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Abstract: Machine learning (ML) has found increasing use in physical sciences, including research on
energy conversion and storage technologies, in particular, so-called sustainable technologies. While
often ML is used to directly optimize the parameters or phenomena of interest in the space of features,
in this perspective, we focus on using ML to construct objects and methods that help in or enable
the modeling of the underlying phenomena. We highlight the need for machine learning from very
sparse and unevenly distributed numeric data in multidimensional spaces in these applications.
After a brief introduction of some common regression-type machine learning techniques, we focus on
more advanced ML techniques which use these known methods as building blocks of more complex
schemes and thereby allow working with extremely sparse data and also allow generating insight.
Specifically, we will highlight the utility of using representations with subdimensional functions
by combining the high-dimensional model representation ansatz with machine learning methods
such as neural networks or Gaussian process regressions in applications ranging from heterogeneous
catalysis to nuclear energy.

Keywords: machine learning; neural network; Gaussian process regression; curse of dimensionality;
high-dimensional model representation; energy conversion and storage; heterogeneous catalysis

1. Introduction

Machine learning (ML) as well as more complex techniques of artificial intelligence (AI)
have been finding increasing use in research and development for novel technologies [1–7].
Whenever one can identify an input–output mapping whose construction is helpful in
achieving a research or engineering goal, ML techniques are often of assistance. One can
cast a research problem as a problem of constructing such a mapping and then searching
in the space of the descriptors (features or inputs) [8,9] for a desirable optimal point. One
area where ML is gaining more and more traction is novel energy conversion and storage
technologies. These techniques are, in particular, intensely explored for application to the
development of technologies typically associated with sustainable generation and use of
energy such as advanced types (organic and inorganic materials-based) of solar cells and
LEDs (light-emitting diodes) [10–22], inorganic and organic metal ion batteries [23,24], fuel
cells, and generally heterogeneous catalysis including electro- and photocatalysis [25–34].
This is natural in the sense that the development of these technologies often passes through
optimization and balancing of multiple factors acting simultaneously and to opposite ends;
for example, in the case of organic solar cells, there is an optimum to be sought between the
donor’s bandgap, the band offset between the donor and the acceptor, the reorganization
energies of both the donor and the acceptor, and the charge transfer integral, etc. [12,15,16].
These properties themselves are a function of the structure of the molecules which can be
encoded through multiple descriptors [9]. In principle, most of these properties can be
computed and or measured experimentally, but doing so for each candidate molecule is
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expensive. It is enticing, based on a limited number of measurements and or calculations,
to build a mapping—with the help of machine learning—between the chosen descriptors
and the properties of interest, and then search the map for an optimal point (such as
maximum power conversion efficiency in the case of a solar cell). Similarly, optima need
to be sought in the design of battery materials (balancing thermodynamics and kinetics
of cation insertion, stability, etc.), catalysts (balancing adsorption energies of key species,
kinetics, and stability), and other types of functional materials. Some examples will be
given in Section 2.

Functional materials and interfaces are keys to the design of novel energy technolo-
gies. As compositional space is too vast to be explored by brute force and trial-and-error
approaches; rational guidance of design is necessary. Such rational guidance comes, in
particular, from simulations at various scales (from atomistic and electronic structure lev-
els to the macroscopic level). Specifically, for technologies such as fuel cells, batteries,
or solar cells, electronic properties are keys to the functionality, and it is atomistic scale,
and in particular ab initio, simulations that are providing insight into the mechanism at
the material level and thereby can guide rational design. Bandgaps and bandstructures,
absorption spectra, molecular adsorption energies, etc., are today routinely computable
at the DFT (density functional theory) [35,36] level. Further, structural information is
obtainable with techniques such as molecular dynamics [37], Monte Carlo [38], and others
which can operate at larger scales than DFT. Such calculations, however, remain costly, in
particular, DFT with which routine calculations are still typically limited to about 103 atoms.
It is therefore enticing to deploy ML methods to replace such calculations or at least to
reduce the required number of such calculations. Of course, ML can boost the development
not only of the so-called sustainable or “green” energy technologies; we will provide an
example in this perspective where it can be used to advance research useful for the future
of nuclear energy.

The purpose of this perspective is not a comprehensive or even brief review of ML
uses in materials science and energy technologies, nor is it to review staple ML methods–
there is already ample literature on these topics [1–34]. Novel energy technologies are
very knowledge-deep, i.e., they require multiple steps in understanding and development;
specifically, they require insight at the electronic structure and interatomic interactions
level. Many aspects are being addressed with machine learning, not just predicting material
or device properties from descriptors: much is being done at the back end or upstream
by using machine learning in the workflow of understanding modeling of materials and
phenomena for these technologies, or to improve modeling capabilities [1,39–44]. This in
particular requires ML methods and tools capable of working with extremely sparse and unevenly
distributed data in multidimensional spaces beyond the capabilities of standard methods. That is the
focus of this perspective.

We will first show illustrative examples of how machine learning can be used to
help improve the way we produce and use energy, especially for the benefit of so-called
sustainable technologies. We will highlight the fact that in these applications, one usually
has to deal with multiple variables, i.e., to operate in multidimensional spaces, and we
will see that there are properties of multidimensional spaces with which one typically
does not have to deal with in one-, two-, or three-dimensional problems. We will show
why ML techniques are effective when working with such data. While all major types
of machine learning (classification, regression, clustering) are finding use in the above
applications, here we focus specifically on regression type problems which are highly
relevant, as many types of descriptors (atomic coordinates and other structural descriptors,
electron densities, ionization potentials, electron affinities, atomic charges, bandgaps, and
redox potentials, among others) are real-valued or can be treated as such (e.g., atomic
numbers/nuclei charges). We also focus on supervised machine learning, which is also
highly relevant, as in many applications the target values for training points in the space of
descriptors are known (for example, potential energy, kinetic energy density, bandgap, etc.).
We will briefly introduce neural networks (NN) and Gaussian process regressions (GPR)
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and their pros and cons. We will then focus on using the so-called high-dimensional model
representations to structure the functional representation, in conjunction with NN or GPR
used to build components of those representations. We will see that this is especially useful
when trying to recover trends or functional forms from sparse data and to gain insight
using examples from catalysis and a prospective nuclear technology as well as providing
an example of how ML can revolutionize ab initio modeling capabilities, which are critical
for the modeling and mechanistic understanding of materials including those used in novel
energy technologies.

2. High Dimensionality and Extremely Low Data Density in the Space of Descriptors
2.1. Examples of Input—Output Mappings Used in ML for Energy Technologies

Humanity is trying to develop more sustainable ways to produce and use energy.
Currently the world still largely relies on fossil fuels, which are believed to be the result of
absorption of sun energy [45]. The use of fossil fuels generates many pollutants, including
poisonous gases and heavy metals, and it also generates large amounts of CO2. CO2 can
be recycled through vegetation but unfortunately the timeframe from dead vegetation to
fossil fuels is too long to rely on such a natural carbon cycle with current and projected
levels of energy consumption. There is a quest for what can be called an anthropogenic
chemical carbon cycle [46]. In it, one does not rely on burning of fossil fuels but on a set of
technologies which either generate electricity directly from the sun with solar cells [47] and
from other sustainable sources such as wind [48], or synthesize, using sunlight and CO2
and other inputs, fuels which can be utilized in a clean way, such as hydrogen or liquids
which can be used with cleaner exhaust in fuel cells or even burnt directly [49–51].

Solar and wind technologies are of course intermittent, and to match their output
schedule to the demand schedule, storage is necessary [52], in particular with batteries
([53] and references therein). Batteries are also needed for road transport electrification. At
the same time, novel and safer types of nuclear reactors are being developed for reliable
low-carbon footprint baseload [54–56]. All these technologies become an energy mix.
Multiple technologies are used, and in each of these technologies, there are multiple
scientific, engineering, and technological problems that need to be addressed. Bringing
these technologies together to work in one system is also a challenge. Machine learning
can help resolve many of these problems, and we will now show some examples.

