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Abstract: The Kashmir Valley is immensely susceptible to soil erosion due to its diverse topography
and unstable geological formations in the Himalayan region. The present study helps in assessing
the spatial distribution and prioritizing soil erosion zones in the Central Kashmir region covering the
Sindh and Dachigam catchments. The study implemented the GIS-based analytic hierarchy process
(AHP) and weighted sum method (WSM) using datasets of precipitation, geological map, soil map,
and satellite imagery and derived eleven factors (topographical derivatives, LULC, soil, drainage,
rainfall, lithology, wetness index and greenness of an area). The ratings and weightage were proven
to be unbiased and reliable based on the observed value of the consistency ratio (CR) (i.e., 0.07). The
study depicts 41% of the total area to be extremely vulnerable to soil erosion. The slope varies from
0–62◦ with mean of 22.12◦, indicating 467.99 km2 (26%) and 281.12 km2 (15%) of the area under
high and very high susceptible zones, respectively. The NDVI and NDWI maps indicate soil erosion
severity covering an area of 40% and 38%, respectively, in highly susceptible zones. High drainage
density and curvature zones were observed in 18.33% and 22.64% of the study area, respectively. The
study will assist in the planning and implementation of conservation measures.

Keywords: analytical hierarchy process; pairwise comparison matrix; soil erosion susceptibility;
weighted sum method

1. Introduction

Soil erosion, a global issue, has a wide range of negative consequences including land
deterioration and fertility loss, aside from noticeable off-site repercussions such as the
accumulation of sediments, the eutrophication of waterways, and increased flooding [1,2].
Out of all the continents of the world, Asia experiences an excessive rate of erosion of
approximately 74-ton acre−1 year−1 [3]. With most of the sediment coming from rivers
(with 80% of the total sediments delivered into the world’s oceans), the Himalayan rivers
are at the foremost, contributing 50% of the overall river sediment flux [4]. The rivers
originating in mountainous regions are particularly susceptible to soil erosion, apart from
arid, semi-humid, and semi-arid areas [5,6]. The mountainous terrain of the Himalayas is
particularly susceptible to severe soil erosion [7] and it alone contributes 25% of the world’s
sediment load to the oceans [8]. Factors such as climatic dryness, poor soil, and vegetation
quality are amongst the many factors causing the deterioration in soil productivity, making
an area vulnerable to land degradation [9].

The annual peak of ephemeral streams and rivers in the Himalayas, along with ade-
quate precipitation, causes the easy detachment of soil, resulting in an extremely dissected
landscape [10]. Environmentalists and water resource planners are increasingly concerned
about the Himalayan ecosystem’s fragility. The Himalayas’ steep slopes, decreased forest
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cover, and strong seismicity have resulted in severe soil loss and consequential increased
sediment load in river basins [11]. The Kashmir Valley, in the Western Himalayan region,
is unique in itself due to the evolution of its surface features. The valley is situated in a
young fold mountain range that still experiences uplifting, resulting in folding, thrusting,
faulting, jointing, fissuring, and shearing [12]. The seismic environment, aside from the
actions of rivers and glaciers throughout geological time, has made the region imperiled by
multiple types of land degradation such as rock falls, rock slides, mud slides, debris fans,
and landslides.

For soil erosion assessment, amongst the several techniques, the universal soil loss
equation (USLE) is widely used by researchers [13]. The modified equation of USLE is the
modified universal soil loss equation (MUSLE) given by Williams [14], followed by the
revised universal soil loss equation (RUSLE) given by Renard [15]. There are various other
types of models that have been derived from time to time with its own set of traits and
application possibilities [16–23] such as the Water Erosion Prediction Project (WEPP) and
Soil and Water Assessment Tool (SWAT), to name a few. These methods were implemented
by various academics across the sphere to assess the soil erosion rate [24–26].

Although erosion models deliver quantifiable information on soil loss from a specified
area, in most instances, the decision-makers and watershed managers are concerned about
the erosion hazard spatially, rather than the quantified details of soil loss [27,28]. To weigh
the soil loss risk, diverse methodologies such as multi-criteria evaluation based on ranking
are employed with the spatial assessment of erosion risk based on various environmental
conditions. The advancement in remote sensing and geographical information system
(GIS) has assisted researchers in exploring the geographical distribution patterns of soil
deterioration, providing a better understanding of erosion-inducing components such as
topography by combining RS, digital terrain modeling (DTM), and GIS [28–30] and in
implementing sustainable land and soil conservation techniques [31]. Furthermore, the
soil loss hazard map points toward the spatial extent and severity of loss, which can be
used in strategic policy decisions [32]. One of the most extensively used method for soil
susceptibility mapping is the analytic hierarchy process (AHP), established by a methodical
decision-making procedure to improve solutions for issues with numerous criteria (e.g., soil
erosion risk assessment with very high efficacy) [33–39]. The method has been commonly
used across the globe to provide a framework for the identification of the highest priority
areas for soil conservation measures and sustainable management [40–43].

