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Abstract: The use of remote sensing to determine land-use and land-cover (LULC) dynamics is often
applied to assess the levels of natural forest conservation and monitor deforestation worldwide. This
study examines the loss of native vegetation in the Campo Maior Complex (CMC), in the Brazilian
Caatinga dry tropical forest, from 2016 to 2020, considering the temporal distribution of rainfall and
discussing the trends and impacts of forest-degradation vectors. The Google Earth Engine (GEE)
platform is used to obtain the rainfall data from the CHIRPS collection and to create the LULC maps.
The random forest classifier is used and applied to the Landsat 8 collection. The QGIS open software
and its SPC plugin are used to visualize the LULC dynamics. The results show that the months
from June to October have the lowest average rainfall, and that 2019 is the year with the highest
number of consecutive rainy days below 5 mm. The LULC maps show that deforestation was higher
in 2018, representing 20.19%. In 2020, the proportion of deforestation was the lowest (11.95%), while
regeneration was the highest (20.33%). Thus, the characterization of the rainfall regime is essential
for more accurate results in LULC maps across the seasonally dry tropical forests (SDTF).
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1. Introduction

The sixth assessment report (AR6) released by the Intergovernmental Panel on Climate
Change (IPCC) states that the impacts of human action on climate change are real and
irreversible. They will worsen if nothing is done to mitigate these impacts [1]. According
to AR6, currently, between a quarter and a third of the land’s net primary-production
potential is used for producing food, animal feed, fiber, wood, and energy, demonstrating
that ecosystem services are based on what biomes offer.

Similarly, the Sustainable Development Goals (SDGs) have achieved broad recognition
by claiming that stewardship of terrestrial ecosystems, particularly forests and their rich
biodiversity, is essential for maintaining life on Earth [2]. One of the targets of SDG 15—
Life on Land—determines the conservation, restoration, and sustainable use of terrestrial
ecosystems and their services, in particular forests and drylands [3].

Caatinga is an ecologically rich and seasonally dry tropical forest (SDTF) located in
the semiarid region of Brazil. The Brazilian Caatinga has well-defined environmental and
social importance, as the local population has developed solid cultural traditions. The
economy is based on livestock and family farming [4,5] which are directly interconnected
with the ecosystem services offered by this domain.

This region has approximately 4479 vegetable species and significant endemic species.
It is located across ten Brazilian federal states. However, biological and genetic heritage are
not often discussed in the literature [6,7]. Therefore, studies on the conservation of such a
strategic biome are essential.
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Caatinga forest is at risk, due to five centuries of natural-resources exploration and
future trends of a drier climate in the biome [8,9]. The complexity of this biome, composed
of different physiognomies, the unplanned use of natural resources, the irregular rainfall
distribution with high interannual variability and very long dry periods, makes the region
susceptible to desertification [6,10]. The absence of preservation policies, scientific gaps,
and a proportionally low area under protection as conservation units compared to other
biomes in Brazil, puts this entire region under pressure [7,11,12].

There are many factors of environmental degradation in the Brazilian unique seasonally-
dry-tropical-forest, the Caatinga, including deforestation, firewood extraction, mining,
pasture, monoculture, and urban growth [13]. Thus, the continuous monitoring of land-
use and land-cover (LULC) changes in this large area, through remote sensing by cloud
computing, is the appropriate tool to detect deforestation and biodiversity loss across
the region.

Recently published articles studied the spatial and temporal dynamics of land-use
and land-cover change in other domains of Brazil [14–16]. However, there is still a lack
of knowledge in mapping native vegetation with the complexity and seasonality of the
Caatinga domain. The Google Earth Engine (GEE) platform currently appears as a tool
for new studies, intended to produce large-scale assessments of LULC changes in Brazil
and worldwide, especially in tropical forests such as the Amazon. However, similar
efforts are less frequent for the Caatinga domain. Most recent studies use Landsat time
series, since moderate-spatial-resolution data (30 m) are the most suitable for regional
analyses [10,17,18].

