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Abstract: Oncogenes are thought to play an important role in aberrant regulation of growth factors,
which is believed to be an initiation event of carcinogenesis. However, recent genetic and pharmaco-
logical studies have shown that the Warburg effect (WE) is needed for tumour growth. It refers to
extensively studied aerobic glycolysis over the past decade, although its impact on cancer remains
unclear. Meanwhile, a large body of evidence has indicated that oxidative stress (OS) is connected
with the occurrence and progression of various forms of cancer. Psychosocial factors (PSF), such
as chronic depression, sadness, stressful life experiences, stress-prone personality, and emotional
distress or poor quality of life affect the immune system and contribute to cancer outcomes. Here, we
examine the relationship between WE, OS, PSF, metal ions, other carcinogens, and the development
of different cancers from the viewpoint of physiological and biochemical mechanisms.
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1. Introduction

Metabolic changes in cancer are no longer seen as an indirect response to signals of
cell proliferation and survival. Rather, impaired metabolism status is the basic hallmark
of cancer [1]. The hypothesis that oncogenic transformation alters cellular metabolism
to sustain high rates of growth and division has been extensively explored [2]. Recent
genetic and pharmacological investigations have shown that the Warburg effect (WE) is also
required for cancerous growth [3,4]. During cancer progression, oxygen respiration always
decreases, fermentation takes place, and highly differentiated cells switch to anaerobic
fermentation, having lost all their previous physiological functions and only retaining
the now useless property of proliferating and multiplying [5,6]. Cancer metastasis and
therapeutic resistance are usually studied as separate areas using different strategies.
However, metastatic progression and therapeutic resistance signalling are mediated by
common mechanisms, such as the involvement of integrins and other contextual receptors,
cell–cell communication, stress responses, and metabolic reprogramming [7]. During
proliferation and metastasis, malignant cells adapt to oxidative stress by increasing NADPH
in a variety of ways, including by activating AMPK, PPP, and reductive glutamine, as well
as folate metabolism [8]. Indeed, reactive oxygen species (ROS) influence the progression of
cancer, either by initiating or stimulating tumorigenesis and supporting the transformation
and proliferation of cancer cells, or by causing their death [9–11]. While cancer cells have
increased levels of ROS, and increased ROS concentrations are associated with various
carcinogenic processes, some drugs destroy cancer tumours via toxic levels of ROS [12].
Psychosocial factors are stressors that have a negative impact on cancer patients, but their
effects vary depending on the type of psychosocial factor, cancer location, and cancer
outcome [13]. Thus, stressful life experiences have been shown to be associated with lower
cancer survival and higher mortality, but not higher incidence.

Heavy metal-induced oxidative stress can promote various cancers and diseases by
ROS-based mechanisms [14]. Heavy metals stimulate tumour progression and reduce
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tumour sensitivity to treatment, while tumour tissue shows a different level of DNA
methylation [15].

Biochemically, the less-differentiated cell structure of the cancer tissue somewhat
resembles that of foetal tissue [16–18]. Consequently, the importance of studying the
embryo to understand the evolution of the tumour and contribute to the development of
effective therapeutic strategies was highlighted [19]. In addition, high concentrations of
alphafetoprotein are normally found in foetal blood but are almost undetectable in adult
blood. Therefore, this protein has attracted increasing interest because of its connection
with carcinogenic events [20]. It is precisely this feature that should be investigated, as it
may hide the underlying mechanisms of cancerogenesis.

Hypoxia is the condition in which tissues are exposed to oxygen deficiency and is an
essential phenomenon influencing cellular health. The effect of hypoxia on human cells can
be either positive or negative depending on the severity, duration and context [21]. Multi-
cellular organisms have developed both systemic and cellular responses to hypoxia [21].
The generation of adenosine triphosphate (ATP) in mitochondria is particularly sensitive
to changes in oxygen tension. For that reason, the hypoxic state is an aggravating factor
commonly seen in cancer, multiple sclerosis, heart disease, kidney disease, lung disease,
liver disease, etc. [22]. Hypoxia can play an important role in the regeneration of damaged
tissues, in particular by acting on tissue-specific stem cells. However, its role can be a
drawback when it involves neoplastic stem cells.

Here, we first analyse the function of WE, highlight its significance and discuss its
shortcomings. Our analysis, carried out from the viewpoint of physiological and biochemi-
cal mechanisms, mainly focuses on the relationship between WE, OS, non-specific stress
(NSS), hypoxia, heavy metals, and other carcinogenic factors involved in the occurrence
of different cancers. Since the normal cells of the body meet their energy needs by breath-
ing oxygen while cancer cells do this mainly through fermentation, we have introduced
the term respiratory imbalance, which refers to an impairment of respiration. Further,
glycolysis generates lactic acid, which alters the pH of body fluids. We have therefore
added the notion of pH imbalance. All findings discussed here suggest that lifestyle, food,
distress, carcinogens, ROS, and heavy metals can be environmental factors involved in
cancer aetiology and progression. We are also pursuing common physiological mechanisms
capable of shedding light on the carcinogenic effect of so many carcinogens involved in so
many different cancers and their link to the Warburg effect.

