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Abstract: The Three-Dimensional Reference Interaction Site Model (3D-RISM) with Kovalenko−Hirata
(KH) closure is applied to calculate the 1,9-Decadiene/Water partition coefficients for a diverse class
of compounds. The liquid state of 1,9-Decadiene is represented with the united atom TraPPE force
field parameters. The 3D-RISM-KH computed partition functions are in good agreement with the
experimental results. Our computational scheme can be used for a quantitative structure partitioning
prediction for decadiene-water system, which has been used in membrane-mimicking of the egg-
lecithin/water permeability experiments.
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1. Introduction

Rapid development of computational methods and tools yielded a vast collection of
drug/drug-like compounds that can potentially be used for drug development as well
as drug repurposing. Such drug development programs involve (bio-)physical property
predictions, quantitative structure activity relationships, applicability domain calculations,
etc. The bottleneck in such activities is an accurate prediction of bioavailability of a drug
candidate. Bioavailability depends on the physical and chemical properties of a molecule.
Within the physical property domain, solubility and permeability are key factors. These
two together constitute one of the major challenges in biophysics, i.e., the prediction of
permeability through the cell membrane. Permeability in turn depends on a series of
solvation/desolvation couples for its way to target tissue(s). Several molecular structure
and activity relationships were developed over the years to incorporate lipid-membrane
permeability in the absorption−distribution−metabolism−excretion (ADME) studies of
drug candidates and risk assessments of chemical exposures [1–4]. The membrane perme-
ability models have attracted a lot of attention in both experimental and computational
points of view, owing to elaborate experimental setups and requirement of non-trivial
molecular simulations. The most common permeations across any barrier are diffusion-
controlled. Modeling such permeation processes often makes assumptions to simplify an
otherwise very complex process. A direct mimic of a membrane/bi-layer model generally
approximates a homogenous and isotropic bilayer, in its simplest form. An extension of
this model is a more realistic version where the permeability coefficient is related to the
local permeability of the solute for a given region of the bilayer and interfacial resistance.
While this process works reasonably well for small molecules, other considerations are
needed for peptides [5]. A common practice in experimental permeability determination is
to replace the actual membrane with solvent(s) of “adequate” physico-chemical properties.
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While such replacements have innate issues, they are easier to set up and can often be used
in a high throughput manner. One such example is the use of the non-polar 1,9-decadiene
(DED) molecule as a membrane mimic of egg-lecithin membrane. The egg-lecithin mem-
brane (also known as the black lipid membrane) is used in experiments for calculating
the bilayer permeability of compounds [6–8]. The DED/Water partitioning thus attracted
attention as an estimator of lecithin−water permeability as well as an excellent descriptor
of chemical selectivity in lecithin membrane permeability [9–11]. It is important to point
out that the success of such correlations between a membrane mimic and actual mem-
brane permeability depends on the uncertainty in Kmimic/water calculations, membrane
composition (and in turn, density of phospholipids), ionic strength, etc. Detailed molecular
studies of liquid state of DED are conspicuously absent in literature, although interesting
quantitative structure activity relationships for DED/Water partitioning were reported
using molecular descriptors based on linear free energy relationships [12–14]. Theoretical
modeling of permeability as well as partitioning requires detailed involvement of solvents
and solvation free energies in molecular partitioning. Continuum solvation models are
thus a suitable candidate to calculate explicit solvation free energy terms that are required
in partition function calculation. However, a continuum model for DED is not available yet.

The statistical mechanics-based 3D-RISM-KH molecular solvation theory is an alterna-
tive to the continuum solvation model in the sense that it represents a solvent molecule
with a fixed number of solvent sites, with sizes and charges based on the choice of force
field parameters around a solute of arbitrary shape. This theory provides direct correlation
functions (DCFs) for all species in solution [15–17] by expressing any molecular system
with a six-dimensional vector consisting of three positional {r} and orientational degrees of
freedom {Θ}, each in the molecular Ornstein–Zernike equation (MOZ) via the pair correla-
tion functions (PCF) of r and Θ of liquids, in three dimensions (3D). Solvent is represented
with a finite number of sites (γ) around a solute with the 3D correlation function (hγ(r)):

hγ(r) = ∑
α

∫
dr′cα

(
r− r′

)
χαγ

(
r′
)

(1)