Semi-arid environments are mainly characterized by alternating rainy and dry seasons
(seasonality), with rainfall concentrated in a few months of the year. These uncertainties
in the timing and the quality of rainy and dry seasons pose significant threats to the
conservation of the native forest and its biodiversity [9]. Rainfall is one of the most
important drivers of ecosystem dynamics and productivity, and the rainfall anomaly also
represents a challenge for monitoring LULC changes. Thus, the characterization of the
rainfall regime within semi-arid environments is essential for studies that seek to map
LULC changes. since the variation of the start- and end-dates of the rainy season is critical to
the total amount of rainfall during the season and for the vegetation productivity [9,19,20].

From a societal viewpoint, the dates of the onset and end of the rainy season, as well
as the amount of accumulated seasonal rainfall, are essential for agriculture, for example.
On the other hand, the meteorological data is related to the beginning and end of the rainy
season, representing sudden changes in the heat source of the tropical atmosphere. Its rate
determines the magnitude of this source. In a recent study, the authors used remote-sensing
products interpolated with physical stations to generate the daily precipitation of regions
from the CHIRPS satellite, which has data collection available on the GEE platform [21].

In this study, we aim to monitor the native vegetation of the Campo Maior Complex
(CMC) in the semi-arid region of Brazil from 2016 to 2020, considering the interannual
variability of the rainy and dry seasons and discussing the trends and impacts of forest-
degradation vectors. We used Landsat and CHIRPS satellite data recuperated and processed
io the Google Earth Engine platform.

2. Materials and Methods
2.1. Study Area

The Brazilian Caatinga is located in the northeast of the country, occupying an area of
844,453 km2, representing 11% of the country’s territory, and covering in whole or in part
the states of Bahia, Sergipe, Alagoas, Pernambuco, Paraíba, Rio Grande do Norte, Ceará,
Maranhão, Minas Gerais, and Piauí [13].

The Campo Maior Complex, with 41,420 km2, is located almost entirely in Piauí state
(76 municipalities), with a small part in Maranhão state (5 municipalities). More precisely,
the CMC is in the northwest of Caatinga, with a population of 2,119,688 inhabitants, with
74% of these inhabitants residing in urban areas. These conservation units (CUs) are located
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within the CMC: Sete Cidades National Park, Recanto da Serra Negra Natural Reserve,
and Serra Ibiapaba Environmental Preservation Area [22–24]. The perennial rivers named
Longá, Poti, and Parnaíba are present in the area. The CMC is an ecotone between the
savanna-like Cerrado and Caatinga.

The CMC is located in a semi-arid environment, characterized by long dry periods and
irregular rainfall, concentrated in a short rainy season, with an average annual precipitation
of 1300 mm. The climate in the region is similar to the one in almost all the territory of the
Brazilian Caatinga. Thus, the studies and analyses of the interannual variability of rainfall
are essential for this region, due to the water stress and the unstable conditions of foliar
maintenance of the vegetation [25].

According to Velloso, Sampaio and Pareyn [22], herbaceous vegetation is predominant
in the CMC, highlighting the fact that the physiognomy is similar to the African savannah.
In the floodplains, it is possible to detect the presence of carnaubas (native palms). Non-
flooded regions are characterized by the presence of shrubby-tree vegetation composed of
some Cerrado elements [25]. Figure 1 presents the location of the study area.

Figure 1. Location of the study area—Campo Maior Complex—among the Brazilian states and the
Conservation Units. Source: Authors, 2022.