The other techniques employed for mapping soil erosion includes frequency ratio
(FR), weights-of-evidence (WoE), logistic regression (LR), and ANN [44]. Researchers have
employed ANN in a GIS environment for soil erosion studies [45,46], but the need for
sufficient data in ANN analyses is seen as a potential limitation [47], and where the test
data include values outside the training data range, weak predictions may occur [48]. In
addition, the fuzzy relations technique has been used to map the susceptibility of soil
erosion in Taebaek city (which belongs to the Samcheok Coalfield), Korea by [49]. However,
the lack of a systematic and effective design is seen as a weakness of the fuzzy operator
method [50].

A variety of statistical and advanced methods such as the evidential belief function
(EBF), WoE, and adaptive neuro-fuzzy inference system have been applied and tested in
the fields of flooding and landslide; however, they have not been attempted in soil erosion
modeling [51]. Over a period of time, there has been much advancement in the field of
modeling through artificial intelligence, but the absence of soil erosion data and other water-
shed information limits the results of soil-erosion modeling. A meagre number of indictors
and a lack of assessment methods are major disadvantages to the use of empirical soil
erosion models. In order to overcome these disadvantages, a new approach that integrates
empirical and artificial intelligence modeling procedures has improved the identification
of soil erosion hot spots, especially in watersheds lacking soil erosion data. More recently,
hybrid/ensemble models have been developed in a combined way via an integration of
individual machine learning (ML) models and statistical approaches. The usefulness of the
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hybrid models that have been discussed in various publications [52,53] lies in their highest
accuracies in comparison to individual models [54,55]. Although these ML techniques have
been employed in the past, they have only been used infrequently for erosion modeling
as the computing costs are higher and needs a high level of handling expertise. Based
on the literature review, the complexity and time required for the analysis are the major
limitations of the current methods. Thus, the simplicity, comparative accuracy, and GIS
compatibility of the statistical methods have been seen to become one of the more frequent
geo-hazard analytical techniques [56]. Moreover, its performance is rapid and the output
accuracy is high [57]. Furthermore, as reported by [49], the statistical method produces a
more precise measure of the success rate than the ANN and probabilistic methods.

The Kashmir Valley is immensely susceptible to soil erosion due to its diverse topog-
raphy with most of its land subjected to various types of soil erosion due to weak and
unstable geological formations [58]. The combined effect of all of these factors makes
the region susceptible to erosion, ultimately depleting the soil fertility, productivity, and
deterioration of water bodies [24]. It is important to thoroughly understand the pattern of
soil erosion susceptibility to developing better erosion management practices, improved
land use policies, and the efficient management of natural resources for the rehabilitation of
the degraded land. As there has not been sufficient research in the study area, we evaluated
various factors in the process of soil erosion in the catchments of the Sindh and Dachigam
watersheds, which is not well-understood and needs attention.

The present study was carried out over the entire catchments of Sind and Dachigam
in Central Kashmir Province using a combination of GIS, remote sensing data, and AHP
models to assess the soil erosion susceptibility. The study attempted to answer some specific
questions such as what is the spatial distribution pattern of the soil erosion severity zones
and what are the prioritized zones of soil erosion risk for the planning and implementation
of conservation measures? This study explains a simple and inexpensive aid tool for
modeling and mapping the areas susceptible to soil erosion, especially for inaccessible
areas where field measurements are rare or even non-existent.

2. Study Area

The Central Kashmir region covering the Sindh and Dachigam catchments lies between
34◦00′56.49′′ N to 34◦27′46.45′′ N latitude and 74◦36′44.98′′ E to 75◦29′56.58′′ E longitude
(Figure 1). It is located at 1585 m amsl, on the banks of the Jhelum River. Srinagar city
lies in the midst of the rock depression of the Valley of Kashmir, about 35 km in breadth
and 160 km in length. The physiographic setting of Srinagar city is characterized by low
lying agricultural fields in the southern and western sides of floodplains of the Jhelum
River. It has steep hills in the east and northeast, the famous Karewas Hills (locally called
as Wudars) in the far southeast, and small hills in the northern area. Similarly, in the east
lies the Basiwan, Zabarwan, and Dachigam Hills along with the famous Dal Lake on the
foothills. The climate in the region is sub-Mediterranean with cold winters (December–
February) and warm summers (June–August). The coldest (January) and warmest (July)
months have the average temperature of 3.5 ◦C and 30 ◦C, respectively. Winter is very cold
and from the last week of December to the first week of March, the temperature is often
subzero. The mean annual precipitation is around 660 mm year−1 and a significant amount
of precipitation occurs in the form of snow. Relative humidity was the maximum in the
month of January (i.e., 85%) and it is minimum in the month of June (about 57%). The area
comes under the Western Himalayan Region: Agro-climatic Zone-I.
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Figure 1. Location map of the Central Kashmir region. 
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Figure 1. Location map of the Central Kashmir region.