The reader will have heard about the “hydrogen economy” and about fuel cells
which allow “burning” in a clean way of either hydrogen or other fuels. At the core of
these capabilities is heterogeneous catalysis, i.e., reactions happening at and catalyzed by
surfaces. Some of the key reactions relevant for energy production and use are driven by
solid catalysts including the oxygen reduction reaction [57], which is a critical and still
problematic step in fuel cells, the Fischer–Tropsch process [58], which allows producing
synthetic fuels from a mixture of hydrogen and CO (so-called syngas); water–gas shift [59]
and steam and dry reforming [60,61] are also very important reactions. These reactions
permit transformation between hydrocarbons, water, hydrogen, and carbon oxides. Their
efficiency depends on the quality of the catalyst. Many efficient catalysts are rare and
or expensive, such as platinum, widely used in commercial fuel cells, e.g., those used in
Toyota Mirai passenger cars, in particular, due to the lack of non-expensive alternatives.

Design of better catalysts is therefore a major bottleneck on the way to wide deploy-
ment of more sustainable energy technologies. Recently, machine learning has found
increasing use in rational design of catalysts [25–34]. Typically, one considers a set of
descriptors of catalytic activity which include reaction thermodynamics and kinetics, ad-
sorption energies of key reactants and intermediates, as well as structure and electronic
structure descriptors of the catalyst [26,33]; some are shown in Figure 1. To sieve through
candidate materials, one encodes them into a set of compositional and structural variables
such as atomic numbers and positions, crystal structure and surface cut, and adsorption
site. Structures and many of the properties such as adsorption and reaction energies and
kinetic barriers as well as electronic structure descriptors are routinely computed, typically
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with density functional theory [36,62]. Computations play a key role in rational design
of catalysts with or without machine learning, as many properties are either not directly
accessible experimentally or cannot be measured with high throughput and modest cost.
All together this makes many variables on which catalytic activity depends, and one needs
to perform searches and uncover relations in multidimensional spaces, which can be done
with the help of machine learning [25–29].

Figure 1. Left: Schematic of the SQL data structure of Catalysis-Hub.org, used to store reaction
energies (reactions table, green) and DFT calculations (ASE database, blue). Since each reaction
energy involves several DFT calculations (and the same DFT calculations can potentially be used for
several reactions), a many-to-many mapping schema is used to preserve connections between the table
rows. Right: Machine learning-enhanced catalyst candidate prediction: bulk and surface structures
retrieved from structure databases like materialsproject.org, OQMD, Catalysis-Hub.org, etc., are used
for automated slab generation and enumeration of possible adsorption sites. In an iterative process,
limited numbers of DFT-calculated adsorption energies and machine-learning-predicted adsorption
energies are used to inform microkinetic models to eventually suggest promising catalyst candidates
that should be investigated by experiment. Adapted with permission from [26]. Copyright 2019
Wiley-VCH Verlag GmbH.

To model directly a catalyzed reaction from reactants to products, one would need
an interatomic potential energy function, and those potentials also pose a bottleneck in
the modeling of heterogeneous catalysis and are more and more often constructed with
machine learning methods [1,40,63,64]. There is a key difference between the traditional
fossil fuel-based energy technologies and the newer technologies based on solar cells,
fuel cells, batteries, etc.: the fossil fuel-based technologies can be understood based on classical
thermodynamics and mechanics, while these newer technologies critically depend on quantum
phenomena, ultimately on electronic states’ energies, occupancies, and localizations. Quantum
mechanics based modeling therefore takes center stage. Such modeling is difficult and costly,
and machine learning is also used to facilitate it; we will show a couple examples thereof
below. This is most obvious in solar cells where details of the electronic structure such as
the bandgap, the effective mass, etc., determine directly solar cell performance. Machine
learning is now more and more often used to help design better solar cells and specifically
materials for solar cells and other optoelectronic applications [12–15,65,66]. It is used to
predict better active materials, to optimize device performance or even optimize fabrication
processes [15]. Figure 2 shows main uses of ML for solar cell design as well as most
widely used ML methods summarized in a recent review [15]. Artificial neural networks
(ANN) remain the most widely used method; also widely used are genetic algorithms (GA),
random forest (RF), particle swarm optimization (PSO), simulated annealing (SA), support
vector machines (SVM), kernel ridge regression (KRR) and Gaussian process regression
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(GPR), externally randomized trees (ERT), clustering methods such as K nearest neighbors,
and principal component analysis. These are just some methods from by now very many
machine learning methods. That is, all three major classes of ML—classification, regression,
and clustering—are finding use in solar cell research as well as in catalysis research [26].

Figure 2. Left: Distribution of types of ML techniques applied in design and fabrication of solar cells.
Right: Distribution of applications in design and fabrication of solar cells assisted by ML techniques.
Adapted with permission from [15]. Copyright 2019 Wiley-VCH Verlag GmbH.

These examples from the fields of catalysis and solar cells are barely illustrative.
Machine learning (and the same methods as mentioned above) is also used to help design
battery materials [23,24,67,68] and for other energy technologies as indicated above, but
ML is in demand not just at the material or device level but also at the system level [69–72].
In an energy mix containing solar farms, wind farms, and other intermittent technologies
alongside more established generation methods such as nuclear or natural gas powered
stations, one needs to constantly balance supply and demand. Predicting demand and
predicting possible supply from solar and wind and choosing how to palliate any excess or
shortfall with either battery storage or a call on nuclear or hydrocarbon-based generation is
an important problem where there is much potential for machine learning which is yet to
be fully realized [73,74]. It also requires working with multidimensional datasets.

To illustrate specifically the challenge posed by the dimensionality of the feature space
in ML for materials for novel energy technologies, consider one recent example from the
literature [10] of how ML is applied to design better materials for perovskite solar cells [75],
in which the main active material and light absorber is a (typically organic–inorganic
hybrid) perovskite material. The composition of the perovskite can be changed by different
choices of atoms placed in different sites of the crystal lattice. The perovskites most widely
used in labs today contain lead, which is not desirable. Moreover, different structural
choices also in principle allow one to modulate the bandgap and other properties that
could better match with specific electron and hole transporting materials [76], which are in
contact with the perovskite in a solar cell. In the example of [10], candidate compositions
were encoded with 32 features which included properties of constituent atoms such as
ionization potential, orbital radii, etc., as well as properties of the crystal. We will see below
that this dimensionality, which from the point of view of applications does not appear to
be high (indeed, hundreds to thousands of features are sometimes available), is in fact very
high from the point of view of data density.

We point out that in all of the abovementioned applications of machine learning, a
multitude of methods are used: classification methods, regression methods, clustering
methods; supervised and unsupervised methods. In what follows, we will narrowly
focus on specific regression type methods based on neural networks and Gaussian process
regressions, and on composite methods using them as building blocks to enable ML in high
dimensional spaces from extremely sparse data.
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2.2. New Technologies and Challengies Require New Simulation Methods–A Large Scope for
Machine Learning

Machine learning is also useful to improve simulation methods. The example of
machine learning interatomic potentials was cited above; ML is also used to improve the
widely used DFT method by learning better exchange correlation functionals, dispersion
corrections, corrections to computed excitation energies, etc. ([39] and references therein).
We will draw attention here to only one, but a critically important example that allows
showcasing the power of ML. We start with a seemingly purely mathematical problem:
consider a function of space ρ(x), where x is a vector of Cartesian coordinates x, y, z. The
function is positively definite and integrates to N:

∫
ρ(x)dx = N. We represent ρ as a sum

of N positively definite pieces, each integrating to 1:

ρ(x) =
N

∑
n=1

ρi(x) =
N

∑
n=1
|φi(x)|2

∫
ρi(x)dx = 1 (1)

Because they are positive definite, they are squares of some functions φi. It is known
that this decomposition can be done so that φi are orthonormal:

∫
φi(x)φj(x)dx = δij.