2.2. Long-Term Rainy- and Dry-Season Characterization

The Climate Hazards Group Infrared Precipitation with Station (CHIRPS) data are
available on the Google Earth Engine platform, with over 30 years of data at 0.05◦ spatial
resolution. These data are obtained through remote-sensing estimates and terrestrial
meteorological stations, and issued to create, analyze, and detect trends in the time series
of the rainfall and drought regimes [21]. We used this database to characterize the CMC’s
long-term rainy and dry seasons from the 1981 to 2020 period. This 39-year-long period
exceeds the time period used in climatology to define normals (30 years) [9].
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CHIRPS data were downloaded to identify the most significant period of consecutive
days with a daily mean of rainfall below 5 mm [26]. Obtaining and filtering the rainy data
was essential for this study, because the vegetation in the region is sensitive to changes
due to rainfall. This procedure allowed a better interpretation of the targets to be collected
as samples for the land-use and land-cover classification method. Figure 2 presents the
flowchart of the procedure workflow.

Figure 2. Flowchart of the applied procedure-workflow. Source: Authors, 2022.

MS Excel was used to determine the date period from logical functions (IF with AND),
which was inserted as ‘.filterDate’ in the GEE platform for the LULC mapping period
(2016–2020). This filtering represented the most extended period with an average daily
precipitation of less than 5 mm/day for each year. In addition, MS Excel made the charts
and tables used in this study.

2.3. Land-Use and Land-Cover (LULC)

We processed Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)
Landsat-8 (L8) data from 2016 to 2020 (five years), accessed via the Google Earth Engine
(GEE) platform (https://earthengine.google.com accessed on 1 October 2022). We used
Collection 2, Level 2, which contains surface reflectance (SR) and land surface temperature

https://earthengine.google.com
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(LST) derived from data produced by Landsat 8 OLI/TIRS sensors [17]. We used multi-
spectral bands at 30 m spatial resolution, and with five visible and near-infrared (VNIR)
bands, plus two short-wave infrared (SWIR) bands.

Additional input variables were included in the procedure workflow. We added values
from the Normalized Difference Water Index (NDWI), Enhanced Vegetation Index (EVI),
Modified Normalized Difference Water Index (MNDWI), Soil Adjusted Vegetation Index
(SAVI), and Normalized Bare Soil Index (NBDI) from Landsat-8, and the slope value from
the Shuttle Radar Topography Mission (SRTM) [27]. Afterward, a date reducer was applied
in accordance with the beginning and end of the most extended period of consecutive days
with daily mean precipitation less than 5 mm, obtained from CHIRPS.

For the classification processing, we selected the optimal parameters for the random
forest (RF) algorithm from the literature. We tested and established the optimal parameters
for the random forest (RF) algorithm, expecting to obtain the highest overall classification-
accuracy possible. Several studies have used the number of trees as a parameter to select
satisfactory results. Moreover, the literature shows that a large number of trees will provide
a stable result for the classification results [28], so we used 700 trees. As a second parameter
for RF, we used the number of variables in each split equal to the square root of the number
of total variables [27,29,30].

The classification accuracy-assessment used the most popular metrics in the literature,
overall accuracy (OA) and the kappa coefficient (KC). Training data were collected through
visual interpretation, the most common method for determining thematic classes. We
selected training samples from locations that did not change over time. To evaluate the
effect of the training sample-sizes, we randomly split the total sampling-points into 80%
for training data and 20% for validation data.

For 2018 and 2019, cloud cover was less than 15% and 40%, respectively. For the
other years, the parameter was less than 10%. This difference is a consequence of the
lack of better-quality data for full coverage of the CMC area. We considered the same
subset of thematic land-use and land-cover (LULC) classes over time: Forest Formation;
Savanna Formation; Forest Plantation; Wetlands; Grassland; Pasture; Sugar Cane; Mosaic
Agriculture and Pasture; Urban Area; Other non-Vegetated Areas; River, Lake, and Ocean;
and Soybean [14].

The QGIS software was used to create the layout of the resulting maps. Its SPC plugin
was used to process and quantify the LULC changes, the processing for detecting thematic-
class changes among two images classified at different times, considering the base year of
2016. The product generated from LULC changes was organized into classes: Non-Natural
Formation; Floodable Area; Deforestation; Regeneration; and Vegetation.