3. Materials and Methods

For soil erosion susceptibility modeling, it is vital to prepare and investigate the
impact of different factors that affects the erosion [59]. In the present study, different
types and sources of data were used: satellite data, digital elevation model, geological
data, soil data, and meteorological data. The basic datasets used includes: Shuttle Radar
Topographic Mission (SRTM) Digital Elevation Model (DEM) (30 m resolution), Satellite
imageries from Cartosat 1B (2.5 m resolution), Indian Remote Sensing (IRS) Linear Imaging
Self Scanning (LISS)-III (23.5 m resolution), and Landsat 8 Operational Land Imager (OLI)
(30 m resolution), daily rainfall data of the Indian Meteorological Department (IMD)
from (1980–2017). The SRTM DEM and Landsat 8 OLI satellite imageries were obtained
from the USGS Earth Explorer data portal (https://earthexplorer.usgs.gov/) accessed on
15 November 2020. The Cartosat 1B and IRS-LISS III satellite imageries were procured
from National Remote Sensing Center, ISRO’s EO data hub (https://bhoonidhi.nrsc.gov.in)
accessed on 24 October 2020. The historical rainfall data of Srinagar Station were obtained
from the Indian Meteorological Department Met Center Srinagar (https://mausam.imd.
gov.in/srinagar/) accessed on 19 November 2020. The remote sensing data of Cartosat
1B, IRS-LISS III were used for the preparation of land use/land cover, lithology, and soil
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layers. The SRTM DEM data were used for the derivation of topographical parameters and
drainage of the study area. The Landsat-8 OLI satellite image was used for the generation
of water and vegetation indices and the rainfall data of Srinagar Station was used for
the calculation of the rainfall erosivity factor. Table 1 presents the sources of the datasets
and procedures employed for the generation of various derivatives. For the analysis,
all datasets were projected into a common projection system (i.e., Universal Transverse
Mercator (UTM)) and resampling was conducted using the nearest neighbor technique. The
overall methodology adopted for soil erosion susceptibility modeling is given in Figure 2.
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Figure 2. Flowchart of the methodology adopted.

3.1. Soil Erosion Conditioning Parameters

Based on the understanding, experience of an area, and the evaluation of the data
generated based on a review of the published literature, eleven influencing factors (ele-
vation, slope, aspect, curvature, soil, land use/cover, drainage density, rainfall erosivity,
lithology, NDWI, and NDVI) were selected for analysis in the Sind and Dachigam catch-
ments [34,60–63]. The rationale behind selecting each of the eleven parameters and the
procedures to generate them is discussed below:

Elevation (EL): Elevation is one of the main components that affects the rate of erosion
as a function of its impact on soil moisture and water balance, erosional and depositional
processes, soil organic matter, biomass, and species production of cultivated plants and
natural flora [61]. The elevation layer obtained from SRTM DEM was subjected to the
classification in order to use as the input in the overlay analysis (Figure 3a).
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Slope (SL): The runoff velocity and infiltration rate are dependent on the slope angles.
High runoff velocity in steep sloped areas increases the erosion rates compared to low
angle slopes where the infiltration rate is high. To measure the impact of the gradient on
erosion, a slope map in degrees was generated in ArcGIS using SRTM DEM for the study
area (Figure 3b).

Aspect (AS): The direction of slope can be determined using aspect, a crucial factor in
erosion. For example, north-facing slopes have lower risks of erosion than south-facing
slopes. The slope direction was categorized in nine classes such as flat, north, northeast,
east, southeast, south, west, southwest, and northwest (Figure 3c).

Curvature (CU): The degree to which a curve diverges from its straight path is defined
by curvature, which affects the divergence and convergence toward downward flow with
respect to slope [64]. This layer was derived using SRTM DEM using proximity analysis
(Figure 3d).

Soil (SO): Soil type exhibits susceptibility to soil erosion and is directly regulated by
characteristics such as texture, organic matter content, parent material, porosity, structure,
and infiltration potential [65]. The soil layer was created after executing selective ground
truthing using the soil texture map of the Indian Soil and Land Use Survey created by the
J&K Remote Sensing Center of Srinagar using IRS-LISS III data (Figure 3e).

Land Use/Land Cover (LULC): LULC plays a vital role in many hydrological processes
such as infiltration, runoff velocity, evapotranspiration, and soil erosion [66]. The LULC
map was derived from Cartosat 1B data (2.5 m resolution) using on screen digitization
and selective ground truthing. The validation of LULC using the Cohen’s Kappa index test
indicated 89% accuracy (Figure 3f).

Drainage Density (DD): The drainage network is a significant variable that affects the
erosion in mountainous areas by eroding the sediment deposits, carrying and depositing
them to water bodies [67]. Dense areas mean a large number of streams and therefore
a high probability of soil erosion. The drainage network was delineated from the DEM
(Figure 3g).

Rainfall Erosivity (RE): This is an influential factor defined as the potential of rainfall
to trigger soil loss from hill slopes by the action of water. The characteristics of precipitation
such as volume, magnitude, and seasonal distribution also affects erosion [68]. Due to the
inaccessibility of high-resolution precipitation databases for the area, it was considered as
an extensively challenging task to calculate these parameters. In such situations, numerous
empirical models were employed for the calculation of rainfall from the daily precipitation
data [69]. The relationship developed by [70] and used by [71–73] was used to evaluate the
rainfall erosivity factor (Figure 3h).

Lithology (LI): The lithological condition is an important component controlling
erosional processes. Lithological properties affect the nature of alluvial undulations, slopes,
soil types, raw materials, and sediments. The lithofacies were generated by the J&K Remote
Sensing Center of Srinagar using IRS-LISS III data (Figure 3).