We are interested in this quantity T or the corresponding integrand τ(x), which can
take two alternative forms:

T = −1
2

∫ N

∑
n=1

φi∆φidx =
∫

τ(KS)(x)dxT =
1
2

∫ N

∑
n=1
|∇φi|2dx =

∫
τ+(x)dx (2)

We want to express T without explicit reference to φi, as a function of ρ-dependent
quantities only. It could be any derivative of ρ, any power of ρ, but only of ρ without
explicit reference to φi.

The reason why this example is important is that a solution to this problem opens
the way to routine, linear-scaling large-scale ab initio modeling of materials with the so-
called orbital-free DFT (OF-DFT) [77]. We mentioned above that quantum mechanics-based
modeling is critical for understanding and design of novel energy technologies, yet the
commonly used Kohn–Sham DFT is unwieldy for systems with more than about 103 atoms.
Large-scale modeling means more realistic modeling and is required to properly account
for a range of phenomena which are intrinsically large-scale (e.g., microstructure-driven
properties). In OF-DFT, ρ takes the meaning of the electron density, N is the number of
electrons, φi are single-electron (Kohn–Sham) orbitals [36], T is the kinetic energy, and τ(x)
is the kinetic energy density (KED) (we neglect spins and partial orbital occupancy without
the loss of generality). The mapping T = T[ρ(x)] is the kinetic energy functional (KEF).
Approximate formulas for such an expression (T[ f (x)]) exist but they are not accurate
enough for use in most applications where ab initio modeling is needed, including (organic
and inorganic) semiconductors and transition metal containing functional materials of
novel energy technologies. In the past several years, substantial progress has been being
made on this problem with the help of machine learning using, in particular, techniques
such as neural networks and kernel methods [41,78–82]. We will return to this example later
in the context of deep learning. Some uses of ML to improve quantum mechanics-based
modeling methods are reviewed in [39].

2.3. The Curse of Dimensionality and Why ML Techniques Are Effective

We mentioned in an example above 32 features used to describe perovskite materi-
als [10]. Is 32 dimensions high or low? It is (very) high. In multidimensional spaces, one
is hit by the so-called curse of dimensionality. Imagine we sample a simple univariate
function with M points sufficient to recover the function to a desired accuracy with a
common method (e.g., splines). If one wants to maintain the same density of sampling in D
dimensions, the number of sampling points would grow exponentially: MD. With M as
small as 10 and D as small as 10, one would need 1010 data. This is the curse of dimension-
ality. Moreover, when one constructs a function with polynomials or Fourier expansions,
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not only the number of required samples grows exponentially but the number of terms in
the representation as well. The result of this is that it is impossible to achieve good density
of sampling just by adding more data. For example, already in 20 dimensions, a million
data points is equivalent to only about 2 data per degree of freedom (of an equivalent direct
product grid). If we somehow managed to get 10 times more data, it would only increase
the density of sampling to about 2.2 data per degree of freedom. Practically, one therefore
always works with extremely sparse data. That is why 32 dimensions in the example above
is in fact very high. In practice, one starts feeling this curse of dimensionality from about 6
dimensions and up.

However, this debilitating scaling strictly speaking only holds for direct product
representations. One reason why various machine learning methods work well in multidi-
mensional spaces is because they avoid direct product representations and thereby alleviate
the problem of the curse of dimensionality. We will illustrate this point in Section 3.1.

In multidimensional spaces, some intuitions break down. For example, what is
local in low-D may not be in high-D. An example is the Gaussian function, g(x) =

∏D
i=1
(
2πσ2

i
)− 1

2 exp
(

(xi−xi)
2

2σ2
i

)
, which is localized around the mean x in the sense that about

70% of the quadrature of this function is within one standard deviation σ from the mean
in the one-dimensional case (D = 1). In six dimensions (D = 6), for example, only 10%
of the quadrature is from within one standard deviation (in each respective dimension).
That is, a multidimensional Gaussian function is no longer a localized function by this
measure. Working in high dimensionality has also its advantages. For example, there is
the concentration of measure whereby as dimension is increased, the width of the distribu-
tion of distances between data points collapses: lim

D→∞
E
(

distmax(D)−distmin(D)
distmin(D)

)
→ 0 , where

distmax and distmin are maximum and minimum distances between the data points. We
observed in our own experience that, for example, neural networks perform better in
high-dimensional spaces than in 1, 2, 3 dimensions. This ultimately relates to growing
advantages of non-direct product representations in high dimensions.

One important consequence of the low density of sampling is that the intrinsic dimen-
sionality of the dataset is less than the dimensionality of the space [83,84]. This is obvious
when the data are confined to lower-dimensional hypersurfaces or other shapes, but even
if the data are not confined to such a sub-dimensional shape, simply by the virtue of low
density, the intrinsic dimensionality of the dataset is lowered. This ultimately justifies
representations with lower-dimensional functions, which will be described below.

3. Advanced Techniques for Working with Sparse Data
3.1. Brief Introduction to Neural Networks and Gaussian Process Regression
3.1.1. Neural Networks (NN)

Artificial neural networks [85] are an example of a representation of a multivariate
function with univariate functions, which are adapted to the problem by the choice of
parameters. They are often presented with the help of an analogy with a biologic neural
network, but for regression problems we find more useful the following interpretation. We
expand a function f (x), x ∈ RD in a basis of univariate functions σn with coefficients cn:

fk(x) =
N

∑
n=0

cnkσn(wnx + bn) (3)

Here we added a subscript k to indicate that several outputs can be computed from
the same basis. The basis functions depend on all components of x but their arguments
are scalars dependent on x as well as on weights w and biases b. This parameterization
by w and b makes a flexible, non-direct product basis. This representation goes back to the
Kolmogorov theorem of 1957 [86], and since then, in a series of papers restrictions on σ
have been relaxed [87–95]. This expression is a universal approximator even when σ is the
same for all n and as long as σ is smooth and nonlinear [96]. In applications, typically σ
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is the same for all n and typically it is the sigmoid function, σ(x) = (ex − e−x)/(ex + e−x),
but it does not have to be [96]. The parameters w and b and the coefficients c are fitted to
reproduce a set of known samples of f, f j = f

(
xj), j = 1, . . . , M. The fit is nonlinear because

σ is nonlinear.
The Equation (3) (which is often written as f (x) = σ

(
∑N

n=0 cnσ(wnx + bn)
)

, i.e., with
a so-called output neuron, which, however, can be subsumed in the definition of f, without
loss of generality) expresses a so-called single hidden layer neural network. It is graphically
represented in Figure 3, where the arrows to each σ, which are called neurons, reflect
the formation a single scalar input. These neurons form a hidden later. The outputs are
collected in a sum to one or more outputs in the output layer, i.e., one can fit a multi-sheet
function or a function and its derivatives, by the same NN. These are called output neurons.

Figure 3. Schematic representation of a single-hidden layer neural network.

One can collect the outputs of this last layer of neurons and feed them to yet another
layer of neurons and so on, obtaining a multilayer or deep neural network:

fl = σout

(
Nn

∑
kn=0

w(n)
l,kn

σn,kn

(
Nn−1

∑
kn−1=0

w(n−1)
kn ,kn−1

σn−1,kn−1

(
. . .

N1

∑
k1=0

w(2)
k2k1

σ1,k1

(
d

∑
i=0

w(1)
k1i xi

))))
(4)

We stress that a single hidden layer network is already a universal approximator.
In many applications, one layer would be sufficient, and one needs to be sure if one actually
needs a deep NN as it comes at a price of a large number of non-linear parameters. We will
show examples later of where one actually needs a deep NN.

