an
underlying potential can be engineered to tailor the transport properties at will. Arrays of
magnetic nanofeatures embedded in superconducting materials have shown how the trans-
port and electrical properties of these devices can be tailored: low resistance results in low
dissipative effects, and preferred directional motion with lower resistance or rectification
effects can be realized, as shown in Figure 1. This is a clear example of how the inherent
fundamental material properties can be tuned and modified by imprinting an underlying
engineered template.
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Figure 1. Magnetic pinning center designs (a), magnetoresistance measurements (b), and ratchet
effects (c) of superconducting vortices from magnetic nanostructures with different shapes in hybrid
Nb/Ni superconductor/magnetic devices, from [37–40,42–44] Reprinted/adapted with permission
from Ref. [38] © 2011 American Physical Society. Such hybrid devices represent a clear example of
how superconducting and magnetic properties can be properly combined and tailored at relevant
interacting length scales to achieve controllable effects, which can tune the electronic response of
these devices through the superconducting–magnetic interaction at the nanoscale.
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2. Magnetic and Superconducting Two-Dimensional Materials
2.1. Emerging Two-Dimensional Magnets

Research on 2D materials continues to grow interest in emerging phenomena and
optoelectronic properties to be explored in this regime, different from their bulk or layered
state. The isolation of 2D materials by mechanical exfoliation allows for achieving van
der Waals (vdW) heterostructures with an unprecedented variety of possibilities in terms
of the fabrication and combination of materials with any property, and the tunability of
their properties as represented in Figure 2. Exfoliated materials with high crystallinity,
few defects, and almost any electronic/magnetic/optical properties can be combined in
the search for new collaborative effects in devices based on such heterostructures. Either
by combining 2D materials layer by layer in heterostructures or by hybridizing and func-
tionalizing other materials, new device concepts can be achieved. The demonstration of
room-temperature ferromagnetism in an atomically thin layer broadens the prospects for
device applications of 2D van der Waals materials [45–47]. The use of magnetic 2D materi-
als as part of vdW heterostructures can increase the functionality of the heterostructures
for different applications and, with proximity to other 2D crystals, modify the magnetic
properties, enabling magnetic tunnel junctions to be obtained by sandwiching thin films
of insulating or semiconductor materials (such as hBN or TMDC) between two layers of
metallic ferromagnetic crystals with Fe3GeTe2 and spin-valves in Fe3GeTe2/hBN/Fe3GeTe2
junctions due to the different coercive fields of the top and bottom electrodes [48].
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Figure 2. Heterostructures composed of two-dimensional layers by stacking different materials with
controlled rotation angles and interfaces, similar to a bitmap of multi properties obtained at will (a),
to fabricate hybrid devices (b) with localized tunable magnetic and superconducting properties.

The magnetic order can be changed not only with temperature, but also when materials’
dimensions are reduced to the very limit of 2D. The magnetic states in 2D materials
can differ from those in bulk crystals. Changes in the dimensionality of materials have
evidenced such effects [1].

Two-dimensional materials practically cover the whole range of properties, from met-
als to semimetals, topological insulators, semiconductors, and insulators. Additionally, they
exhibit correlation phenomena, such as superconductivity, charge density waves, and Mott
insulators. The amazing properties exhibited by graphene as a zero-gap semiconductor [3],
which completely differentiates it from semimetal graphite with a band overlap, are also
present in many other monolayered materials. In the case of magnetic materials, such as
ferromagnetic Cr2Ge2Te6, the Curie temperature is suppressed when changing from 3D to
2D and ferromagnetic order is present down to the bilayer system [49–53]. Additionally,
monolayer materials, such as CrI3, show Ising-type order and magnetization stable up to
45K [45,54]. Monolayers and a few layers of NiPS3 [55], FePS3 [56–58], and CrSiTe3 [59]
display magnetic order in the bulk form, and magnetism is still present in the 2D limit.
Magnetism can be found in atomically thin monolayer CrI3 and bilayer CrGeTe3 [45,49].