Normalized Difference Water Index (NDWI): This represents the water content of the
vegetation, defined as the ratio of the erosion intensity of water flow, presuming that the
rate of flow is adequate to a specific area [74]. This is often a function of the regional climate
and soil characteristic that controls the water availability [75,76]. The index is calculated by
the ratios of the green and NIR bands of the OLI satellite data (Figure 3).
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Table 1. Data sources and techniques used for the preparation of thematic data layers.

S. No. Parameter Source Procedures Reference

1. EL SRTM DEM 30 × 30 m DEM [77]

2 SL SRTM DEM tan θ N×i
636.6 = no of contour cutting;

i = contour interval
[78]

3 AS SRTM DEM
AS(p, q)

= 1−
√

2
(

b
kδ

)√
1 + q + q2/(1− p + q)

[79]

4 CU SRTM DEM CU = I I dT
ds I I [80]

5 SO SLUSI On screen digitization [81]

6 LULC IRS LISS-IV On screen digitization [82]

7 DD SRTM DEM Proximity analysis [83]

8 RE IMD RE = 79 + 0.363R [71]

9 LI NRIS On screen digitization [84]

10 NDWI LANDSAT NDWI = (Green−NIR)
(Green+NIR)

[85]

11 NDVI LANDSAT NDVI = (NIR−Red)
(NIR+Red)

[86]

Normalized Difference Vegetation Index (NDVI): Vegetation cover is one of the key
aspects and is close to the terrain that controls the risk of soil loss [87]. As it rains over
vegetation, their canopy blocks the rain, which reduces the impact of raindrops and in-
creases infiltration [87]. In general, NDVI is inversely proportional to soil erosion. For
example, when forests exceed 20–35% of the area, wind erosion is significantly reduced [88].
The NDVI was derived by using red and NIR bands of the Landsat 8 OLI satellite data
(Figure 3).

3.2. Determination of Weights by the AHP Procedure

The analytic hierarchy process (AHP), also known as the Saaty method, is a semi-
quantitative, multipurpose, multi-criteria technique commonly employed in modeling the
risk of soil erosion [34,37,39,78]. AHP is applied for decision-making, in which problems
are split into several parameters, arranged in a hierarchical structure followed by evaluation
of the relative significance of each pair of element, and the final integration of results [89].
There are five or more classes at each theme level, signifying that the relationships between
these related classes are too intricate. Therefore, the relationships between the 11 subject
levels were derived with the help of AHP through widespread applicability in decision-
making, vulnerability analysis, and planning [90]. The method for deriving different subject
layer weights using AHP involves the following steps:

(a) Development of the spatial database;
(b) Establishment of evaluation criteria and hierarchical structure for multi-criteria ques-

tions;
(c) Use the AHP method to compute the weight of the relative importance of the criteria;
(d) Finally, the weighted sum method (WSM) is employed to estimate the severity of soil

erosion.

Databases for multiple theme layers were generated in the ArcGIS environment.
The 11 parameters mentioned in Section 3.3 were chosen as the evaluation criteria and
prioritized based on the literature research, knowledge, and collective opinion of experts.
The combined judgement helped to rank the parameters by the most important criterion,
which may trigger soil loss. To generate a paired comparison matrix (PCM), the relative
importance of values was decided based on Saaty’s scale of 1 to 9 where 1 and 9 denote equal
importance between the two factors and extreme importance of one factor in comparison
to the other, respectively [91] (Table 2).
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Table 2. Continuous rating scale for a pairwise comparison of Saaty’s method [91].

Intensity of Importance Definition

1 Equal Importance

3 Moderate Importance

5 Strong Importance

7 Very Strong Importance

9 Extreme Importance

After creating a pairwise comparison matrix using the preference values, the matrix
was analyzed to find the performance ratings of each of these criteria in achieving the
related weights, and the consistency property of the matrix was then verified to ensure the
consistency of judgements in the PCM. The AHP apprehends the information of ambiguity
in judgements by means of the principal eigen value and the consistency index [92]. Saaty
provided a measure of consistency, termed the consistency index (CI), which is the deviation
or degree of consistency derived by Equation (1), given below as.

CI =
(λmax − n)

n− 1
(1)

where λmax is the highest eigenvalue of PCM and n is the number of classes. Consistency
ratio (CR) is the degree of consistency of PCM, as shown by Equation (2).

CR =
CI
RI

(2)

where RI is the ratio index. If CR ≤ 0.1, the inconsistency is acceptable. If CR > 10%,
subjective judgment needs to be revised.

3.3. Weighted Sum Method (WSM)

For the implementation of WSM, all selected factors were reclassified in five priority
classes as very low, low, medium, high, and very high (Table 3). The class range was
derived from each raster layer after reclassification. The natural break classification was
used in ArcGIS to optimize the arrangement of a set of values into “natural” classes. Five
priority classes were used based on the available literature [73,93–98]. Within each layer, a
rating from very low (1) to very high (5) was assigned to the classes in increasing order of
their qualitative importance for erosion [99]. The rankings were assigned to each parameter
and their respective classes were dependent upon the functional relationship with soil
erosion severity. Higher scale values were assigned to cells that are very highly prone to soil
erosion, and lower values were given to cells that are less prone to erosion. Finally, the soil
erosion severity was determined on a pixel basis using a WSM. In the WSM, each parameter
under consideration was multiplied with its respective weight and the summation of all
the layers resulted in a soil severity index.