The 3D-site distribution function (gγ) is calculated as gγ(r) = hγ(r) + 1 and consists
of all the interactions among all the solvent sites [18,19]. The physical characteristics of a
given solvent/solution, e.g., density and dielectric constant, are used as input in an RISM
calculation. For instance, the bulk susceptibility function reflects the shape and orientation
of the solvent and is constructed from the intramolecular correlation function ωαγ from the
dielectrically consistent RISM (DRISM):

χαγ(r) = ωαγ(r) + ωαγ(r) ραhαγ(r) (2)

The computational speed and accuracy of an RISM calculation depends on the nature
of a closure relation for integrating the infinite chain of diagrams produced through
Equation (1). The Kovalenko−Hirata closure (KH) has proven to be the most stable,
numerically, and provides the solvation structure with reasonable accuracy at a modest
computational cost, amongst a handful of successful closure relations [20]. The KH closure
approximation accounts for both electrostatic and non-polar features of the liquid and has
the following form:

gγ(r) =
{

exp(−uγ(r)/(kBT) + hγ(r)− cγ(r)) for gγ(r) ≤ 1
1− uγ(r)/(kBT) + hγ(r)− cγ(r) for gγ(r) > 1

(3)

The KH closure combines the so-called mean spherical approximation (applied to the
spatial part with solvent density enrichment, gγ(r) > 1) with the hypernetted chain (HNC)
applied to the spatial part with solvent density depletion, gγ(r) < 1, and provides numerical
stability and accuracy. While the KH closure is known to underestimate the height of
strong associative peaks, these errors are mitigated by broadening of the peaks, and this
often corrects the solvation thermodynamics and structure. For further theoretical details
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of the theory, please refer to [21–23]. It is important to keep in mind that the predicted
solvation free energy with any theoretical model is not absolute. The excess chemical
potentials obtained from the 3D-RISM-KH theory have a qualitative relation with the
experimental solvation free energies, and a more quantitative measure can be obtained by
careful calibration using the so-called “universal correction” scheme [24] and using the
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The objective of this manuscript is to first establish a 3D-RISM-KH-based compu-
tational protocol to describe the liquid state of DED. This theoretical framework is then
validated against traditional molecular dynamics (MD) simulations. The 3D-RISM-KH-
based calculations are then extended to calculate excess chemical potentials of 48 solutes in
DED and in water. These excess chemical potentials are then used as molecular solvation
descriptors with other 2D descriptors to develop a quantitative structure partitioning model
using machine learning techniques. This work serves as a proof of concept for successful
application of the 3D-RISM-KH solvation energy descriptors in predictive modeling of the
decadiene−water partition of small molecules.

2. Materials and Methods

Database preparation: The experimental DED/Water molecular partitioning for small
molecules (KDED/W) was collected from the work of Nitsche and co-workers [14]. For
logKDED/W data, the reported standard errors in the KDED/W are ignored. This dataset
is also a part of those reported by Abraham et al. [12].

Molecular dynamics (MD) simulations: The MD simulations of liquid DED were
done using the GROMACS software package [25]. The molecule was parameterized using
the all-atom OPLS and CHARMM force fields. The OPLS parameters were generated
from the LigParGen server with the 1.14*CM1A-LBCC charge assignment protocol [26–28].
The CHARMM parameters were developed using the SWISSPARAM webserver [29,30].
Additionally, the united atom GROMOS parameters were also used for the MD simula-
tions of DED. These parameters were obtained from the Automated Topology Builder
webserver [31–33]. For all the liquid phase simulation, a homogeneous cubic simulation
box with 256 solvent molecules was generated. The initial energy-minimized solvent box
was subjected to 500 ps NVT and NPT equilibration without any constraints under periodic
boundary conditions. The target temperature was set to 298 K and the target pressure to
1 bar using Berendsen thermostat. The temperature and density profiles were used to judge
the adequacy of the equilibration steps. The final production runs were 5 ns long. All the
radial distribution functions were calculated using the built-in functions of the GROMACS
package from the production simulation trajectories.