2. Oxidative Stress

Molecular stress is considered to be involved in cancer initiation and progression [23,24].
Oxidative stress from endogenous and exogenous sources leads to mutations and epigenetic
deregulations, which contribute to the development of neoplastic diseases [25]. Among
the first category of stressors are peroxisomes and enzymes, such as NADPH oxidase [26],
xanthine oxidase [27], dihydrolipoamide dehydrogenase [28], etc., most of which are found
inside the mitochondria. Other stressors, such as alcohol, nicotine, exercise, or UV radiation,
are responsible for an increase in the intracellular level of several reactive species, such as
reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulphur-based
species (RSS) [25]. ROS appear during mitochondrial aerobic metabolism, being a reaction
of human and animal cells to bacterial invasions, presence of xenobiotics, on-going distress,
or X-ray exposure [29]. The relative excess of ROS, when compared to antioxidants, has
been linked to multiple pathologies, such as neurodegenerative disease, cardiovascular
disease, diabetes mellitus, etc. [30]. The cancer cell is also known to show aberrant redox
natural balance. While ROS are pro-tumorigenic, a high level of ROS can be cytotoxic [31].
Excessive production of ROS is associated with many types of diseases, such as chronic
inflammation [32,33] and a variety of cancers [34–37]. Thus, the proliferation of malignant
cells is associated with high ROS production. Notably, these cells are adapted to grow
under conditions where this oxidative stress shifts the redox homeostasis away from a
reduced status; tumour cells achieve this balance by increasing their antioxidant potential to
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optimize ROS-driven proliferation [38,39]. Since there is a link between the redox potential
of a cell and its tolerance to high levels of ROS, biochemistry of reduced glutathione
(GSH), thioredoxins (TXN), and NADPH becomes important. Normal metabolic processes
typically generate ROS and reactive nitrogen species (RNS) that are potentially harmful in
high concentrations; these species are intracellular signalling molecules [40]. However, cells
possess an array of antioxidant systems to ensure that ROS and RNS signalling mechanisms
are preserved and oxidative injury is avoided. The increase in the level of ROS and RNS in
relation to antioxidant activity of the cell means that oxidative stress (OS) is counteracted
by the normal cell with the help of GSH and TXN. Their action is supported by NADPH,
which keeps them both in a reduced state. Oxidation of polyunsaturated fatty acids by
ROS results in lipid peroxidation, while the peroxidised compounds and their breakdown
products may act as signalling molecules to stimulate inflammation and apoptosis [38,41].

The main resources of ROSs include: electron flow to O2 in mitochondria and the
reaction between coenzyme Q10 (CoQ) found in the semiquinone form and the molecular
oxygen at complex III of the respiratory chain [42]. In addition, NADPH oxidases reduce
O2 to superoxide, O2

•− [43]. The formation of highly reactive hydroxyl radicals (HO•) by
Fenton’s chemistry from H2O2 molecules usually implies heavy metal ions, such as copper,
iron, or manganese. One of the main RNS species is the vasodilator NO•, which is liberated
by nitric oxide synthase using L-arginine. The reaction between NO• and O2

•− produces
ONOO− [44].

Antioxidant defence prevents the accumulation of ROS and RNS through several
scavenger molecules, such as GSH, melatonin, α-lipoic acid, bilirubin, melanin, or uric acid.
Vitamin E, vitamin C, β-carotene, and plant polyphenols are also antioxidants [40]. GSH is
subject to homeostatic regulation and is often increased in some forms of cancer [45]. On
the other hand, the cytoplasmic copper/zinc superoxide dismutase (SOD1), mitochondrial
manganese superoxide dismutase (SOD2), and extracellular superoxide dismutase (SOD3)
catalyse the conversion of O2

•− to H2O2 and O2 [46]. Since SOD1 and SOD2 protect against
spontaneous malignization and are defined as tumour suppressors, they are up-regulated
during oncogenesis [47]. Next, catalase (CAT) is involved in the decomposition of H2O2
into H2O and O2 [48].

Cancer cells have to deal with OS at the onset, during matrix cleavage, during entry
into circulation, and when the disease relapses following treatment [8]. Tumour cells are
able to adapt by various means to ensure that ROS activity is limited to a dynamic threshold
that allows them to proliferate while avoiding cell mortality [49,50].