SES = ELw × ELwj + SLw × SLwj + ASw × ASwj + CUw × CUwj + SOw × SOwj + LULCw
×LULCwj + DDw × DDwj + REw × REwj + LIw × LIwj + NDWIw

×NDWIwj + NDVIw × NDVIwj

(3)

where SES shows the areas of soil erosion severity. EL, SL, AS, CU, SO, LU, DD, RE, LI,
NDWI, and NDVI represent the layers of elevation, slope, aspect, curvature, soil, LULC,
drainage density, rainfall erosivity, lithology, NDVI, and NDWI. The weight of a layer and
of a particular parameter is represented by w and wj.
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Table 3. Scale value assigned to different thematic layers as per the soil erosion severity.

S. No. Thematic Layers Classes Scale Value Soil Severity

1 EL (m)

1571–2001 1 Very Low

2001–2659 2 Low

2659–3298 3 Medium

3298–3906 4 High

3906–5189 5 Very High

2 SL (degrees)

0–8 1 Very Low

8–20 2 Low

20–30 3 Medium

30–38 4 High

38–62 5 Very High

3 AS

−1–68 1 Very Low

68–143 2 Low

143–217 3 Medium

217–289 4 High

289–359 5 Very High

4 CU

−5.26–0.98 1 Very Low

−0.98–0.30 2 Low

−0.30–0.25 3 Medium

0.25–0.98 4 High

0.98–6.35 5 Very High

5 SO

Coarse Loamy 1 Very Low

Fine Loamy/Clayey
Skeletal 2 Low

Loamy Skeletal/Loamy 3 Medium

6 LULC

Snow/Glacial area 1 Very Low

Waterbodies 1 Very Low

Built-up 2 Low

Forest 2 Low

Agricultural land 3 Medium

Grassland/Grazing Land 4 High

Wasteland 5 Very High

7 DD

0–0.28 1 Very Low

0.28–0.56 2 Low

0.56–0.86 3 Medium

0.86–1.29 4 High

1.29–2.27 5 Very High

8 RE

337.12–375.18 1 Very Low

375.18–406.80 2 Low

406.80–435.19 3 Medium

435.19–464.86 4 High

464.86–501.64 5 Very High
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Table 3. Cont.

S. No. Thematic Layers Classes Scale Value Soil Severity

9 LI

Waterbody Mask 1 Very Low

Massive Granite Plutonic
Rocks/Amygdaloidal basalt 2 Low

Phyllites Schists
Slates/Quartzite Shale

Phyllite Beds
3 Medium

Sandstone and Conglomerate/
Sandstone/Claystone/Siltstone 4 High

Sand/Silt with Clay 5 Very High

10 NDWI

−0.98–0.24 1 Very Low

−0.24–0.19 2 Low

−0.19–0.13 3 Medium

−0.13–0.07 4 High

−0.07–0.16 5 Very High

11 NDVI

−0.10–0.06 5 Very High

0.06–0.12 4 High

0.12–0.18 3 Medium

0.18–0.24 2 Low

0.24–1.0 1 Very Low

4. Results and Discussion

As stated in the Methods section, the PCM was used to compute the criteria weights
for each parameter using the AHP methodology. The rankings were decided on the basis
of local knowledge of the area under consideration and the literature [37,73,93,95–98]. The
ratings and weightage used in this study were proven to be unbiased and reliable based
on the observed value of CR = 0.07 in PCM (Table 4), which was in uniformity with the
results obtained by [100]. Jaiswal et al. [101] obtained a consistency ratio of 0.093 or 9.3%
and concluded that in the case of CR being less than 10%, inconsistency in the decision
was acceptable and the weights obtained could be used for priority assessment. The soil
erosion severity calculated on the pixel basis was the result of Equation (4), as given below.

SES = ELw × 0.243 + SLw × 0.179 + ASw × 0.143 + CUw
×0.112 + SOw × 0.089 + LULCw × 0.068 + DDw × 0.053 + REw × 0.039 + LIw

×0.030 + NDWIw × 0.024 + NDVIw × 0.018
(4)

Table 4. Pairwise comparison matrix.

EL SL AS CU SO LULC DD RE LI NDWI NDVI

EL 1 1 3 3 7 5 5 7 7 9 5

SL 1 1 3 2 3 4 5 5 4 3 3

AS 0.33 1 1 3 2 3 4 5 5 4 3

CU 0.33 0.33 1 1 3 2 3 4 5 5 4

SO 0.14 0.33 0.33 1 1 3 2 3 4 5 5

LULC 0.2 0.14 0.33 0.33 1 1 3 2 3 4 5
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Table 4. Cont.