Three-dimensional RISM-KH calculations: The lowest energy conformation of all the
solutes generated using the OpenBabel toolkit with MMFF94 force field was further used
for all the RISM calculations [34]. The 3D-RISM-KH-based excess chemical potential and
partial molar volume (used as descriptors in the prediction) were calculated for all the
solutes using our in-house 3D-RISM-KH code, a working version of which is implemented
in the AMBERTOOLS suite of programs [35]. We used the Transferable Potentials for Phase
Equilibria family of force fields (TraPPE) of Siepmann and co-workers for a 1,9-decadiene
molecule [36,37]. This is a united atom force field with no charges on the carbon sites.
The extended-RISM (X-RISM) formalism was used for calculating susceptibility functions
of DED molecule. The geometry of the DED molecule was used after optimizing with
the ANTECHAMBER module of AMBERTOOLS. For susceptibility calculations of the
water solvent, the dielectric-RISM (DRISM) formalism was used with the modified SPCe
force field parameters [38]. The solute force field parameters are summarized in Figure 1.
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We employed the generalized Amber force field (GAFF) parameters with the AM1-BCC
charges for all the solutes [39,40]. The 3D-RISM-KH calculations for the solute molecules
were performed using a uniform cubic 3D-grid of 128 × 128 × 128 points in a box of
size 64 × 64 × 64 Å3 to represent a solute with a few solvation layers. The convergence
accuracy was set to 10−5 in the modified direct inversion in the iterative subspace (MDIIS)
solver. The excess chemical potentials (exchem) of the solutes in each solvent were used as
additional descriptors for the QSAR models. All the solutes were treated as their neutral
form, unless otherwise mentioned in the discussion section.
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Two-dimensional molecular descriptor generation: Molecular descriptors were gen-
erated from the corresponding SMILES strings of the solute molecules using the publicly
available PaDEL-Descriptor software [41].

Machine learning and statistical modeling [42,43]: The machine learning predictive
models for molecular partitioning were developed with the above-generated molecular
descriptors. The statistical importance analysis of the descriptors, machine learning cal-
culations, and performance indices of models were calculated via the “Extreme Gradient
Boosting” (XGBoost) and random forest (RF) technique used successively by optimizing
the parameters reducing the relative mean square error (RMSE). The training set used in the
machine learning protocols contained 80% of the randomly chosen data from the dataset.

3. Results and Discussion

In the following sections, we have detailed our findings on comparing and contrasting
the results of the RISM-KH simulation of liquid DED with the MD simulations using
both the all-atom and united atom versions of the current generation force fields. Subse-
quently, we have shown the applicability of the 3D-RISM-KH protocol developed herein in
predicting DED−Water partitioning of a diverse set of compounds.

The lack of experimental data on the liquid state of DED made it difficult to compare
the simulation results for accuracy. There is handful of chemical literature on molecular
simulations involving DED in the context of a membrane mimic [10,44–46]. The dielectric
constant of the DED molecule (2.16) was adopted from the works of Lomize et al. [45]. For
the MD simulations with different force fields, the equilibration step yielded a reasonable
density of the system (Table 1).

Table 1. Density (in g/cm3) of 1,9-Decadiene from the MD simulations with different force field
parameters.

Method Density Error Estimate

Experimental 0.75 -
CHARMM 0.741 0.049
GROMOS 0.751 0.036

OPLS 0.728 0.068
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The intermolecular separations, as observed from the radial distribution function
(RDF) for alkene atoms (1 and 2 in Figure 1) and saturated CH2 centers (3 in Figure 1),
are consistent among the different force fields used (Table 2). A compact arrangement of
DED molecules in the liquid state exists, which is an excellent property for mimicking
a lipid membrane. As evident from the relatively short intermolecular separations of
saturated sites (~2.5–3.9 Å, based on force field choice), the core of the liquid structure
is more compact than the terminal parts. It is possible that an aliphatic π-interaction
for the terminal alkene groups of DED molecule exists in the liquid state. For ethylene
dimers, the intermolecular distances were reported to be ~3.8 Å from gas phase geometry
optimizations at the coupled cluster level with the correlation consistent basis sets [46]. The
partial distribution functions from the RISM-KH calculations with the TraPPE parameters
for liquid DED are qualitatively similar to those from the MD simulations but with certain
deviations. For instance, the first maxima for the alkene sites have two overlapping peaks.
These terminal groups are packed closer than those obtained from the MD simulations
(Figure 2). The second maxima of these distribution functions appear at the distance
slightly lower than those from the MD simulations, although qualitatively in the similar
region for both the types of calculations. The alkane groups are less tightly packed in the
RISM-KH calculations.

Table 2. First and second maxima of the RDFs from the MD simulations and the partial distribution
functions (in Å) from the RISM-KH calculation of liquid 1,9-decadiene.