Oxidative stress is connected to the progression of the most common form of liver
cancer [51]. Nevertheless, the mechanisms are still unclear. Typically, OS happens when
the body detects any danger signal, either from an internal or external source [47]. Reactive
oxygen species (ROS) are permanently generated in peroxisomes, mitochondria, cytosol,
and apoplast. The imbalance between ROS generation and detoxification leads to oxidative
stress, and the accumulation of ROS is harmful to cells. In addition, ROS function as
signalling molecules and activate signal transduction processes in response to various
stresses [52]. Uncontrolled overproduction of ROS, resulting from an imbalance between
ROS production and removal, leads to vascular disease [53]. It then induces oxidative
damage to the DNA and abnormal protein synthesis, putting the body in a condition of
susceptibility to developing various diseases, including cancer. Many factors are involved
in liver carcinogenesis, including hepatitis B virus and hepatitis C virus infection, alcohol
abuse, and non-alcoholic fatty liver disease. Elucidation of the influence of OS in cancer
aetiology is important for the prevention and treatment of various cancers. Treatment with
OS antioxidant drugs can control OS lesions in vitro [54]. However, in the case of liver
cancer, chronic viral infections can induce inflammation and necrosis of liver cells [55].
DNA damage caused by ROS leads to the accumulation of cancer-related genetic mutations.
Chronic inflammation is one of the causes of human cancer [56,57]. Oxidative stress and
accumulation of DNA damage play an important role in virus-induced cancer [58]. In
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addition, miRNA dysfunction in inflammatory reactions is believed to be the central event
in the occurrence of some cancers [54].

High levels of ROS have been detected in almost all cancers, where they promote
many aspects of tumour development and progression. However, tumour cells also express
increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate
balance of intracellular ROS levels is required for cancer cell function [59,60].

There is an increased risk of cancers among obese patients; some forms of fatness
explain cancer risk in obese patients, while oxidative stress may play a role in obesity-
related cancers [61]. The enzyme involved in triacylglyceride synthesis and lipid droplet
formation, diacylglycerol O-acetyltransferase 1 (DGAT1) is commonly up-regulated in
melanoma, allowing these cells to support excess fatty acids [62]. DGAT1 inhibitors induce
OS in melanoma cells, which adapts by increasing cell defences against ROS. Inhibition of
both DGAT1 and superoxide dismutase 1 profoundly inhibit tumour proliferation due to
exaggerated OS.

3. The Non-Specific Stress

Several studies suggest that stress may influence oncogenic development, and data
from subhuman experiments have shown that aggressive offenses can enhance or suppress
oncogenicity [63,64]. Thus, psychological factors may affect the risk and progression
of tumour proliferation [65]. Increased tumour progression is evident following acute
exposure to severe stress, and the impact of aggressive stimuli varies according to previous
distress history and social living conditions [66]. In addition, prolonged depression can be
associated with an increased risk of cancer [67]. Moreover, providing psychosocial support
may help reduce depression, angst, and hurt, and can prolong the survival period with
cancer. The relationship between sadness and cancer evolution assumes dysregulation of
the hypothalamic-pituitary-adrenal alignment, particularly daytime changes in melatonin
and cortisol. In general, depression affects the immune system, which can affect cancer
control [68]. People with psychiatric disorders are no more susceptible than the general
population to developing cancer, but they are more inclined to die from this disease [69].
All these findings suggest that there may be a close relationship between other forms of
stress, mainly related to human personality.

Stress induces or worsens cardiovascular diseases, non-alcoholic fatty liver disease,
depression, neurodegenerative disease, and cancer through peripheral inflammation as
well as neuroinflammation [70]. Stress endangers central microglia and astrocytes, blood
vessels, and immune system. It has been suggested that inflammation may be the common
pathway for stress-related diseases, which may act as a contributing factor to disease
progression or may occur very early during the disease development [70].

4. The Warburg Effect

A century ago, Otto Warburg and his colleagues observed that growing ascites cells
converted most of their glucose to lactate, even under O2-rich surroundings [71]. He
thought that such altered metabolism was specific to cancer cells, and that it arises from
mitochondrial deficiencies that inhibit their capability to efficiently oxidize glucose to
CO2. He concluded that the existence of dysfunctional mitochondria is one of the causes
of cancer [72]. However, injured mitochondria have been shown not to affect aerobic
glycolysis in most tumour cells; mitochondria in cancer cells are not damaged, but simply
dysfunctional [73]. The metabolism of the cancer cell is altered and involves augmented
glucose uptake and glucose fermentation to lactate [74]. This condition is known as the
Warburg effect or aerobic glycolysis and is observed even in the presence of fully functional
mitochondria, or even in the presence of oxygen [71,75]. Since respiration can maintain
tumour viability, it was thought that these cells can be killed by depriving tumour cells of
energy, so both glucose and oxygen should be removed [76]. However, Herbert Crabtree
reported the heterogeneity of glycolysis in various tumours. Therefore, variable intensity
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of respiration in tumours was discovered [77]. Crabtree established that there is also
variability in fermentation, probably due to environmental or genetic influences.

Nevertheless, Warburg proposed later that the origin of aerobic glycolysis is dys-
functional mitochondria [78]. Yet, Efraim Racker showed that tumours have respiratory
capability. He advanced his own hypothesis about the Warburg effect by studying intra-
cellular pH imbalances that disrupt the ATPase activity [79]. It has also been observed
that aerobic glycolysis can be controlled by growth factor signalling. However, the identi-
fication of genes with a potential role in oncogenesis led to the conclusion that aberrant
growth factor regulation could be the initial event in tumorigenesis [80,81]. Nonetheless,
WE is necessary for tumour growth [3,4]. Therefore, targeting both aerobic glycolysis and
mitochondrial metabolism might be required in cancer therapy [82–84]. Nevertheless, the
functions of the Warburg effect have remained controversial for a long time.