EL SL AS CU SO LULC DD RE LI NDWI NDVI

DD 0.2 0.2 0.14 0.33 0.33 1 1 3 2 3 4

RE 0.14 0.2 0.2 0.14 0.33 0.33 1 1 3 2 3

LI 0.14 0.14 0.2 0.2 0.14 0.33 0.33 1 1 3 2

NDWI 0.11 0.14 0.14 0.2 0.2 0.14 0.33 0.33 1 1 3

NDVI 0.2 0.11 0.14 0.14 0.2 0.2 0.14 0.33 0.33 1 1

Sum 3.79 4.59 9.48 11.34 18.2 20 24.8 31.66 35.33 40 38

CR 0.07

4.1. Soil Erosion Susceptibility Classes

The final map of soil erosion susceptibility for Central Kashmir prepared using the
GIS-based approach is given in Figure 4. Based on the severity of soil erosion, the derived
layer was classified into five classes based on natural break classification as very low, low,
medium, high, and very high (Table 5). It was observed that 15% (275.14 km2) and 19%
(345.85 km2) of the area came under very low to low levels of erosion severity, located at
relatively lower elevations (1571–2659 m), mostly including valley floors where the majority
of the land use is agriculture and built-up. In addition, the low values can be associated
with the soil texture, which is predominantly fine loamy to loam at lower elevations because
the susceptibility of soil to erosion agents is closely related to the soil physical, chemical,
and biological properties [102,103]. The particle size directly influences erosion in many
ways [104–108]. In essence, sand, sandy loam, and loamy soils are less erodible than silt,
very fine sand, and certain clayey soils [109]. The medium susceptible class covered an
area of 25% (465.08 km2), mostly associated with the forest cover. The forest provides
good protection against surface runoff and soil erosion losses [110], despite the fact that it
comes under the moderate category due to the fact that the majority of forest area is under
steep slopes and at higher elevations compared to the agriculture and built-up area, which
are under relatively less steep slopes and at lower elevations. This may be the reason for
the comparatively high soil erosion severity by forest land use compared to other land
uses. Overall, 41% (741.65 km2) of the region was highly susceptible to erosion comprising
high and very high susceptible zones. These regions are situated at very high elevation
(3298–5189 m), mostly comprising the wasteland category. The occurrence of steep slopes
and the presence of more erodible soil particles confers higher soil loss susceptibility.
The undulating topography with steeper slopes accompanied with heavy rainfall in the
Himalayan region is predisposed to natural hazards including soil erosion [111].

Table 5. Classes according to susceptibility to erosion.

Very Low Low Medium High Very High

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

275.14 15% 347.85 19% 465.08 25% 491.40 27% 250.25 14%

4.2. Soil Erosion Influencing Parameters

The quantitative and qualitative results of the vulnerability of soil erosion obtained
through zonal statistics are presented in Tables 6 and 7.
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Table 6. Percentage distribution of elevation, slope, aspect, curvature, and rainfall.

Soil Erosion
Susceptibility Class

Area Coverage (km2) and Percentage (%)

EL SL AS CU DD RE

km2 % km2 % km2 % km2 % km2 % km2 %

Very Low 499.44 27% 412.74 23% 339.82 19% 96.26 5% 502.41 27% 266.51 15%

Low 309.87 17% 271.50 15% 376.93 21% 364.26 20% 534.17 29% 382.06 21%

Medium 348.78 19% 396.37 22% 392.58 21% 969.68 53% 457.93 25% 544.87 30%

High 403.87 22% 467.99 26% 381.03 21% 314.65 17% 278.50 15% 299.76 16%

Very High 267.76 15% 281.12 15% 339.35 19% 84.87 5% 56.71 3% 336.51 18%

Total Area 1829.72

Table 7. Percentage distribution of LULC, lithology, NDVI, NDWI, and soil.

Soil Erosion
Susceptibility Class

Area Coverage (km2) and Percentage (%)

LULC LI NDVI NDWI SO

km2 % km2 % km2 % km2 % km2 %

Very Low 220.42 12% 15.57 1% 157.44 9% 160.03 9% 510.10 28%

Low 525.61 29% 181.17 10% 407.74 22% 441.33 24% 742.33 41%

Medium 286.08 16% 558.13 31% 531.08 29% 521.09 28% 577.29 32%

High 30.73 2% 488.30 27% 441.58 24% 427.22 23% - -

Very High 766.87 42% 586.54 32% 291.87 16% 280.04 15% - -

Total Area 1829.72

Elevation is a substantial factor that affects the soil erosion in mountainous regions [34].
Elevation influences the distribution of plant growth, physiography, and morphology [112].
The elevation ranges from 1571 to 5189 m with a mean of 2842.94 m. Out of the total
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study area, 27.53% is under an elevation range of 1571–2001 m. The elevation ranges of
3298–3906 m and 3906–5189 m covered 21% and 15% of the study area, respectively. The
soil erosion severity associated with elevation showed that 37% of the area fell under the
high to very high-risk zones comprising 403.87 km2 and 267.76 km2, respectively. The
higher elevation zones contributed more to soil erosion [61] while the very low (499.44 km2)
to low (309.87 km2) zones comprised 44% (499.44 km2), and the medium zone covered 19%
(348.78 km2).