The fact that σ can be any smooth function opens new possibilities. We showed, for
example, that with exponential neurons one easily obtains a sum of products representation

with a relatively small number of terms [97]: f (x) = ∑M
i=0 w(2)

i ∏d
k=0 ew(1)

ik xk . Sum of products
representations are very useful because they greatly simplify integration of the function
(multidimensional integrals over the function f can be computed as sums of products of one-
dimensional integrals), which is a major advantage when the dimensionality is high. In fact,
sum of product representations are required in certain computational methods, for example,
in some powerful quantum dynamics methods [98]. A more complicated way to get a
sum of products is with multiplicative neural networks which use error function types of
neurons [99]: f (x) = µ

(2)
1 + ∑n1

k1=1 w(2)
1,k1

∏J
k0=1 er f

(
µ
(1)
k1k0

+ w(1)
k11ko

xk0

)
. These are examples

of a departure from the orthodox network designs which bring significant advantages. We
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will show below how with even more drastic changes in the architecture one can realize
significant advantages.

3.1.2. Gaussian Process Regression (GPR)

Another method we briefly highlight is Gaussian process regression (GPR) [100]. GPR
answers the question “given the set of samples f j of a function f (x) at certain points in
space xj, what are the expectation values f (x) and their variance ∆f (x) for function values at
other points in space x?” One assumes that correlation between data can be described with
a kernel, a chosen type of the covariance function k(x1, x2). The answer is given by

f (x) = K∗K−1f

∆ f (x) = K∗∗ −K∗K−1K∗T
(5)

where f is a vector of all f j values, and the matrices K and K* are computed from pairwise
covariances among the data:

K =


k
(

x(1), x(1)
)
+ δ k(x(1), x(2)

)
k(x(2), x(1)

)
k
(

x(2), x(2)
)
+ δ

· · ·
k(x(1), x(M)

)
k(x(2), x(M)

)
...

. . .
...

k(x(M), x(1)
)

k(x(M), x(2)
)

· · · k
(

x(M), x(M)
)
+ δ


K∗ =

(
k
(

x, x(1)
)

k
(

x, x(2)
)

. . . k
(

x, x(M)
) )

, K∗∗ = k(x, x)

(6)

The optional δ on the diagonal has the meaning of the magnitude of Gaussian noise
and it helps generalization. Note that Equation (5) as written (and as it commonly appears
in the literature) holds for data (the set of f j) normalized to unit variance, otherwise the
left-hand side should be multiplied by the variance of f .

The covariance function is usually chosen as one of the Matérn family of functions [101]
given by

k
(
x, x′

)
= σ2 21−ν

Γ(ν)

(√
2ν
|x− x′|

l

)ν

Kν

(√
2ν
|x− x′|

l

)
(7)

where Γ is the gamma function and Kv is the modified Bessel function of the second kind.
At different values of ν this function becomes a Gaussian ( ν→ ∞ ), a simple exponential
(ν = 1/2) and various other widely used functions (such as Matern3/2 and Matern5/2
for ν = 3/2 and 5/2, respectively). The parameters of the covariance function are the only
parameters, they are hyper-parameters and they are few, as few as one (for an isotropic
kernel at fixed ν). This is therefore a non-parametric method, which is an advantage. While
hyper-parameters still need to be chosen, the performance is usually about equally good
as long as hyper-parameters are in some reasonable range. In Equation (7), the critical
parameter is the length parameter l; the prefactor σ2 is fully correlated with δ in Equation (6).
Note that Equation (5) is a non-direct product representation.

3.1.3. Relative Pros and Cons of GPR vs. NN

Because in GPR one has to wield matrices and inverses of matrices of the size M ×
M, where M is number of data, this method becomes increasingly costly as the dataset
size grows. In fact, it quickly becomes prohibitively expensive for datasets as small as
tens of thousands of data unless additional approximations are made [102]. However, the
method is very accurate. In fact, GPR is the only method which we have seen outperform
NN in controlled comparisons and on the quality of observables, i.e., not just various
fitting error measures, but controlled tests of the quality of observables computed with
functions constructed using NN or GPR [103]. GPR has been shown to be equivalent to an
infinitely large neural network [104]. Contrary to NN, it provides estimates of uncertainty
(we caution however that ∆f in Equation (5) should not be directly used to compute an
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error bar of the mode; it reflects the uncertainty of the expectation value, which can be
higher or lower than the fitting error [105,106]). It is quite costly not just to build but also
to evaluate a GPR model when the datasets are more than a few thousand data. The matrix
inverse also means instability when data points are close to each other, although it can
be handled, e.g., by using pseudoinverses and appropriate values of δ. We also recently
proposed a rectangular GPR, which achieves numeric stability and good generalization
without δ [107].

Neural networks, in contrast, work well when some points are close; they work well
with millions of data even on a desktop computer [78]. Their disadvantage is the large
number of parameters that need to be determined in a nonlinear fit. There is therefore
danger of overfitting, and one needs to carefully control for it by a judicious choice of
architecture and also by using test sets. Often as few as 5% to 20% of the available data
are reserved for testing, with the rest used for training. In our experience, this is grossly
insufficient, and we recommend using test sets which are at least as large as training sets.
This is a disadvantage as this requires more data. In general, with the same number of
training points, an NN achieves a lower accuracy than GPR; alternatively, one needs more
data to reach the same accuracy with NN as with GPR [103].

Given the advantages of GPR, it would be desirable to have a scheme in which GPR
is used in a regime where it is most efficient, i.e., with few data. The approach which we
introduce next allows doing just that.

3.2. High-Dimensional Model Representation (HDMR)

We now briefly introduce high-dimensional model representation (HDMR) [108–110].
HDMR is an expansion over orders of coupling. Its form is similar to the ANOVA decom-
position [111,112]. The idea is to represent the function f (x) as a sum of first an uncoupled
approximation, then terms due to collective action of couples of variables, then triples, etc.,
until the last term that describes the coupling term among all D variables:

f (x) = f0 +
D

∑
i=1

fi(xi)+

+
D

∑
i = 1,

j = i + 1

fij(xi, xj
)
+ . . . +

D

∑
i1,i2,...,id

fi1,i2,...,id(xi1 , xi2 , . . . , xid
)
+ . . . + f1,2,...,D(x)

(8)

If taken to this last term, the expansion is exact. If the expression is truncated at
some lower-order d terms, it is approximate. In most physical phenomena, the relative
importance of these coupling terms drops rapidly with the order of coupling d. Depending
on the application, one can stop at, e.g., 3rd order or 2nd order or even 1st order, i.e.,
uncoupled approximation, without making much error [108].

When one has stopped at some relatively small order of coupling d, one works only
with low-dimensional component functions fi1,i2,...,id(xi1 , xi2 , . . . , xid

)
. All these component

functions can be obtained from one and the same set of training points distributed in
full D-dimensional space (in which case one obtains the so-called RS (random-sampling)-
HDMR [113,114]). This is advantageous on several counts: low-dimensional functions are
generally easier to build, they can be built from fewer data e.g., with sparse data, and not
suffer from overfitting [115]. We indicated above that sparse data are a key problem and
that, e.g., the Gaussian process regression does not work well with large dataset. One can
use HDMR to build a multivariate function from sparse data and stay in the “comfort zone”
of the method which is used to build the component functions. A representation with
lower-dimensional functions is also easier to use in applications, particularly when f needs
to be integrated. HDMR in that case allows computing only low-dimensional quadratures.