In the case of anisotropic magnetic materials, either from an intrinsic strong spin–orbit
coupling [60,61] from magneto-crystalline anisotropy or other extrinsic effects leading to
magnetic anisotropy, magnetism can be stable in the monolayer limit with a different critical
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temperature to the bulk materials, similar to CrI3 and Fe3GeTe2. If, in addition to more
exotic phenomena, a magnetic order persists above room temperature, it is similar to the
ferromagnetic order in monolayers of VSe2 grown on either graphite or MoSe2 [51].

These recent discoveries of atomically thin magnetic crystals and 2D magnets have
paved the way for achieving vdW heterostructures, in which not only novel magnetic
effects are present, but also additional tunability associated with the inherent nature of 2D
materials, including their mechanical properties and simple integration of multi-layered
heterostructures [62]. Among all of the possible tuning mechanisms in this material,
the electrostatic control of magnetism in gated structures is of great interest for device
applications [63]. Gating can change the critical temperature and the coercive field, with
the possibility of altering electrostatically the magnetic properties of systems in which the
magnetization and the electrical polarization are intrinsically coupled [64,65]. The applied
electric field changes the magnetization by the magnetoelectric effect.

By combining them, unique vdW heterostructures and devices can be obtained with
new physical effects [66].

2.2. Two-Dimensional Superconductors and Interfaces

Ultrathin 2D superconductors have undergone remarkable progress, mostly driven by
rapid advancements in nanotechnology in recent years. Two-dimensional superconductors
at the strict realization of the two-dimensional limit, with single-atomic-layer materials,
have also opened up interest in a new framework for studying superconductivity phenom-
ena at the 2D limit and the production of pure/hybrid superconducting devices [67–69].
Again, the unique features of 2D superconductors can help to understand how new physics
and novel phenomena emerge because of the atomic-scale thicknesses of the materials.
These systems represent a new scenario where the layered structure and highly crystalline
properties of 2D superconductors can be further analyzed. The isolation of atomic layers
by the exfoliation of layered materials, following graphene, has motivated the research
into monolayered superconductors and those with a few layers [70,71]. The discovery of
superconductivity in magic-angle twisted bilayer graphene and transition-metal dichalco-
genide monolayers has boosted the interest in 2D superconductors and 2D superconducting
devices [27,72,73].

Initially, the possibility of inducing superconductivity in graphene by the proxim-
ity effect [74] raised interest in not only adding superconductive properties to graphene,
but also producing hybrid superconducting heterostructures with graphene. Later, the
demonstration of robust superconductivity at the ML limit has expanded the family of 2D
superconducting materials. Superconductivity has been observed in ultrathin metal films
down to a few layers [75,76], and also in single layers of ordered metal atoms, which repre-
sents the ultimate 2D limit of a crystalline film, such as single atomic layers of Pb and In
grown epitaxially on Si(111) substrates [24]. Superconductivity has also been demonstrated
in atomically thin exfoliated 2D materials with a layer number dependence of supercon-
ductivity, similar to the case of NbSe2 and other 2D transition metal dichalcogenides with
samples down to monolayer thickness.

Remarkable achievements with 2D superconductors have been observed, such as
the strong enhancement of Tc up to 40–100 K in one-unit-cell-thick FeSe layers epitaxially
grown on SrTiO3 substrates to the critical temperature of 8 K in bulk FeSe [26]. Such
behavior opens the possibility for investigating the realization of high-Tc superconductors
based on atomic-scale layers strongly interacting with the substrate, and the role played
by the interface and accumulated or transferred charge. Additionally, the reduction of the
thickness to the atomic scale 2D limit reveals robust superconductivity at low temperatures,
providing a high-quality structure and composition. This ensures the potential for real
applications based on 2D material devices. The enhanced superconductivity mechanism is
still under discussion, but it suggests that the strengthened Cooper pairing in one-unit-cell
FeSe/STO originates from the interface effects, specifically the charge transfer and cou-
pling to phonon modes in the TiO2 plane. Understanding the mechanism underlying the
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high-temperature superconductivity in this 2D limit between single-atomic-layer supercon-
ductors and their interfaces with substrates provides a new perspective for the exploration
of new superconductors by interface engineering.