Force Field g(C1-C1) a g(C2-C2) a g(CH2-CH2) a

CHARMM 4.06/9.04 5.1/8.68 2.48/3.12
OPLS 3.94/9.02 5.06/8.86 2.56/3.22

GROMOS-UA 4.06/8.94 5.08/8.7 2.54/3.88
RISM-KH (TraPPE) 2.58 (3.88)/8.48 2.42 (4.2)/8.65 5.22/9.18

a Solvent sites are provided in Figure 1. C1 is the terminal H2C = site (1), C2 = CH- site (2), and CH2 is the
saturated alkane site (3).
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To calculate the DED/Water partition coefficients, we used the DED susceptibility
function calculated using the TraPPE parameters and the water susceptibility functions with
the modified SPCe parameters using the RISM formalism. The excess chemical potentials
calculated from the 3D-RISM-KH theory for DED and water medium as well as the partial
molar volume (PMV) of the solutes in the two solvents were used as molecular descriptors.
Molecular polarity is an important factor for partitioning between two solvents of opposite
polarity. Hence, we have used the topological polar surface area (TopoPSA) [47] and the
polarity indices calculated from the connectivity table of the molecule (apol, bpol). The
number of hydrogen bond donors and acceptors in the solute molecules is also incorporated
in the initial calculations (calculated based on Lipinski’s convention). Hybridization ratios
of solutes were another structural descriptor. All the statistical manipulations and machine
learning methods were done using the standard Python® implementations. A sample set
of the script for XGBoost, linear regression, and random forest methods is provided in the
GitHub link. The target function for all the machine learning was logKDED/W collected from
the work of Nitsche and coworkers [14]. The most important parameters for predicting the
partition coefficients are TPSA and excess chemical potentials in DED and water medium.
The polarity index apol also has a positive effect on predictive power. The parameters
with the least influence in the prediction scheme are bpol, hydrogen bond donor/acceptor
count, PMVs, and hybridization ratio count (Figure 3).
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The 3D-RISM-KH descriptors (excess chemical potentials and PMVs in decadiene
and water) are used with the aforementioned important 2D descriptors for quantitative
structure activity modeling. The XGBoost method yielded an overall relative mean square
error (RMSE) of 1.09 units for the test set. Prediction of the entire dataset by XGBoost
yielded an RMSE of 0.05 unit. The small error in the prediction could be an effect of
overfitting due to the small dataset. The random forest (RF) predictions yielded RMSEs
of 1.14 and 0.68 units for test set and the whole dataset, respectively. Application of the
simple linear regression model resulted in larger RMSEs, 1.23 and 0.92 units for the test and
whole dataset, respectively. In order to judge the performance gain in predicting partition
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coefficients by incorporating the 3D-RISM-KH computed solvation descriptors, we have
built predictive models using only 2D-moleculae descriptors, from here on denoted as XGB-
2D-Descriptor Model. This model also yielded excellent predictions (RMSEs of 0.13 and
1.04 units for the whole data set and the test set, respectively) but with albeit higher RMSE
than those computed by the XGBoost method with the 3D-RISM-KH solvation descriptors.
The calculated partition coefficients and statistical correlation of the XGBoost and the
random forest machine learning models’ computed partition coefficients with experimental
data are provided in Table 3 and Figure 4. The statistical correlations of these machine
learning models for the test set and the whole dataset of 48 compounds are provided
in Table 4. The earlier predictions by Abraham and coworkers [12] and by Nitsche and
coworkers [13] had also reported excellent predictive models with empirical descriptors.

Table 3. Experimental and computed decadiene−water partition coefficients (logK) of 48 solutes.

CID a LogK b XGB c RF d LR e CID a LogK b XGB c RF d LR e

6324 1.85 1.79 0.33 1.73 284 −3.21 −3.21 −2.90 −3.13
264 * −1.41 −1.39 −1.26 −1.04 176 −2.89 −2.88 −2.34 −2.22
1292 −3.15 −3.13 −2.64 −3.29 178 * −3.89 −3.85 −2.45 −2.52
1001 0.62 0.61 0.50 0.54 190 * −5.24 −5.23 −4.97 −3.70
5610 −1.35 −1.36 −1.00 −1.06 243 −0.51 −5.28 −0.79 −0.97

9727 * −1.75 −1.66 0.25 0.09 6847 0.34 0.37 0.25 0.68
68,313 * −0.90 −0.85 −0.64 0.90 7123 0.76 0.73 0.44 1.14

4657 0.65 0.56 0.22 0.11 2201 * 0.81 0.82 0.02 2.96
104,735 * 1.12 1.09 −0.60 0.89 20,039 −4.19 −4.29 −4.72 −4.77