Physchem 2022, 2 82

In the original HDMR formulation, all component functions are mutually orthogonal, i.e.,

∫
D

fi1i2 ...id
(
xi1 , xi2 , . . . , xid

)
f j1 j2 ...jm

(
xj1 , xj2 , . . . , xjm

)
dx = 0

{i1, i2, . . . , id} 6= {j1, j2, . . . , jm}
(9)

and are equal to multidimensional integrals (specifically, (D–d) dimensional integrals
need to be computed for d-dimensional component functions) which are quite difficult to
compute when D is high [113,114]; further, any lower-dimensional component functions
need to be constructed first before constructing d-dimensional functions. We proposed an
extension of HMDR whereby we do not build the entire expansion but directly represent
the function f with d-dimensional functions [105,116–119].

f (x) ≈
N

∑
i=i

fi(x1, x2, . . . , xd) (10)

This is achieved by dropping the orthogonality requirement. One need not build the
entire HDMR expansion; it is possible to use only the terms of the desired dimensionality
d that provides a desired accuracy. The lower-order terms are effectively subsumed into
d-dimensional terms. Most importantly, when using machine learning to represent the
component functions, no integrals need to be computed, and it is possible to alleviate the
issue of combinatorial growth of the number of HDMR terms with d and D.

3.3. Combining HDMR with ML for Learning from Sparse Data
3.3.1. Machine Learning of HDMR Terms

HDMR component functions can be built with machine learning methods like neural
networks [116,118,120] or Gaussian process regressions [105,106,119]. Practically this can
be done by fitting component functions one at a time to the difference of the value of the
function f at the training points and the sum of all other component functions:

f (NN or GPR)
k1k2 ...kd

(
xk1 , xk2 , . . . , xkd

)
= f (x)−

D

∑
{i1i2 . . . id} ∈ {12 . . . D}
{i1i2 . . . id} 6= {k1k2 . . . k3}

f (NN or GPR)
i1i2 ...id

(xi1 , xi2 , . . . , xid

)
(11)

One then cycles through all functions in a sort of a self-consistency loop until conver-
gence. We called the resulting methods (RS-)HDMR-NN and (RS-)HDMR-GPR, respec-
tively [105,120]. In Equation (11) a single NN or GPR instance is used for each component
function. In the case of NN, the entire HDMR representation can also be encored into the
architecture of one NN. In practice, we found this to be rather cumbersome; the advantage
of Equation (11) is that existing NN engines with simple architecture can be used and work
well. When using GPR, one can achieve an HDMR form also by using an HDMR-type
kernel [119,121]:

k
(
x, x′

)
= ∑
{i1i2 ...id}∈{12...D}

ki1i2 ...id

(
xi1i2 ...id , x′ i1i2 ...id

)
(12)

where xi1i2 ...id ≡
(

xi1 , xi2 , . . . , xid
)
. There is in that case the disadvantage over Equa-

tion (11) in that a custom kernel has to be defined, but one uses a single GPR instance and
f GPR
i1i2 ...id

(xi1 , xi2 , . . . , xid

)
is optimal in the least squares sense without the need for fitting

cycles of Equation (11). The individual component functions are then

fk1k2 ...kd

(
xk1 , xk2 , . . . , xkd

)
= K∗i1i2 ...id c (13)
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where c = K−1f and K∗i1i2 ...id
is a row vector with elements ki1i2 ...id

(
xi1i2 ...id , x(n)i1i2 ...id

)
. The val-

ues of the component functions at the training set are then fi1i2 ...id
= Ki1i2 ...id c. The relative

importance of different component functions can be evaluated by computing the variance
of Ki1i2 ...id c, where the (m,n) elements of the matrix Ki1i2 ...id are ki1i2 ...id

(
x(m)

i1i2 ...id
, x(n)i1i2 ...id

)
. It

can be used, in particular, to prune unnecessary component functions and thereby alleviate
the issue of combinatorial scaling of the number of HDMR terms with D and d [106,119].
This scaling is a major bottleneck in high-dimensional problems. It arises because in HDMR
the number and dimensionality of terms are hardwired to each other: the number of d-
dimensional terms is the binomial coefficient Cd(D) and can be quite high. An even further
extension that we proposed is to represent f (x) as a sum of lower-dimensional functions in
new coordinates x(i) which are linear combination of the original coordinates:

x(i) = A(i)x + b(i) f (x) ≈
N

∑
i=i

fi(x(i)1 , x(i)2 , . . . , x(i)d

)
(14)

The full set of x(i) is generally redundant, and the method, when used with NN
component functions, was called Red-RS-HDMR-NN [117]. This has the advantage that
the number of terms and their dimensionality are uncoupled, and one can achieve good
accuracy with a small number N of low-dimensional terms by varying independently N
and d. This is illustrated in Figure 4, where the error in the interatomic potential of vinyl
bromide is plotted as a function of both the number and the dimensionality of terms. For
comparison, in the standard HDMR, there would be about 3000 5-dimensional terms. The
coordinate transformation itself can be conveniently done automatically (during the fit) by
introduction of an additional NN layer with linear neurons. A nonlinear layer can also be
used, but we showed that the universal approximator property of the form of Equation (14)
holds even with a linear coordinate transformation [117].

Figure 4. Test set root mean square error (rmse) of the interatomic potential of vinyl bromide as
function of both the number and the dimensionality of terms of Red-RS-HDMR-NN. Reproduced
with permission from [117]. Copyright 2010 American Institute of Physics.

3.3.2. RS-HDMR-NN (Random Sampling High-Dimensional Model Representation
Neural Network)

When the product of N and d in the representation of Equation (11) is smaller than
the dimensionality of the space D, one obtains dimensionality reduction. Specifically, if the
coordinate transformation and the component functions are built with neural networks,
one obtains effectively a simple version of an autoencoder. An autoencoder is a type of
neural network that performs dimensionality reduction, typically by using layers with
diminishing numbers of neurons [122].
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Dimensionality reduction can be used to find intrinsic dimensionality of the data,
which may be different from the dimensionality of the space. We highlighted above that
heterogeneous catalysis is an important pillar of emerging energy technologies. Modeling
of catalyzed reactions with either classical or quantum dynamics requires interatomic
potentials. This type of HDMR-inspired dimensionality reduction was used to construct
interatomic potentials. For example, in [123] the authors constructed with this approach
an interatomic potential for catalytic decomposition of nitrous oxide on copper, in the
frozen surface approximation, and computed dissociation probabilities with it. This was
the first ab initio-based interatomic potential for a polyatomic molecule-surface catalytic
reaction with full account of all molecular degrees of freedom (intramolecular as well
as orientational with respect to the surface). The interatomic potential was built in a
15-dimensional configuration space that allowed preserving symmetries and asymptotic
behavior even though the intrinsic dimensionality of this problem was nine. Figure 5 plots
the error (on a test set) in the interatomic potential as a function of dimensionality of a
single used component function (i.e., N = 1). The method allows correctly identifying
intrinsic dimensionality as a value of d beyond which there is no improvement, and it
allows building the function f sampled with only about 2 data per degree of freedom, with
no overfitting [123].

Figure 5. Test set mean absolute error (mae) of the interatomic potential of N2O over Cu (the
system shown on the right) as a function of the dimensionality of a single component function of
Red-RS-HDMR-NN. Reproduced with permission from [123]. Copyright 2010 Elsevier.

3.3.3. RS-HDMR-GPR (Random Sampling High-Dimensional Model Representation
Gaussian Process Regression)

The previous example was about using a combination of HDMR with neural networks.
Here we give examples of using a combination of HDMR with Gaussian process regression.
The first example has to do with the future of nuclear energy. Another example of HMDR-
NN will be cited in the next section. Nuclear energy remains a great source of stable
baseload electricity, which is needed in the context of intermittent sources such as solar and
wind. A typical nuclear fuel cycle includes uranium mining (of uranium oxides), conversion
to UF6 gas, enrichment of the 235UF6 fraction, conversion to solid uranium oxide, and then
production of nuclear fuel assemblies. A key step in this cycle is uranium enrichment
to bring the fraction of uranium-235 from the naturally occurring 0.7% to 3–5% (about
99.3% of naturally occurring U is 238U) [124]. Not all reactor types require enrichment but
most reactors operating in the world do, while other applications (e.g., defense) require
much higher enrichment degrees. The enrichment is typically done in the gaseous phase,
by enriching UF6 gas in centrifuges. This is a costly process: the enrichment cost can
account for about 10% of the electricity cost [125]. For many years now, researchers and the
industry have been studying laser-driven enrichment whereby one excites isotope-sensitive
hyperfine transitions either of uranium or uranium hexafluoride [126,127]. This requires
very high laser coherency (on the order of 105) and brings with it various issues. If one
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could use instead vibrational transitions in UF6, some of which are isotopomer-selective
(such as the mode at around 628 cm−1 which is different by about 0.6 cm−1 between 235UF6
and 238UF6 implying necessary coherency on the order of 103) [128], one could use cheaper
and less coherent IR lasers.