The Non-Natural Formation class indicates the permanence in some non-natural
formation classes. The Floodable Area thematic type shows the differences between natural
and non-natural classes for river, lake, and ocean. The Deforestation class indicates the
changes of pixels from the natural vegetation (forest and savanna) formation to non-
natural types. The Regeneration class suggests changes in pixels from a non-natural
class to a natural-formation class. The Vegetation class indicates the permanence of the
natural formation.

3. Results
3.1. The Rainfall Regime

On the GEE platform, using the CHIRPS time-series data, a code was created to
characterize the annual-averaged precipitation from 1981 to 2020, the historical monthly-
averaged precipitation from 1981 to 2020; and the daily averaged-precipitation from 2016
to 2020 for the CMC area (GEE script available at: https://code.earthengine.google.com/
?scriptPath=users%2FaulaGEE%2FAulaJS%3Aart1_ddma accessed on 15 October 2022).
Figure 3 presents the maps generated for the historical monthly-averaged precipitation.

https://code.earthengine.google.com/?scriptPath=users%2FaulaGEE%2FAulaJS%3Aart1_ddma
https://code.earthengine.google.com/?scriptPath=users%2FaulaGEE%2FAulaJS%3Aart1_ddma
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Figure 3. Averaged monthly rainfall extracted from the CHIRPS data collection from 1981 to 2020.
Source: Authors, 2022.

From Figure 3, it is clear that in May there is a considerable drop in rainfall in the
region, and the first four months of the year are the months with the highest precipitation.
Even the months from June to December are characterized by less rainfall; the most critical
periods for the lack of rain are in August and September.

The municipalities in the extreme south part of the CMC area are more exposed to a
lack of rain. Consequently, they are more vulnerable to the maintenance of the ecosystem
services provided by the green vegetation [13]. A pattern of decreasing precipitation from
west to east coincides with the Amazon–Cerrado–Caatinga transition, which presents a
decreasing-rainfall regime on a larger scale [31].

The rainfall data from 2016 to 2020, generated on the GEE platform, were extracted
in ‘.csv’ format. The most extended period of days with daily-averaged precipitation of
less than 5 mm/day was filtered in MS Excel. Figure 4 presents the data extracted from the
CHIRPS daily series for 2016 to 2020.

The following dates were extracted from MS Excel, indicating each year’s dry season
start- and end-date, from 19 July 2016 to 19 October 2016; from 3 July 2017 to 30 October
2017; from 6 June 2018 to 5 October 2018; from 23 May 2019 to 20 October 2019; and
from 4 June 2020 to 26 October 2020. These defined dry periods were used for filtering
the Landsat-8 imagery on the GEE platform before running the RF-classification proce-
dure, meaning that any image outside this range was excluded. Our results showed that,
considering the time window of 2016 to 2020, 2019 was the most severe year in terms of
consecutive days of rainfalls under 5 mm.
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Figure 4. The CHIRPS average daily-rainfall data; the definition of the most significant dry period
for each year. Source: Authors, 2022.

3.2. Land-Use and Land-Cover Maps

After analyzing the rainfall regime for the defined dates, five maps of LULC were
generated (GEE script available at: https://code.earthengine.google.com/?scriptPath=
users%2FaulaGEE%2FAulaJS%3Aart1_lulc_ddma accessed on 15 October 2022). Figure 5
shows the LULC maps obtained after the RF-classification processing.

Figure 5. LULC maps generated on the GEE platform using random-forest classifier (700 trees) for
the years (a) 2016 (b) 2017 (c) 2018;(d) 2019 and (e) 2020. Source: Authors, 2022.

In remote-sensing image classification, there was one main category of error related to
the representativeness of the training samples. Even when made by an expert in the field,
visual interpretation is a difficult task, as the physical parameters with which the training
samples are collected are usually different from the settings received by the sensor. For this
reason, often, training samples are obtained to give larger and more representative sets of
the LULC classes. The balance between the training-sample size, which is time consuming,
and the overall accuracy of the classification, is also an issue.