Slope gradient is the foremost factor that can lead to soil loss subjected to the degree
of steepness [113]. The slope varies from 0–62◦ with a maximum area of 25.84% under a
slope range of 30–38◦, followed by 21.96% under 20–30◦. The mean slope observed was
22.12◦ with a standard deviation of 13.94◦. The distribution of the slope gradient indicates
that 467.99 km2 (26%) of the area was highly susceptible; 281.12 km2 (15%) was very highly
susceptible; medium was 396.37 km2 (22%), and very low (412.74 km2 to low 271.50 km2)
was 38%. The higher slope values may be attributed to the abrupt slope variations near
the drainage channels and the highly dissected topography. The higher slope in the region
corresponds to the high mountain–deep valley type of geomorphology. Areas exhibiting
higher slope values are highly vulnerable to soil erosion due to the impact on runoff velocity
and associated material removal. The greater accumulation of runoff on longer slopes of
the terrain increases its detachment and transport capacities [70]. In general, the steeper the
slope of the land, the greater the amount of soil loss by water will be. Soil erosion by water
accelerates as the slope length increases due to a greater accumulation of runoff. Often, the
consolidation of small fields by removing the field boundaries into a larger one results in
longer slope lengths that will increase the erosion potential due to the increased velocity of
water [114].

Aspect plays a critical role in influencing the vegetation pattern, and hence ero-
sion [115]. Aspect is another essential factor in soil erosion estimation as it also influences
the period of sunlight, type of greenness, wetness, and water loss [116]. Moreover, the
slope aspect can interact with other environmental variables (e.g., slope position) to jointly
influence the vegetation structure [117,118]. The percentage of aspect distribution that
was highly susceptible covered an area of 720.38 km2 (40%), confined to the aspect range
of 217–359, which covered 39.40% of the study area. The zones that were the least and
medium susceptible covered an area of 716.75 km2 and 392.58 km2, respectively.

The stream density and watershed morphology are robustly influenced by the curva-
ture of the hill slope. The vulnerability of the landform components to erosion varies de-
pending on the gradient of the hill slope, Planform curvature, and profile curvature [61,65].
The distribution of the curvature layer indicates that the maximum of the area was occupied
in the medium zone (i.e., 969.68 km2 (53%)), followed by low (364.26 km2 (20%)), and high
zones (314.65 km2 (17%)). The medium curvature zone covered 54.35% of the study area,
followed by a low zone of 23.01%. Only 17.75% and 4.89% of the study area were under
high curvature zones.

Drainage density, like other parameters, is an index of soil erosion [39]. Explicitly,
drainage densities greater than the threshold of 0.9 km/km2 have been found to be linked
to high risks of soil loss [10]. The susceptibility zonation showed that 502.41 km2 (27%)
and 534.17 km2 (29%) of the area came under very low to low zones followed by the
medium class 457.93 km2 (25%), high 278.50 km2 (15%), and very high 56.71 km2 (3%).
This is due to the fact that the majority of the area is under low drainage density zones
(0–0.56) comprising 56.58% of the study area. The range from 0.56 to 0.86 comprised 25.09%
of the study area. Only 18.33% of the area is under high drainage density. The area with a
greater density signifies a greater number of streams, and thereby a higher possible rate
of soil erosion. The drainage network influences the soil erosion process by eroding and
transporting the sediments through streams, and is an important variable influencing soil
erosion processes in mountainous regions [67].

Rainfall is an imperative factor that leads to soil loss due to the influence of raindrop
and its capacity to take away the soil masses downslope [10]. The increase in rainfall
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amount has a significant impact on soil erosion depending on the type, duration, and
extremeness in a particular season or year [119]. The rainfall erosivity index was extracted
using the technique given in Table 1. The rainfall erosivity in the study area ranges
from 337.18–501.64 MJ/mm/ha/h/yr with a mean and standard deviation of 421.39 and
40.19 MJ/mm/ha/h/yr, respectively. The rainfall erosivity distribution showed that 30%
(544.87 km2) of the area was under the medium zone, followed by the very low 21%
(382.06 km2), and very high 18% (336.51 km2). The rainfall erosivity values increased
from the alluvial plain region with the lowest elevation in the south/southwest part of the
study area toward the hilly areas in the northeast direction. George et al. [120] worked in
Uttarakhand State and reported a similar type of variation in the rainfall erosivity factor
with an increase in the alluvial/tarai plain region with the lowest elevation toward the
Shivalik Hills region.

The hydrological and geomorphic behavior of any landscape is affected by the type
of LULC [121]. The extent to which the soil can be eroded is controlled by the proportion
of vegetation cover existing in an area [113]. Less vegetation cover exposes the soil to
erosion through the impact of precipitation and surface runoff [122]. The different land
cover classes have different rates of soil moisture, infiltration, evapo-transpiration, and
interception process [123]. The percent distribution of LULC and sensitivity to erosion
classes in the Central Kashmir region is presented in Table 7. The results indicated that
797.6 km2 (44%) of the land use was highly susceptible; 286.08 km2 (16%) was moderately
sensitive, and 746.03 km2 (41%) was the least sensitive to erosion. The higher percentage
of susceptibility to erosion was due to less plant cover in the study area, because a major
portion of the catchment was under the wasteland category, covering 40.60% of the total
study area. The moderately sensitive zone came under forest cover, covering 24.50% of
the study area followed by agricultural land (i.e., 16%) because forest areas are generally
known for their ability to control soil erosion [124]. The rates of erosion are effectively
slowed down by means of a higher percentage of plant cover and large amounts of root
biomass [125]. The tree canopies and the foliage of smaller plants intercept the rain water
and thus also help in preventing erosion [126].