One of us recently proposed the concept of IR laser-driven isotopomer selective
desorption of UF6 [129]. We computed that UF6 can be adsorbed on different graphene
derivatives with tunable adsorption energy depending on the derivative, and that in the
adsorbed state there exists an isotopomer unique vibrational mode which can be used
to heat and make desorb the molecules in an isotopomer-selective way, as illustrated in
Figure 6.

Figure 6. Principle of IR laser-driven isotopomer-selective desorption of UF6 proposed in [129].

Vibrational dynamics of UF6 would be critical for such a technique, and accurate mod-
eling of vibrational properties and dynamics critical for ability to simulate this process [130].
Unfortunately, good, well-resolved vibrational spectra of UF6 are not even found in the
experimental literature [128,131], and to compute accurate vibrational spectra or vibrational
dynamics, one requires a good interatomic potential function (potential energy surface,
PES), which for a UF6 molecule is a 15-dimensional function. Accurate PESs for UF6 are
still unavailable, in particular, due to difficulty of building a 15-dimensional function from
sparse data.

In [105], we applied the HDMR based approach with Gaussian process regression
component functions to construct the 15-dimensional interatomic potential of UF6 as

EUF6(x) ≈ ∑
Nc f
i=i f GPR

i (x(i)1 , x(i)2 , . . . , x(i)d

)
from samples computed with density functional

theory [130]. We trained the model on 2000, 3000, and 5000 data and tested its quality on
50,000 data, i.e., we used a test set much larger that the training set. The results of test set
errors obtained with different orders d of HDMR and different numbers of training data
are summarized in Table 1. More details of the calculations are given in [105].

Table 1. Test set root mean square error (rmse) when fitting the potential energy surface of UF6 with
HDMR-GPR of different orders d for different numbers of training points Ntrain. For comparison, the
results with a full 15-dimensional GPR are also shown. The numbers of component functions Ncf at
each d are also shown.

Rmse 1 Ncf\Ntrain 5000 3000 2000

Full-D (d = D) 1 42.2 75.4 106.7
d = 1 15 234.6 236.4 237.3
d = 2 105 168.1 178.6 190.3
d = 3 455 65.6 78.0 97.4

1 On the test set of 50,000 points.
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If we first look at the fit results with 5000 training data, we see something quite
expected: the higher the considered order of coupling, d, the smaller the test error. The
smallest error is achieved with a full-dimensional GPR (i.e., d = D, Ncf = 1). Consider
now the results obtained with only 2000 training data. This is a very sparse dataset, with
sampling density of only about 1.7 data per dimension. What we observe here is that the
fit with three-dimensional functions gives a better test set error than the full-dimensional
fit. This is because with low density of sampling, it is impossible to recover the full D-
dimensional function [120]. The data points were sampled quasi-randomly [132] in the
15-dimensional space; they do not lie on subdimensional manifolds, but the information to
recover the full D-dimensional terms is just not there. Low data density also increases the
danger of overfitting. All this together argues for representations with lower-dimensional
functions such as those based on HDMR. Ultimately this has to do with the fact that a finite-
size dataset in a D-dimensional space is not a D-dimensional object but has a dimension
anywhere between 0 and D [83,84].

3.4. When Are Deep NNs Useful?

Finally let us touch on the subject of so-called deep neural networks which have now
been widely popularized (“deep learning”). We consider again the problem of kinetic
energy functionals for orbital-free DFT, of which a good solution would significantly
enhance researchers’ capabilities to perform large-scale ab initio simulations, as explained
above. We are interested in the electronic kinetic energy or kinetic energy density, which
we know how to express through the orbitals φi, with the expression of Equation (2), but
want to express it as a function of density only. We can use any derivatives or powers
of ρ or any other functions of ρ but without reference to φi: T = T[ρ(x)|∇ρ, ∆ρ, ρn, . . .] or
τ = τ[ρ(x)|∇ρ, ∆ρ, ρn, . . .]. As an example, we show in Figure 7 how the kinetic energy
density τ(x) looks for aluminum, magnesium, and silicon crystals:

Figure 7. Kinetic energy densities within the unit cells of (a) fcc Al, (b) hcp Mg, and (c) cubic diamond
Si crystals.

It is very difficult or impossible to derive analytically an expression for the KEF
accurate enough for use in applied simulations of most materials [77]. There is now much
progress in machine learning this dependence, in particular, with neural networks but also
with other methods, including GPR and some of the methods mentioned earlier [41,78–82].
This problem is a very stringent test for machine learning methods because the accuracy
required here is very high, in the order of a thousandth of a percent unless there is significant
error cancellation. We consider NN-based learning of τ[ρ(x)].

Figure 8 shows one-dimensional cuts of the kinetic energy densities of bcc Li, hcp Mg,
fcc Al, and cubic diamond Si along selection directions in these crystals, computed in [78].
The black lines are for Kohn–Sham kinetic energy density that we want to machine-learn.
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Neural networks were trained in a five-dimensional space of density dependent variables
which were terms of the fourth-order gradient expansion [133]:

T4 = T(0) + T(2) + T(4)

T(0) ≡
∫

τ0(r)dr =
3

10

(
3π2

) 2
3
∫

ρ
5
3 (r)dr

T(2) ≡
∫

τ2(r)dr =
1

72

∫ |∇ρ(r)|2

ρ(r)
dr

T(4) ≡
∫

τ4(r)dr =

(
3π2)− 2

3

540

∫
ρ

1
3

[(
∆ρ

ρ

)2
− 9

8

(
∆ρ

ρ

)(
∇ρ

ρ

)2
+

1
3

(
∇ρ

ρ

)4
]

dr
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Figure 8. One-dimensional cuts of the kinetic energy densities of bcc Li (top left), hcp Mg (top right),
fcc Al (bottom left), and cubic diamond Si (bottom right) along selected directions in the crystal lattice.
The target Kohn–Sham kinetic energy density is shown as a black line, results of a single-hidden
layer NN fit of the KEDs of all materials simultaneously with a red line (“[80] NN”, where 80 is
the number of neurons in the hidden layer), and the results of a four-hidden layer NN fit of the
KEDs of all materials simultaneously with a turquoise line (“[20 20 20 20] NN”, where 20 is the
number of neurons in each hidden layer). See [78] for details. Adapted with permission from Ref. [78].
Copyright 2019 The Owner Societies.

The five summands in the integrands served as density-dependent variables (hence
“T4” in Figure 8).

With single hidden layer neural networks, we could fit accurately the data for each
of the materials separately, visually overlapping with the black curve [78]. The red lines
are from attempts to fit the kinetic energy densities of all four materials simultaneously
with a single hidden layer NN. It is important to be able to do so to make sure that the
resulting expression of the kinetic energy as a function of density has certain portability
across many materials. The result is obviously not good. With a multilayer neural network,
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however, we could get a good fit simultaneously for all materials, shown in Figure 8 by the
turquoise lines for a four-hidden layer NN with 20 neurons per layer [78]. This difference
in the quality of the fit is not due to an inadequate number of neurons—no single-hidden
layer NN was able to learn the KED of all the materials simultaneously.