The Warburg effect confers direct tumour cell signalling functions [85–88]. Thus, a
direct contributory role of glycolytic metabolism in stimulating carcinogenesis through this
signal transduction affecting other cellular processes is suggested. It has been thought that
aerobic glycolysis may offer some advantage as it provides a favourable tumour microen-
vironment for cancer cell multiplication [1,89,90]. Under certain conditions, the Warburg
effect could be the choice of an energy metabolism based on high glucose consumption.

Most tumour mitochondria are functional and are therefore able to perform oxidative
phosphorylation. Nevertheless, mitochondrial metabolism in proliferating cells seems to
be directed to macromolecular syntheses. Warburg and his colleagues did not consider
such a possibility [1]. However, some authors consider that the Warburg effect is an initial
event in carcinogenesis, being a direct result of an oncogenic mutation, which occurs before
abnormal cell multiplication, and also in benign and early-stage lesions [91,92].

The Warburg effect was extensively investigated from multiple points of view [93].
Thus, metabolic alteration was understood as a necessity for rapid multiplication. It
instantly generates energy in the form of ATP molecules, supports the biosynthesis of
macromolecules and maintains the redox state of cells. Processes such as pH modification
of tumour microenvironment, the stabilization of hypoxia-inducible factor (HIF), some
mutation of tumour suppressor genes, and dysfunctions of mitochondria have been dis-
cussed. In addition, selective targeting by miRNA, altered glutamine metabolism and
post-translational modifications were also investigated. These authors considered that a
holistic understanding is needed to discover novel metabolism-based therapeutic strate-
gies to hinder the Warburg effect and cancer advancement. Other authors found that the
Warburg effect stimulates cancer metastasis and changes the tumour microenvironment;
it may play a role in promoting angiogenesis, formation of cancer-associated fibroblasts,
immune suppression, and drug resistance [94]. High uptake of glucose by cancer cells
reduces considerably its accessibility in the tumour microenvironment, which results in a
low-glucose extracellular environment and disturbs the activity of immune cells [74]. More-
over, tumour cells release high amounts of lactate, which induces an increase in the acidity
of the microenvironment. Lactate can be utilized by some non-tumour cells in the liver to
produce glucose with high energy consumption [95]. An acidic tumour microenvironment
stimulates local invasion, and then metastasis and diminishes the anti-tumour action of
immune cells [96,97].

In cancer cells, respiratory function decreases, and an increase in glycolysis propor-
tional to the increase in the growth rate is observed [98]. However, decreased cellular
respiration is not obligatory for an increased rate of cell proliferation.

Myc and HIF-1 activate the Warburg effect in reaction to growth factors and hypoxia.
It is an important metabolic and energetic process that meets the requirements for fast
gene replication [99]. Paradoxically, cancer appears to be a normal physiological phe-
nomenon that follows precise rules, but it is also a degeneration, a dysregulation caused by
a multitude of factors: lifestyle, diet, carcinogens, etc.
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5. The Aerobic Glycolysis

Glycolysis is a primitive metabolic pathway that is essential for rapid multiplication
of cancer cells, tissue regeneration, but also for growth of bacteria and viruses [99]. Aer-
obic glycolysis, which occurs not only in cancer cells, can be defined as an exaggerated
increase in glucose consumption compared to oxygen supply, even when oxygen levels
and delivery in the blood are sufficient to meet demand [100]. Therefore, this type of
glycolysis is uneconomical and ATP generation is very low compared to the ATP produced
by respiration [101,102]. Nevertheless, the amount of ATP synthesized in a given period
of time is similar in both forms of glucose metabolism [103]. Therefore, the reason why
the cancer cell uses aerobic glycolysis should be investigated and a suitable explanation
should be found for this inherent difference in kinetics. A very simple explanation would
be that there is a precise ratio between the concentration of ADP and ATP. Thus, decreasing
the concentration of ADP will cause a phosphorylation reaction of ADP in order to keep
the ratio of adenosine-di and triphosphate as constant as possible. It has been hypoth-
esized that cells with higher glucose consumption, albeit with lower efficiency in ATP
production, may have an advantage when competing for common and restricted energy re-
sources [104,105]. On the contrary, we think differently: low oxygen concentration can lead
to glycolysis [106]. Thus, it has been shown that when the cellular environment is altered
to greatly increase ATP requirements, aerobic glycolysis increases rapidly, and oxidative
phosphorylation remains constant [107]. In such cases, the aerobic glycolysis is considered
an adaptive process to sustain the conditions for the biosynthesis of macromolecules and
other compounds required by the uncontrolled multiplication. Therefore, increased glucose
uptake is a carbon source for syntheses required to sustain tumoral growth [72,108–110].
The aerobic glycolysis is also required to support the rapid generation of ATP required to
sustain chemical synthesis. However, the ATP requirement for cell growth and division
is much lower than required, and ATP demand may never reach threshold values during
cancer cell growth [111]. Similar mechanisms are also observed in other cell types linked to
a rapid demand for ATP are also present in tumour cells. Thus, fast ATP synthesis based on
creatine kinases in muscle is manifest in most tumour cells [74]. Compounds resulting in
glycolysis are required for nucleotide, lipid, and protein synthesis [112–115]. Proliferating
cells have a greater need for NADPH or NADH [116]. Increased synthesis of the reducing
equivalents implies a higher utilization of glucose, which is then employed in the biosyn-
thesis of lipids, amino acids and other biomolecules [1]. It was considered that the role
of aerobic glycolysis is to regenerate NAD+ in the reaction of NADH+H+ with pyruvate,
which produces lactate, the final product of aerobic glycolysis [117,118]. Lactate is not just a
by-product of glycolysis, but has an important role in tumour metabolism, as identified by
the Warburg effect studies [119]. Lactate plays a major role in cancer cell proliferation, but
is also involved in inflammation, neural excitation, and many other biological processes.