Lithology demonstrates the overall physical properties of rocks, comprising primarily
igneous, sedimentary, and metamorphic rocks, which have a specific behavior to soil
erosion [34]. From the lithological map, it can be perceived that the majority of the area is
under sand/silt with clay comprising 32.91% of total study area, followed by sandstone
and conglomerate/sandstone/claystone/siltstone with an area of 25.63%, and 29.09% of
the area is under phyllites schists slates/quartzite shale phyllite beds. The classification of
the lithology showed that only 196.74 km2 (11%) of the region was least sensitive to soil
erosion. The maximum of the area was either moderately sensitive 558.13 km2 (31%), high
488.30 km2 (27%), and very highly 586.54 km2 (32%) sensitive to erosion.

NDVI exhibits greenness and vegetation health [127]. The mean NDVI values obtained
were 0.14 with a standard deviation of 0.07. Good vegetation cover such as dense forested
areas with positive NDVI values diminishes the possibility of erosion while barren areas
with near zero NDVI values have a greater susceptibility to erosion. On the other hand,
NDWI estimates the rate of erosion based on the wetness of soil along with its depth [34].
Areas with higher values of NDWI greatly influence the erosional processes [128]. The
mean and standard deviation of NDWI obtained were −0.15 and 0.07, respectively. The
reclassified maps of NDVI and NDWI indicated an overall similar distribution in terms of soil
erosion severity covering an area of 733.45 km2 (40%) and 707.26 km2 (38%), respectively,
in highly susceptible zones.

The type of soil impacts the erodibility, and can therefore be used in estimating the
erosion susceptibility. The soil texture affects the water’s capacity to enter the soil and the
infiltration rate. The results showed that 510.10 km2 (28%) of the area was under very low
severity, 742.33 km2 (41%) under low, and 577.29 km2 (32%) under medium severity. This
was due to the major portion of study area being under the loam category of soil texture.
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5. Conclusions

The analysis incorporated the GIS-based AHP to determine the distribution of critical
areas with susceptibility to soil erosion in the Central Kashmir region. The AHP technique
reduces bias in decision-making and provides an effective means to deal with multiple
criteria and complex decisions. This framework is based on the effects of 11 different
parameters developed from satellite images, geological, soil, and precipitation data. Five
classes of severity were allocated based on the weighted sum analysis as very low–low (15%
to 19%), medium (25%), and high–very high (27% to 14%). It was observed that almost
all parameters selected in this study affected soil erosion in mountainous areas. However,
the main effects can be seen from the topographical parameters in addition to LULC and
lithology, followed by vegetation, moisture, precipitation, and soil types. From the analysis,
it was perceived that the LULC and lithology covered 42% and 32% of the total area under
the very high category of soil erosion susceptibility. The other conditioning parameters
that covered the majority of the area under the very high soil erosion susceptibility class
were aspect (19%), rainfall erosivity (18%), elevation, and slope (15%). The NDVI and NDWI
also covered 16% and 15%, respectively, of the total area under consideration. Although
the type of LULC and lithology underneath effects the soil erosion, at the same time, the
aspect also contributes to soil erosion to a very large extent in mountainous terrain as the
aspect controls the temperature, moisture, water supply, vegetation, and soil development.
The main reason that triggers soil loss in the study area is due to the dearth of knowledge
about agricultural practices on steep and high-altitude slopes. Aspect, drainage density,
and curvature combined with lithology have a substantial effect on vulnerability to soil
loss. The regions in the study area with high precipitation and wetness index are extremely
erosive, aside from regions with barren land.

The results of the applied methodology have proven to be a very effective and timely
method to qualitatively determine the suppressibility nature of erosion over a relatively
large area. In this way, planners and policymakers can adopt this methodology for proper
conservation measures. The present study contributes significantly to providing a useful
prediction for decision-makers and the authorities in adopting appropriate approaches
to minimize the potential damages that may occur due to soil erosion in the Sindh and
Dachigam catchments. To minimize the degree of soil loss, the prerequisite is to examine the
existing scientific management practices and develop appropriate conservative measures at
the catchment level. The conservation strategies recommended include afforestation, tree
plantation in urban areas, controlling excessive overgrazing, contour farming, developing
a water conservation system, flood and erosion control systems, design of runoff water
catchment systems, etc. While considering the control measures, one needs to consider
the aspect factor as the slope orientation acts as a macro factor or integrating factor for the
overall process of erosion. The conservation measures such as no-till (NT) practice can
be carried out on agricultural land in which sowing is performed directly to stubble after
preceding harvest without ploughing or other tillage practices typical for conventional
tillage (CT), thus minimizing soil disturbance. Compared to conventional tillage, NT
practice reduces the farm workload and has beneficial environmental impacts such as the
effective reduction of erosion risk due to improved soil structure and continuous plant cover.
Aside from helping to curtail soil loss, the procedures mentioned will also promote soil
health and crop productivity, ultimately improving the livelihoods of people in the region.

Due to the uncertainties inherent in the conditioning factors, certain unreliability will
always persist in soil erosion susceptibility assessments. The subjectivity of evaluation by
experts may also have some limitations. Therefore, the fuzzy approach or machine learning
algorithms can be considered in the future in addition to other significant conditioning
factors such as spatiotemporal change of rainfall distribution and frequency under the
climate change scenario.
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