A single hidden layer NN is a universal approximator, and indeed we saw no ad-
vantage of using multilayer networks when fitting individual materials, and we also saw
no such advantage in our prior works on interatomic potentials [134,135]. One difference
between those works and this case is the extremely uneven distribution of data. To illus-
trate this, we show in Figure 9 distributions (histograms) of the target function values, i.e.,
kinetic energy density τ (and τ+, see Equation (2)) and of some of the density dependent

variables we used [41]. In Figure 9, p = |∇ρ|2

4(3π2)
2/3

ρ8/3
is the scaled (to satisfy the so-called

exact conditions [136]) squared gradient and q = ∆ρ

4(3π2)
2/3

ρ5/3
is the scaled Laplacian of

the density, TF is for τTF(r) = 3
10
(
3π2)2/3

ρ5/3(r)-the Thomas–Fermi KED [137], and vW

is for τvW(r) = 1
8
|∇ρ(r)|2

ρ(r) –the von Weiszacker KED [138]. The KED distribution is very
uneven. The distributions of the density-dependent variables are in some cases extremely
uneven. What it means is that there are vast parts of the space which are extremely sparsely
sampled but which are still important for the quality of the model, and here we clearly
see the advantage of a deep NN. Data distribution is an issue that still needs to be better
addressed in machine learning. Just using weighted fitting is not sufficient, as we also saw
in our research [41,78].

When machine learning the KED from the data whose distribution is shown in Figure 9,
we also confirmed that the HDMR-GPR combination is able to inform on relative importance of
different combinations of variables (based on Equation (13)) [106]. This is a capability which goes
beyond the automated relevance determination (ARD) used with GPR, whereby the inverse of
the optimal length scale parameter in GPR (l in Equation (7)) with a squared exponential kernel
can be used to determine the importance of different variables [100]. With HDMR-GPR, it is the
relative importance of different variable combinations which can be estimated. As non-important
variable combinations can be omitted, this provides a possibility to prune the number of HDMR
terms, which is important to address a key disadvantage of HDMR (i.e., the combinatorial
scaling of the number of terms). The knowledge of relative importance of different combinations
of descriptors can be used for KEF development with other methods, not necessarily ML-based,
including analytic methods.
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Figure 9. Distributions (histograms) of the kinetic energy densities and density dependent variables
in a dataset combining data from Al, Mg, and Si at equilibrium geometry as well as under uniform
compression and extension. Adapted with permission from [41]. Copyright 2020 American Institute
of Physics.

4. Discussion and Conclusions

Machine learning today is very widely used to assist in the development of different
technologies, including energy technologies. Especially novel technologies based on fuel
cells, such as advanced solar cells, etc., are very “knowledge-deep”, i.e., they require
multiple steps in understanding and development. This includes modeling at the materials
level, device level, and system level, and at all these levels machine learning is useful,
usually for prediction of material or device properties and performance parameters from
descriptors. What we attempted to showcase in this perspective is that as far as the uses
of ML for the benefit of energy technologies are concerned, there is more than meets the
eye: many more aspects are being addressed with machine learning than just predicting
material or device properties from descriptors. Much is being done at the back end by
using machine learning to construct objects—such as interatomic potentials—which are
part of the workflow of understanding and modeling of materials and phenomena for
these technologies, or to improve modeling capabilities. This is important in particular for
emergent energy technologies, as they require quantum mechanics-based understanding
and modeling, which is difficult and costly but can be helped with machine learning.

We saw that when one learns dependences in multidimensional spaces, one always
works with sparse data, and in this regime machine learning methods are effective because
they avoid direct product representations. We used neural networks and Gaussian process
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regressions in our work. When one uses (regression type) NNs, there is no need to be
restricted to the commonly used sigmoid neurons; one can get some useful properties like
sum-of-products with other types of activation functions. When the sampling is sparse,
the dimensionality of the data is typically lower than the dimensionality of the space,
and it may be impossible to reconstruct the full-dimensional function. The danger of
overfitting is also then increased. We reviewed combined methods which represent a
multidimensional function with low-dimensional functions of any desired dimensionality,
and those component functions are built with either NN or GPR and potentially could
be built with other methods. This allows working with very sparse datasets without
overfitting and it allows using machine learning methods within their “comfort zone”.

Much is being discussed about deep learning and deep networks. One should not
forget that a single hidden layer NN is already a universal approximator. In practice though,
when the distribution of the data is very uneven, we found that deep NNs are very useful.
In other applications, where data were more uniformly distributed, we did not see an
advantage with deep NN. In general, the issue of extremely uneven data distributions
in some applications is a problem that is yet to be solved in substance. Going forward,
we therefore expect methods that go beyond commonly used tools like NN and GPR and
to use them instead as building blocks of more involved and powerful methods to gain
increased attention and use, as well as methods which are specifically tailored to address
the issues of data distribution and sparsity, and the issue of missing data.

Author Contributions: Conceptualization and methodology, S.M.; writing—original draft prepa-
ration, S.M.; writing—review and editing, S.M. and M.I.; project administration, S.M. and M.I. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tong, Q.; Gao, P.; Liu, H.; Xie, Y.; Lv, J.; Wang, Y.; Zhao, J. Combining Machine Learning Potential and Structure Prediction for

Accelerated Materials Design and Discovery. J. Phys. Chem. Lett. 2020, 11, 8710–8720. [CrossRef]
2. Walters, W.P.; Barzilay, R. Applications of Deep Learning in Molecule Generation and Molecular Property Prediction. Accounts

Chem. Res. 2020, 54, 263–270. [CrossRef]
3. Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent

applications and prospects. npj Comput. Mater. 2017, 3, 54. [CrossRef]
4. Wang, A.Y.-T.; Murdock, R.J.; Kauwe, S.K.; Oliynyk, A.O.; Gurlo, A.; Brgoch, J.; Persson, K.A.; Sparks, T.D. Machine Learning for

Materials Scientists: An Introductory Guide toward Best Practices. Chem. Mater. 2020, 32, 4954–4965. [CrossRef]
5. Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature

2018, 559, 547–555. [CrossRef] [PubMed]
6. Moosavi, S.M.; Jablonka, K.M.; Smit, B. The Role of Machine Learning in the Understanding and Design of Materials. J. Am. Chem.

Soc. 2020, 142, 20273–20287. [CrossRef] [PubMed]
7. del Cueto, M.; Troisi, A. Determining usefulness of machine learning in materials discovery using simulated research landscapes.

Phys. Chem. Chem. Phys. 2021, 23, 14156–14163. [CrossRef] [PubMed]
8. Kalidindi, S.R. Feature engineering of material structure for AI-based materials knowledge systems. J. Appl. Phys. 2020, 128,

041103. [CrossRef]
9. Li, S.; Liu, Y.; Chen, D.; Jiang, Y.; Nie, Z.; Pan, F. Encoding the atomic structure for machine learning in materials science. WIREs

Comput. Mol. Sci. 2021, 12, e1558. [CrossRef]
10. Im, J.; Lee, S.; Ko, T.-W.; Kim, H.W.; Hyon, Y.; Chang, H. Identifying Pb-free perovskites for solar cells by machine learning.

npj Comput. Mater. 2019, 5, 37. [CrossRef]
11. Meftahi, N.; Klymenko, M.; Christofferson, A.J.; Bach, U.; Winkler, D.A.; Russo, S.P. Machine learning property prediction for

organic photovoltaic devices. npj Comput. Mater. 2020, 6, 166. [CrossRef]
12. Sahu, H.; Ma, H. Unraveling Correlations between Molecular Properties and Device Parameters of Organic Solar Cells Using