NADH is generated in the reaction catalysed by glyceraldehyde phosphate dehy-
drogenase and is oxidized to NAD+, thus keeping glycolysis active. Glycolysis enables
3-phosphoglycerate to convert to serine for the production of NADPH and nucleotides [120].
NADPH homeostasis is regulated by several metabolic enzymes that undergo adaptive
changes in cancer cells [121]. It is thought that modulating NADPH homeostasis in cancer-
ous cells could be an effective strategy to eliminate them.

Aerobic glycolysis maintains a fertile environment that supports rapid biosynthesis to
sustain multiplication and proliferation [122]. Cancer cells use aerobic glycolysis for energy
metabolism, and a method to deprive malignant cells of glucose would prevent these cells
from surviving and induce apoptosis in several types of cancer, which could be the basis
of a potential treatment [123]. Cancer cells use glycolysis as an energy source although
oxygen is present, this changed metabolism may provide a selective benefit for survival
and growth, consistent with the Warburg effect. In addition, several molecules, such as
NADPH, HIF, PKM2, and others, are important for the reproduction of cancer cells in the
abnormal hypoxic medium.
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It was also suggested that aerobic glycolysis is a pathway to support biosynthesis [124,125].
Although ATP production is inefficient, it can come at the cost of maintaining anabolic
pathways, such as those involved in nucleotide and lipid metabolism. There may also
be a limited number of mitochondria; thus, the necessary energy and biomass beyond
mitochondrial capacity must be produced from aerobic glycolysis [126–128]. Therefore,
aerobic glycolysis is considered to support biomass production when ATP production is
limited. There is an apparent correlation between aerobic glycolysis and cell proliferation.
The demand for NADPH is higher than the ATP requirement for biosynthesis. However, in
aerobic glycolysis, the carbon atoms are not sequestered but are liberated extracellularly as
lactate [2,111]. Acidosis can be beneficial for cancer cells; protons, H+, secreted by tumour
cells may be liberated into the environment and modify the tumoral–stroma interface,
permitting increased invasion [129]. Tumour-derived lactate has also been shown to
contribute to tissue-associated M2 macrophage (TAM) polarization [130].

Glucose availability seems to be a result of intensive competition between resulted
tumours and tumour-infiltrating lymphocytes (TILs) [131–133]. Intense aerobic glycolysis
limits the availability of glucose to tumour-infiltrating lymphocytes, which need abundant
glucose for their physiological functions [134–136]. Consequently, evidence is sought that
inhibition of aerobic glycolysis in the tumour would allow increased glucose supply to
TILs, thereby stimulating their function to eradicate tumour cells [137,138]. All these
observations may suggest that malignant cells are in contact with cells in the immune
system to sustain pro-tumour immunity [139–143].

Lactic acid plays a key role as it is capable of translocating through cell membranes,
contributing to the cell-pH state, as well as influencing the complex immune response
due to acidosis of the tumour microenvironment [99]. Even working brain tissues partly
oxidize glucose and produce some lactic acid [100,144–147]. Therefore, aerobic glycolysis
occurs normally when cells are stressed. Aerobic glycolysis occurs in astrocytes, where
the Crabtree effect coincides with the Warburg effect. At the same time, neurons use both
glucose and lactate, and there is a balance between glycolysis and respiration. This leads to
the activation of Warburg and Crabtree effects in brain tissue, resulting in a high degree of
aerobic glycolysis, indicating stimulation of astrocytes to generate neuronal ATP.