7470 −0.05 −0.07 −0.22 −0.64 13,730 −5.62 −5.66 −6.01 −6.24
74,234 * −0.28 −0.28 −0.44 −1.91 5755 −3.10 −3.10 −3.55 −3.01

308,473 * −0.96 −0.99 −1.33 −1.57 5754 * −2.76 −2.79 −3.40 −1.87
270,871 * −1.77 −1.76 −2.20 −2.25 999 −1.05 −1.00 −0.76 −1.61
76,360 * −3.14 −3.15 −2.67 −2.32 31,374 −2.21 −2.06 −1.61 −0.63
220,005 −3.92 −3.93 −4.00 −4.51 6584 0.07 0.00 −0.61 −1.46

23,273,690 −4.40 −4.37 −4.29 −4.61 15,684,457 * −3.89 −3.84 −2.30 −2.96
97,479 −3.47 −3.56 −3.69 −3.97 12,539,853 * −3.13 −3.16 −2.79 −3.41

129,821,671 −3.70 −3.65 −3.46 −4.46 2,728,789 −2.66 −2.66 −2.98 −3.60
129,821,666 * −4.38 −4.38 −3.75 −5.60 248,474 −0.40 −0.40 −0.36 −1.52
129,821,670 −5.19 −5.19 −4.88 −4.63 222,175 −0.66 −0.65 −0.54 0.70
129,821,665 −6.55 −6.45 −5.74 −5.15 4,048,798 0.36 0.37 −0.08 −0.03
17,851,005 −7.35 −7.35 −6.47 −6.67 90,265 * −1.40 −1.39 −0.93 −0.49
54,472,514 −7.82 −7.63 −7.03 −6.83 1001 0.62 0.61 0.50 0.47

962 −3.92 −3.85 −3.08 −3.44 31,242 0.71 0.69 0.54 0.79
a Pubchem CID of the solutes [48]. Molecules in the test set are marked with an asterisk (*). b Experimental logK.
c logK computed using the XGBoost method. d logKDED/W computed using the random forest method. e logKDED/W
computed using the multiple linear regression model.
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Table 4. Performance metrices of the machine learning model in the quantitative predictions of
logKDED/W.

Statistics XGBoost Random
Forest (RF)

Linear
Regression (LR)

XGB-2D-Descriptor
Model

The Full Dataset

RMSE 0.05 0.68 0.92 0.12
Spearman Correlation 0.99 0.94 0.93 0.99
Pearson Correlation 0.99 0.96 0.92 0.99

R2 0.99 0.90 0.84 0.99

Test Set

RMSE 1.09 1.14 1.23 1.04
Spearman Correlation 0.72 0.73 0.88 0.75
Pearson Correlation 0.80 0.84 0.84 0.82

R2 0.64 0.67 0.54 0.67

4. Conclusions

The 3D-RISM-KH molecular solvation theory was used to first generate suitable
solvent susceptibility functions of liquid 1,9-decadiene. The choice of the force field, viz.
TraPPE, was guided by the nonpolar nature of DED and also by the fact that it offers a
reduction in the number of solvent sites with different atomic parameters, thus helping
in the convergence of the MDIIS solver used for the RISM calculations. The XRISM-KH
computed partial distribution functions showed qualitative agreement with the radial
distributions obtained from the all-atom and united atom MD simulations. There are some
differences observed in the nature of molecular packing in the liquid DED computations
by the RISM and MD methods. The RISM calculations provide a more compact ordering of
the terminal region than what was observed from the MD simulation data. In the absence
of experimental results, it is impossible to comment on these differences. The quantitative
predictions of the DED/Water partition coefficients for 48 solutes were done using the
excess chemical potentials in DED and water solvents as descriptors with a few other 2D
molecular descriptors. Amongst the three different machine learning models, the XGBoost
method provided the best performance, followed by the random forest and multiple linear
regression methods. The benzoic acid system is an outlier in the XGBoost method. This
solvent combination is referred to as a mimic of lecithin/water permeation of molecules,
and hence, it is useful in drug development applications. The 48 solutes used in this study
cover a vast class of chemical functionality including peptide bond analogs, and so a broad
applicability of this quantitative prediction scheme is anticipated. In summary, the present
work serves as a proof of concept of successful application of the 3D-RISM-KH calculated
excess chemical potentials of solutes in the 1,9-decadiene and water solvents as descriptors
in predicting decadiene-water partitioning.
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