Machine Learning. J. Phys. Chem. Lett. 2019, 10, 7277–7284. [CrossRef] [PubMed]

http://doi.org/10.1021/acs.jpclett.0c02357
http://doi.org/10.1021/acs.accounts.0c00699
http://doi.org/10.1038/s41524-017-0056-5
http://doi.org/10.1021/acs.chemmater.0c01907
http://doi.org/10.1038/s41586-018-0337-2
http://www.ncbi.nlm.nih.gov/pubmed/30046072
http://doi.org/10.1021/jacs.0c09105
http://www.ncbi.nlm.nih.gov/pubmed/33170678
http://doi.org/10.1039/D1CP01761F
http://www.ncbi.nlm.nih.gov/pubmed/34079968
http://doi.org/10.1063/5.0011258
http://doi.org/10.1002/wcms.1558
http://doi.org/10.1038/s41524-019-0177-0
http://doi.org/10.1038/s41524-020-00429-w
http://doi.org/10.1021/acs.jpclett.9b02772
http://www.ncbi.nlm.nih.gov/pubmed/31702163


Physchem 2022, 2 91

13. Zhuo, Y.; Brgoch, J. Opportunities for Next-Generation Luminescent Materials through Artificial Intelligence. J. Phys. Chem. Lett.
2021, 12, 764–772. [CrossRef] [PubMed]

14. Mahmood, A.; Wang, J.-L. Machine learning for high performance organic solar cells: Current scenario and future prospects.
Energy Environ. Sci. 2020, 14, 90–105. [CrossRef]

15. Li, F.; Peng, X.; Wang, Z.; Zhou, Y.; Wu, Y.; Jiang, M.; Xu, M. Machine Learning (ML)—Assisted Design and Fabrication for Solar
Cells. Energy Environ. Mater. 2019, 2, 280–291. [CrossRef]

16. Wang, C.-I.; Joanito, I.; Lan, C.-F.; Hsu, C.-P. Artificial neural networks for predicting charge transfer coupling. J. Chem. Phys.
2020, 153, 214113. [CrossRef]

17. An, N.G.; Kim, J.Y.; Vak, D. Machine learning-assisted development of organic photovoltaics via high-throughput in situ
formulation. Energy Environ. Sci. 2021, 14, 3438–3446. [CrossRef]

18. Rodríguez-Martínez, X.; Pascual-San-José, E.; Campoy-Quiles, M. Accelerating organic solar cell material’s discovery: High-
throughput screening and big data. Energy Environ. Sci. 2021, 14, 3301–3322. [CrossRef]

19. Priya, P.; Aluru, N.R. Accelerated design and discovery of perovskites with high conductivity for energy applications through
machine learning. npj Comput. Mater. 2021, 7, 90. [CrossRef]

20. Srivastava, M.; Howard, J.M.; Gong, T.; Dias, M.R.S.; Leite, M.S. Machine Learning Roadmap for Perovskite Photovoltaics. J. Phys.
Chem. Lett. 2021, 12, 7866–7877. [CrossRef]

21. Teunissen, J.L.; Da Pieve, F. Molecular Bond Engineering and Feature Learning for the Design of Hybrid Organic–Inorganic
Perovskite Solar Cells with Strong Noncovalent Halogen–Cation Interactions. J. Phys. Chem. C 2021, 125, 25316–25326. [CrossRef]

22. Miyake, Y.; Saeki, A. Machine Learning-Assisted Development of Organic Solar Cell Materials: Issues, Analyses, and Outlooks.
J. Phys. Chem. Lett. 2021, 12, 12391–12401. [CrossRef] [PubMed]

23. Xu, S.; Liang, J.; Yu, Y.; Liu, R.; Xu, Y.; Zhu, X.; Zhao, Y. Machine Learning-Assisted Discovery of High-Voltage Organic Materials
for Rechargeable Batteries. J. Phys. Chem. C 2021, 125, 21352–21358. [CrossRef]

24. Moses, I.A.; Joshi, R.P.; Ozdemir, B.; Kumar, N.; Eickholt, J.; Barone, V. Machine Learning Screening of Metal-Ion Battery Electrode
Materials. ACS Appl. Mater. Interfaces 2021, 13, 53355–53362. [CrossRef] [PubMed]

25. Chen, A.; Zhang, X.; Chen, L.; Yao, S.; Zhou, Z. A Machine Learning Model on Simple Features for CO2 Reduction Electrocatalysts.
J. Phys. Chem. C 2020, 124, 22471–22478. [CrossRef]

26. Lamoureux, P.S.; Winther, K.T.; Torres, J.A.G.; Streibel, V.; Zhao, M.; Bajdich, M.; Abild-Pedersen, F.; Bligaard, T. Machine Learning
for Computational Heterogeneous Catalysis. ChemCatChem 2019, 11, 3581–3601. [CrossRef]

27. Back, S.; Yoon, J.; Tian, N.; Zhong, W.; Tran, K.; Ulissi, Z.W. Convolutional Neural Network of Atomic Surface Structures To
Predict Binding Energies for High-Throughput Screening of Catalysts. J. Phys. Chem. Lett. 2019, 10, 4401–4408. [CrossRef]

28. Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.; Shimizu, K.-I. Machine Learning for Catalysis Informatics: Recent
Applications and Prospects. ACS Catal. 2019, 10, 2260–2297. [CrossRef]

29. Li, X.; Paier, W.; Paier, J. Machine Learning in Computational Surface Science and Catalysis: Case Studies on Water and
Metal–Oxide Interfaces. Front. Chem. 2020, 8, 601029. [CrossRef]

30. Pablo-García, S.; García-Muelas, R.; Sabadell-Rendón, A.; López, N. Dimensionality reduction of complex reaction networks in
heterogeneous catalysis: From l inear-scaling relationships to statistical learning techniques. WIREs Comput. Mol. Sci. 2021, 11,
e1540. [CrossRef]

31. Li, X.; Chiong, R.; Page, A.J. Group and Period-Based Representations for Improved Machine Learning Prediction of Heteroge-
neous Alloy Catalysts. J. Phys. Chem. Lett. 2021, 12, 5156–5162. [CrossRef] [PubMed]

32. Wu, D.; Zhang, J.; Cheng, M.-J.; Lu, Q.; Zhang, H. Machine Learning Investigation of Supplementary Adsorbate Influence on
Copper for Enhanced Electrochemical CO2 Reduction Performance. J. Phys. Chem. C 2021, 125, 15363–15372. [CrossRef]

33. Palkovits, S. A Primer about Machine Learning in Catalysis—A Tutorial with Code. ChemCatChem 2020, 12, 3995–4008. [CrossRef]
34. Giordano, L.; Akkiraju, K.; Jacobs, R.; Vivona, D.; Morgan, D.; Shao-Horn, Y. Electronic Structure-Based Descriptors for Oxide

Properties and Functions. Accounts Chem. Res. 2022, 55, 298–308. [CrossRef] [PubMed]
35. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [CrossRef]
36. Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

[CrossRef]
37. Rapaport, D.C. The Art of Molecular Dynamics Simulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; ISBN

978-0-521-82568-9.
38. Jansen, A.P.J. Kinetic Monte Carlo Algorithms. In An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions; Jansen,

A.P.J., Ed.; Lecture Notes in Physics; Springer: Berlin, Heidelberg, 2012; pp. 37–71. ISBN 978-3-642-29488-4.
39. Manzhos, S. Machine learning for the solution of the Schrödinger equation. Mach. Learn. Sci. Technol. 2020, 1, 013002. [CrossRef]
40. Behler, J. Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 2016, 145, 170901. [CrossRef]
41. Manzhos, S.; Golub, P. Data-driven kinetic energy density fitting for orbital-free DFT: Linear vs Gaussian process regression.

J. Chem. Phys. 2020, 153, 074104. [CrossRef]
42. Kulik, H.; Hammerschmidt, T.; Schmidt, J.; Botti, S.; Marques, M.A.L.; Boley, M.; Scheffler, M.; Todorović, M.; Rinke, P.; Oses, C.;
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