The accuracy obtained from the LULC maps is as follows: (a) for the year 2016,
OA = 94.68% and KC = 94.27%; (b) for the year 2017, OA= 93.97% and KC = 94.19%;
(c) for the year 2018, OA= 94.62% and KC = 94.50%; (d) for the year 2019, OA = 94.19% and
KC = 93.43%; (e) for the year 2020, OA= 95.86% and KC = 95.30%. The obtained results
demonstrate that the classification is considered significantly good.

https://code.earthengine.google.com/?scriptPath=users%2FaulaGEE%2FAulaJS%3Aart1_lulc_ddma
https://code.earthengine.google.com/?scriptPath=users%2FaulaGEE%2FAulaJS%3Aart1_lulc_ddma
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The Mapbiomas project has an informative panel assessing the accuracy obtained by
the studies carried out by it. The OA for the entire Brazilian territory is 91.3%, and in the
Caatinga region, where this study was carried out, it is 81.8% [10,14]. The validation by
comparison of a consolidated project at national and international level demonstrates that
the results obtained in the study are valid. These resulting accuracies are related to the
reliability of the classification. We obtained OA values from 78% to 89% for the Wetlands,
Sugar Cane, and Mosaic Agriculture and Pasture classes. The other thematic categories
had an OA greater than 90%.

Table 1 and Figure 6 show the area by each thematic type in each year. The natural
formation classes, such as Forest Formation, Savanna Formation, and Grassland, show
considerable variations throughout this study. The Savanna Formation is the one with the
most variability. Agriculture classes such as Sugar Cane, Mosaic Agriculture, and Pasture
and Soybean show a significant increase. Refining the image-date selection, based on the
most extended period without rain, leads to a land classification in the post-harvest crop
period. Hence, our study is crucial for understanding the conservation versus degradation
of the natural formations within the CMC area.

Figure 6. The proportion of relevant thematic-classes in each year in graphic.
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Table 1. The proportion of relevant thematic-classes in each year.

Class 2016 2017 2018 2019 2020

Forest Formation 16.07% 17.58% 14.80% 16.56% 13.72%
Savanna Formation 41.28% 33.50% 36.98% 28.04% 38.91%

Forest Plantation 0.70% 2.91% 7.66% 5.18% 1.17%
Wetlands 1.42% 0.99% 0.98% 1.16% 1.03%
Grassland 17.16% 14.82% 14.96% 14.78% 13.79%

Pasture 4.18% 3.18% 3.58% 3.62% 1.86%
Sugar Cane 0.11% 0.07% 0.39% 0.90% 0.58%

Mosaic Agriculture and Pasture 15.81% 24.35% 17.97% 27.33% 25.31%
Urban Area 1.02% 0.74% 0.70% 0.72% 0.69%

Other Non Vegetated Areas 0.09% 0.09% 0.14% 0.13% 0.10%
River, Lake and Ocean 0.23% 0.37% 0.37% 0.35% 0.25%

Soybean 1.95% 1.41% 1.46% 1.24% 2.58%

3.3. LULC-Change Analysis

Comparing two classifications to assess land-cover changes is a way of knowing how
the changes in the classes occur. Figure 7 and Table 2 show the resulting comparison of one
year and the previous year for the resulting LULC maps.

Figure 7. LULC-change maps: (a) 2016 to 2017; (b) 2017 to 2018; (c) 2018 to 2019; (d) 2019 to 2020.
Source: Authors, 2022.

Table 2. The proportion of LULC-change analysis for each thematic class in each pair of years.

Class 2016 to 2017 2017 to 2018 2018 to 2019 2019 to 2020

Deforestation 17.14% 20.19% 17.75% 11.95%
Floodable area 2.89% 2.10% 2.10% 1.92%
Non-natural 13.26% 16.03% 20.91% 18.48%
Regeneration 14.13% 19.89% 12.21% 20.33%

Vegetation 52.57% 41.79% 47.03% 47.32%

The most significant representation of Deforestation occurs in comparing the LULC
maps from 2017 to 2018. The Floodable area showed a more excellent presentation in the
years 2016 to 2017, and maintained stability in the two following periods, with a reduction
between the years 2019 and 2020. The Non-natural formation class increased from the base
year of 2016 to its highest percentage from 2018 to 2019. The Regeneration class presented
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the highest rate between 2019 and 2020, and it is possible to observe an increase every two
years. The Vegetation class had its lowest representation in the same year that Deforestation
was the highest (from 2017 to 2018).