6. Copper and Cancer

Copper (Cu) is involved in numerous cellular processes, which include mitochondrial
respiration, anti-oxidative defences, redox signalling, autophagy, kinase signalling, and
regulation of protein quality [148]. Specific abnormalities of copper metabolism appear to
have clinical potential as prognostic and predictive biomarkers [149]. Cu2+ ions are also ca-
pable of binding to growth factors, cell signalling proteins, or even structural proteins [150].
These ions can regulate the activity of several proteins; thus, many signalling metabolic
reactions are dependent on copper. Mitochondria also play an essential role in copper
homeostasis, which is important for mitochondrial physiology [151]. Cu is a component
of cytochrome c oxidase, which is present in the respiratory chain in mitochondria [152].
Therefore, Cu is involved in energy production via oxidative phosphorylation [153]. In
addition, copper is present in cell lysosomes, and some metallo-reductases maintain it in
the Cu(I) form because lysosomes are an oxidative environment [154,155]. Such reductases
are mainly located in the intracellular vesicles [156,157]. They are involved in the regulation
of cell proliferation and apoptosis.

Glutathione (GSH) and metallothioneins (MTs), which are cysteine-rich cytoplasmic
proteins, are greatly engaged in intracellular storage of excess copper [158]. GSH is im-
plicated both in numerous mechanisms of metabolism and in the transfer and removal of
metal ions, including copper ions, as Cu(I)–GSH complexes [159,160]. These complexes are
thought to be related to the exchangeable pool of cytosolic copper [161,162].

Changes in Cu levels or in the Cu: Zn ratios have been observed in several forms
of cancer [163,164]. Nevertheless, the Cu: Zn ratio changes with aging, inflammation,
nutritional status, and OS. Increased copper concentration is accompanied by diminished
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levels of zinc in bladder cancer [165] and other forms of cancer [166–169]. However,
certain authors testified that there are decreased copper levels in colorectal and breast
cancers [170,171].

Increased levels of copper have been reported in tumour areas [172,173]. Copper is
involved in proliferation and angiogenesis, two phenomena seen in tumorigenesis and
cancer development. In addition, specific copper accumulation was reported in cancer
cells themselves [174]. Thus, high levels of Cu were reported within the tumoral cells of
breast cancer [175]. It is likely that copper ions induce the formation of secondary tumours
by activating some enzymes implicated in cell multiplication [176]. Moreover, increases
in serum copper in cancer pathology were sometimes correlated with cancer stage. In
addition, in the case of patients who are resistant to chemotherapy, increased levels of
serum copper have been measured [176]. Data on different types of cancer on this subject
are contradictory. We suggest that a link between copper level and pH may exist. The
isotopic 63Cu/65Cu ratio in the serum of tumour patients also seems to be altered [74],
with increasing levels of the lighter isotope. These changes could be due to increased
glycolysis and lactate formation. Furthermore, the Cu isotopic ratio could be used as an
early diagnostic biomarker for cancer [176].

Some copper-related proteins, such as ATP7B and Ctr1, have been found to increase in
breast cancer [177]. Dysregulation of several proteins involved in copper metabolism has
an influence on cell migration and metastasis formation. Thus, Atox1 protein is elevated in
several malign tissues [178,179]. It may also promote inflammatory neovascularization by
acting putatively as a transcription factor and as a copper chaperone [180].

Cu-dependent LOX metalloenzymes play a significant function in tumour metas-
tasis [181]. Thus, cancer cells produce LOX protein to promote collagen cross-linking
and fibronectin biosynthesis. However, the pathway by which copper ions are delivered
to copper-dependent LOX metalloenzymes is still unclear. ATP7A/B protein is used to
limit copper toxicity and up-regulates cancerogenic enzymes, such as LOX and LOX-like
proteins [182,183].

7. Cancer and Lifestyle

Only 5–10% of cancers are thought to be caused by inherited genetic defects. Numerous
cancers are not inherited and are caused by various agents (environmental factors, physical
factors, and hormones) [184]. Environmental factors encompass lifestyle (nutrition and
overweight, over-smoking, over-drinking, stress, physical inactivity); physical factors
(environmental pollutants, virus, bacteria and parasitic infections, ionizing and nonionizing
radiation); as well as socio-economic and attitudinal factors. Therefore, most cancers have
multiple possible concurring causes.

A healthy lifestyle includes a healthy diet, weight control, physical exercise, reducing
alcohol drinking, and smoking avoidance [185]. About 25–30% of total cancer deaths are
caused by tobacco, 30–35% are diet-related, approximately 15–20% are caused by infections,
and the rest are attributable to other agents, such as radiation, stress, environmental
pollutants, etc. In spite of medical progress, cancer incidence is expected to increase
substantially in the near future [186]. It is also thought that all these carcinogens associated
with lifestyle factors and all chemopreventive agents are connected with the long-term
inflammation. Chronic inflammation is strongly associated with the tumorigenic trajectory,
as evidenced by multiple findings [187]. Carcinogens activate while chemopreventive
agents suppress NF-κB activation, which is a mediator of inflammation.