Two-dimensional superconductors with atomic-scale thickness cover a wide spectrum,
which includes metal ultrathin films and atomic layers on semiconductor surfaces, graphene
and atomic sheets of many layered materials, iron selenide on oxide substrates, and organic
conductors on metal surfaces. The relevance of the interface effects represents an attractive
potentiality in the investigation of interfaces and superlattices of heterostructures composed
of cuprates, perovskite oxides, and rare-earth-metal heavy-fermion compounds, interfaces
of electric double-layer transistors, etc.

Clean interfaces of two spatially separated quantum states enable unique current
transport phenomena, such as the resonant tunneling of charge carriers, provided that
carrier scattering related to interfacial imperfections can be suppressed. Heterostructures
of MoS2–WSe2–graphene, Wse2–MoS2–graphene in an atomically thin stack, and van der
Waals double-quantum wells based on WSe2 with a few layers [77] have shown resonant
tunneling with room temperature negative-differential-resistance characteristics [78] This is
a key feature of novel nano-electronic circuits that utilize bistability and positive feedback.

The integration of 2D van der Waals materials with high control of the interfacial
imperfections can lead to novel electronic and optical properties not found in the con-
stituent layers. Additionally, 2D materials exhibit inherent peculiarities that allow for their
electronic properties to be tuned in a controllable fashion. Their electronic properties can be
tuned by gate fields, doping, or intercalation (Iontronics) [79]. La2−xSrxCuO4, a representa-
tive cuprate high-Tc superconductor, which also shows superconductivity at one-unit-cell
thickness, was electrically tuned to an insulating state, revealing an S–I transition driven
by quantum-phase fluctuations [80,81]. Recent technological breakthroughs in field-effect
transistors (FET) using an electric-double-layer (EDL) gate have enabled carrier doping
with an unprecedentedly high level (n2D∼1014 cm−2) at the subsurface region, leading
to the successful production of field-induced 2D superconductivity in various insulating
materials, including SrTiO3 and ZrNCl [82–84].

The electronic properties can be tuned in Moiré heterostructures by twisting the
relative orientation between layers or stacks (Twistronics) [85], leading to the onset of
superconductivity in magic-angle graphene bilayers [27].

All of this progress in 2D superconductors has led to the realization of superconduct-
ing/graphene hybrid devices, such as tunable Josephson junctions, magnetic Josephson
junctions, and superconducting diodes and SQUIDs [67], which represent an important
step forward in superconducting electronics [86–89].

3. Conclusions

We are at the beginning of an exciting framework for the production of van der Waals
heterostructures demonstrating extraordinary and outstanding capabilities by assembling
MLs with unique electronic properties.

Structures formed by ferromagnetic and superconducting layers allow for the funda-
mental understanding of the competition between superconducting and magnetic ordering,
as well as new device functionalities [90,91]

The tunability of the superconductive properties by controlling the magnetization of
the FM layers allows for controlling the magnetic properties through the superconductivity.

Additionally, a spin-valve based on hybrid ferromagnetic insulator/superconducting
tunnel structures can be produced by the proximity effect [92] between ferromagnetic and
superconducting materials: a superconductor with a spin-split excitation spectrum behaves
as an ideal ferromagnetic spin-injector in a tunneling junction [93,94]. The combination of
two such spin-split superconductors with independently tunable magnetizations may be
used as an ideal absolute spin valve [95]. By applying an external magnetic field, or by
the proximity of a magnetic insulator, the superconducting film shows a spin-splitting for
the realization of applications [96], such as logical elements in cryogenics superconductor-
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based computers and superconducting spintronics with a highly polarized spin current
source as a spintronic building block to implement low-dissipation cryogenic non-volatile
memories [97,98].

The competition and coexistence of superconductivity with other many-body elec-
tronic states, such as magnetism and CDW, also enrich the physics and phenomena found
in the regime of the 2D limit, enriching the framework of hybrid device-based devices
and applications.
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