4. Discussion
4.1. The Rainy- and Dry-Season Characterization

Although rain-gauge measurement is the most traditional and reliable method [32],
remote-sensing data such as CHIRPS is indicated for scientific research, due to the historical
series and the possibility of obtaining a daily-precipitation scale for a region [21]. Due to the
seasonal and irregular rainfall, the forests located in the CMC are classified as seasonally dry
tropical forests (SDTF) [18,33]. This characterization directly influences the biotic or abiotic
changes in flower blooming, emergence, and aging of leaf chlorophyll-pigmentation [25].
The rainy and dry descriptions are essential steps for the best LULC classification. They are
a confinable indicator of public policies to combat deforestation in the CMC, in which the
majority vector is agricultural activities.

Figure 3 shows that March is the month with the highest historical average-monthly-
precipitation (1981–2020), and the spatial distribution of this precipitation in the Figure
shows that the northern region of the CMC area is the one that reaches the highest volumes
of rainfall. The southern part of the CMC area is where the lowest values for precipita-
tion are recorded for the longest time. These values correspond to the CMC area’s most
significant drought characteristics in Caatinga. This pattern demonstrates the seasonal
complexity of the territory and the demand for the characterization of the rainfall regime.

The definition of dates using a daily temporal-scale made it possible to choose the
period with the lowest disturbance of the vegetation and, consequently, to achieve a
better interpretation of the thematic classes to be selected in the collection for the filtering
reduction of the Landsat-images selection.

4.2. Land-Use and Land-Cover Maps

Most of the recent regional studies use the Landsat time series. Given this moderate
spatial resolution (30 m), these data are the most suitable for regional environmental-
analyses [30,34,35]. Therefore, with the recent increase of cloud computing platforms
(e.g., the GEE platform), a wide range of classifiers are available to process and analyze
entire satellite imagery databases (e.g., Landsat), in an automated way.

Other studies have used predictive models to classify LULC types using the GEE [36].
Random forest (RF) models are used to generate an optimum decision tree for classify-
ing Landsat data, accurately mapping cropping-extent in Australia and China [37], and
mapping wood vegetation in Australia [38].

Considering that the CMC region is highly seasonal, the selection of an optimum
approach for LULC classification is needed. The seasonality in the CMC region makes
the spectral response of land-use and land-cover types in remote-sensing products widely
variant in specific climate-regimes [18]. Thus, methods that accurately map LULC types
are critical for monitoring anthropogenic pressure and land degradation.

Livestock activity in the region aggravates the soil compaction; in addition, activ-
ities such as wood extraction for potteries and coffee plantations are predominant [39].
Monitoring information from the Mapbiomas project shows that other crops [14], such as
sugarcane and soybeans, are being developed within the region. Hence, the estimation of
the conservation status in the CMC is crucial.

In Brazil, ensuring food security while safeguarding the environment is a crucial
challenge. The LULC maps (Figure 2) of the CMC area produced here include detailed
information on natural and non-natural formations, which can be used to address the
issues related to the increasing agribusiness and the resulting deforestation in the region
south of CMC. Notably, the political and scientific discussion regarding a suitable combina-
tion between agricultural production and the protection of forests, biodiversity, and the
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climate, has achieved new dimensions with the non-conservation position of the current
government [40].