All living beings are constantly under stress, which is the nonspecific response of the
body to any demand made upon it [188]. Unlike eustress or adaptive stress, distress affects
immune responses, generally by exerting a suppressive effect. The stress-induced increases
in tumour size are most probably a consequence of immunosuppression [189,190]. Some
other authors showed that psychological stress is weakly associated with increased mor-
tality from colon cancer [191]. However, chronic stress is associated with neuroendocrine
abnormalities that can up-regulate inflammation and down-regulate protective immunity.



Stresses 2023, 3 508

Thus, the affected immune cells may not effectively control cancer cells and act as stromal
cells, communicating with the tumour microenvironment and circulating cancer cells to
promote tumour growth mechanisms, invasiveness, extravasation into the circulation and
metastasis [192].

The response to physical and social stress involves a complex reaction at the cellular
and molecular level [193]. NF-κB plays a key role in the cellular response to stress. Thus,
stress up-regulates some genes, such as transcriptional genes that control cell growth,
chromatin structure, cell cycle activation, and enzymes involved in nucleic acid and protein
biosynthesis. Under stress, cell cycle inhibitors, the NF-κB inhibitor, apoptosis-related genes,
antiproliferative cytokines, and Apo J are down-regulated. NF-κB is activated in response
to many inflammatory factors such as carcinogens, chemotherapeutic agents, cytokines,
hormones, mitogens, viral products, eukaryotic parasites, endotoxin, fatty acids, metals,
radiation, hypoxia, and psychological, ROS, and chemical stresses [194]. Drugs that prevent
cancer or inflammation have been proven to suppress NF-κB up-regulation. Curcumin and
other polyphenols inhibit NF-κB, p53 pathways and potentiate Nrf2 activation [195].

Protein p53, which is a universal sensor of genotoxic stress, coordinates the cellular
response to various genotoxic stimuli, determining cell death or survival [196]. ROS
also appear to be involved in p53 signalling, being effective activators of p53 function.
Some chemotherapeutic agents activate p53 due to their involvement in ROS production.
However, ROS, generated following p53 activation, play a role in mediating apoptosis [196].

The role of transcription factors nuclear factor erythroid 2–related factor 2 (Nrf2) and
nuclear factor-κB (NF-κB) related to OS was also investigated [197]. Thus, in response to OS,
the transcription factor Nrf2 up-regulates the expression of antioxidants and detoxifying
enzymes involved in antioxidant protection, being considered as the master regulator of
redox homeostasis. The activation of the transcription factor NF-κB leads to the production
of proinflammatory cytokines and chemokines, prostaglandins, free radicals such as NO
and superoxide anions, and ultimately leads to chronic inflammation [198–201].

A healthy lifestyle has been associated with a substantial reduction in the overall risk
of developing liver cancer [202]. Lifestyle improvements to combat cancer have long been
recommended; however, there has been a renewed appreciation of their importance and
relevance given the growing number of cancer survivors seeking alternative options for
prevention and secondary cure [203]. Tumour survivors often face drug toxicity, also being
at risk of cancer recurrence, a second primary cancer and high cause of mortality [204–207].

Most cancer survivors live with higher risks of complications and relapses, lower
quality of life and reduced life expectation. There is an immediate need to improve cancer
survivorship by improving lifestyle beyond clinical interventions. The association between
a sedentary lifestyle and worsened survival after cancer was also noticed [208,209]. Physical
exercises may be positively correlated with the control of tumour biology through specific
effects on intrinsic tumour factors, such as Warburg-type high glycolytic metabolism [210].
Tumour metabolism can be selectively influenced by single exercise as well as by regularly
applied exercise, depending on the intensity, duration, frequency, and mode of exercise.
High intensity anaerobic exercise has been shown to inhibit glycolysis, and some animal
studies have shown that the effects on tumour growth may be stronger compared to
moderate intensity aerobic exercise. Of course, early detection and treatment can result in
growing prevalence of survivors of cancer.

Stress-prone personalities, unfavourable coping styles and negative emotional re-
sponses, and poor quality of life were related to higher cancer incidence, poorer cancer
survival, and higher cancer mortality [13]. Site-specific analyses indicate that PSF are
associated with a higher incidence of lung cancer and poorer survival in patients with
breast, lung, head and neck, hepatobiliary, and lymphoid or hematopoietic cancers. These
analyses suggest that stress-related PSF have an adverse effect on cancer incidence and
survival, although there is evidence of publication bias and results should be interpreted
with caution. Some clinical studies have shown that psychological and/or pharmacolog-
ical inhibition of excessive adrenergic and/or inflammatory stress signalling, especially
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in conjunction with cancer treatments, would improve prognosis [211]. There are some
critical phases of cancer progression that are more sensitive to stress. Therefore, there is a
need to focus on more vulnerable populations using individualised pharmacological and
psychosocial approaches [212]. Addressing psychosocial stressors also raises the issue of
distinguishing between human and laboratory animal cancers [211].