Nowadays, Brazil is a world player in producing and exporting agricultural commodi-
ties, notably soybeans. Brazil had more than 110 million tons of soybeans in 2017, with
most of its production concentrated in the savanna-like Cerrado biome. However, due to
technological advances and agricultural mechanization, large soy-production properties
have occupied the Caatinga and the CMC region. The data reported from private rain-
gauges installed in a grain-production region point to the beginning of the grain planting
occurring in November and the finalization of the harvest activities in May [41]. In this
way, the date filtering used for the Landsat-8 collection is for the off-season. Therefore,
the thematic class Mosaic Agriculture and Pasture is well reported, because it is easier to
collect samples due to the regular format and textures observed in the satellite scenes.

The Brazilian Forest Code determines that the legal reserve areas must be delimited
and conserved for the Cerrado, Caatinga, Pantanal, and Pampa biomes as at least 20% of the
total area for any private property. The CMC region presents the vegetational biophysical
characteristics of a transition area between Legal Amazonia and Cerrado. Nonetheless,
for the due purposes of conservational legislation, this territory is almost all located in the
Caatinga biome. With the weakness of the conservation legislation and the technological
advances in the mechanization of agriculture, the exploitation of lands for agricultural
production and exportation is increasing in the entire CMC area.

4.3. Dynamics of the LULC Maps

Our results make it possible to demonstrate and discuss which areas of the CMC region
are undergoing pressure, considering a range of drivers. In addition, we classified these
changes into types of thematic classes, focusing on the dynamics between deforestation
and regeneration.

We show significant changes in pixels for the Deforestation class in the areas identified
as having higher climate risk from 2016 to 2017. This region is relatively new to agricultural
production in Piauí, and has been used by agribusiness and for planting artificial forests to
commercialize its products, such as coal and cellulose.

Maps (b) and (c) in Figure 7 show a more significant distribution of deforestation, with
map (b) showing the highest percentage of deforested areas within the time frame of this
study, 20.19%. This deforestation is concentrated in the northeast region of the CMC, which
is also where the conservation units within the territory are located. The map (d) shows a
reduction in deforestation and an increase in vegetation regeneration, compared with the
previous years.

Monitoring agricultural cropping is also crucial, as it is consolidated the primary
driver of changes within the region. The first limitation of low natural soil-fertility was
overcome by technological investments in agricultural mechanization for both single- and
double-cropping rotations. The literature demonstrates that the agriculture frontier is still
expanding, and is moving to other domains on the border of the Caatinga biome. Caatinga
is already a degraded biome, where the critical limitation is water scarcity [42,43]. For
this reason, the movement of the agriculture frontier to the Caatinga vegetation must
be treated with concern, as the price of the land in this biome is usually lower than the
national average.

5. Conclusions

Cloud computing frameworks are opening new paradigms for remote-sensing image
classification. The Landsat historical dataset, freely available on these platforms, is the
most-used source for tracking continuous regional-land-use changes back to the 1980s. In
addition, the high performance of the GEE computing platform makes the manipulation
of a large amount of remote-sensing data more user-friendly and suitable for agricultural
monitoring. Moreover, the relative facilities of a vast range of methods challenge the users
in their optimal selection.
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The characterization of the rainfall regime is essential for choosing an appropriate
period for the analysis carried out in regions classified as SDTF, as in the case of natural
forest formations arranged in the CMC area. The data obtained by remote sensing can be
used for study purposes; however, it is more appropriate that these regions are equipped
with rain gauges, for better data-accuracy.

The LULC maps are essential for understanding which degradation vectors act in
the region, and how they are arranged in the territory. In addition, they monitor the
environmental risk, and this study points out that a large area of the CMC is located
in regions of high and medium climate-risk. Consequently, the disorderly occupation
promoted by agribusiness causes the degradation of natural formations, mainly forest
and savanna.

The Campo Maior Complex region is vital for biodiversity and maintaining ecosystem
services in a dynamic transition-area. This study paves the way for improvements and
expansion in the understanding of land-use and land-cover dynamics linked to the level
of conservation and deforestation of a place that, until recently, has not been visible to
agribusiness, but is being gradually occupied for grain production, due to mechanization
and technological advances in agriculture.
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