8. Respiration and pH Imbalance

In numerous pathologies, including cancer, an impaired respiration can be observed,
along with a change in pH, due to a multitude of stress factors. In order to suggestively
explain the imbalance between respiration and glycolysis, which leads to pH alteration,
or more precisely, the imbalance of both respiration and pH of body fluids, the so-called
respiratory and pH imbalance (RpHI) has been introduced [106]. There are striking sim-
ilarities between the metabolic profiles of cancer cells and those of rapidly multiplying
normal cells, such as aerobic glycolysis and increased biosynthesis [2]. The role of aerobic
glycolysis in malignant growth should be elucidated, including whether there is metabolic
reprogramming that may be related to chronically sustained proliferation [213]. However,
altered metabolism is a hallmark of cancer, and metabolic reprogramming in cancer cells is
seen in the main pathways of central carbon metabolism [214]. Different cancers are char-
acterised by an intra-tumour hypoxia resulting from deregulated cell proliferation [215].
Tumour hypoxia is associated with poor prognosis and resistance to therapy [216]. Physio-
logical responses triggered by hypoxia can impact all critical aspects of cancer progression,
including immortalization, transformation, differentiation, genetic instability, angiogenesis,
metabolic adaptation, autocrine growth factor signalling, invasion, metastasis, and resis-
tance to treatment. Hypoxia-inducible factors (HIF) are key oxygen sensing factors that
mediate the response to low oxygen pressure [217]. These transcription factors regulate
cellular adaptation to hypoxia and protect cells by reacting acutely and inducing the pro-
duction of endogenous metabolites and proteins to promptly regulate metabolic pathways.
Therefore, hypoxia itself could be the trigger for the induction of aerobic glycolysis without
any mitochondrial damage [218,219]. HIF1α activates via Activin/nodal signalling, and
its increased expression redirects ATP production from oxidative phosphorylation to gly-
colysis. In addition, it has been reported that HIF1α-dependent expression of BNIP3 (a
member of the apoptotic Bcl-2 proteins) promotes mitophagy to control ROS production
and ROS-induced cell death [220].

Hypoxia, which is closely related to glycolysis, is common during carcinogenesis;
it is associated with functional and structural modifications in proliferating cells [221].
Hypoxia also underlies the energetic processes of various activities in brain-like alert-
ness, sensory processing, cognition, and physiological conditions. Its specific functions
performed in cells are still less understood [100]. Aerobic glycolysis is characterized by
excessive glucose utilization relative to oxygen consumption, even when oxygen levels and
availability are adequate. Propranolol blocks aerobic glycolysis, including adrenal release
of epinephrine, brain signalling through the vagus nerve, and an enhanced liberation of
norepinephrine in the locus coeruleus. Sugar utilization is stimulated by norepinephrine
and not oxygen consumption.

Glycolysis stoichiometry does not allow both biomass production and lactate gener-
ation, and NAD+ regeneration by lactate alone is not possible. It is therefore hard to see
how the Warburg effect can directly stimulate biosynthesis. In general, cells allocate half
of their genes to synthesize proteins engaged in glycolytic processes [208,222]. However,
the cellular biosynthesis programs require lower amounts of protein. Therefore, the cost to
produce proteins for aerobic glycolysis may be higher than the cost of producing proteins
needed for biosynthesis. There is evidence that mitochondrial functions run concurrently
with the Warburg effect, and thus, during aerobic glycolysis, mitochondrial activity is not
impeded. It is thus unclear whether the Warburg effect functions to facilitate the various
biosynthetic pathways. However, increased consumption of glucose to liberate lactate
lowers the pH in the microenvironment [96].
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In principle, RpHI can be regarded as a physiological reaction against any stress agents,
and if the stressors are strong, an oxygen crisis within the body occurs, the busiest cells
divide faster and faster, producing first preneoplastic cells and, in time, malignant tumours.
The tumours acquired in this way, as well as their fermentation products, may disturb the
normal functions of most cells and tissues in the body [223].

Since there are many forms of cancer depending on the organ or organs affected, the
prognosis of the disease, and its stages, there are many forms of RpHI. Thus, a carcinogen
can cause irritation of a tissue, followed by chronic inflammation and malignancy, while
slow debilitation can lead to degenerative disease and, ultimately, to cancer. One can also
speak of an increased concentration of glucose in cells and body fluids which can ferment in
the presence of insufficient amounts of oxygen in the tissue although the patient’s breathing
may appear normal. Thus, epinephrine (adrenaline) secretion during stress may explain the
increased flow of glucose into certain active tissues, and higher concentrations in relation
to oxygen intake may lead to fermentation and lactic acid formation. Therefore, a full
description of RpHI requires further work.

Thus, under hypoxic conditions, overstressed cells, which receive less oxygen than
necessary, undergo anaerobic fermentation to produce adenosine triphosphate (ATP).
This process is associated with excessive multiplication and, ultimately, tumour growth.
Indeed, severe hypoxia due to profoundly low arterial O2 content (hypoxemia) results in
hypercapnic and metabolic acidosis, developed together with extensive lactate generation,
with pH decreasing to under 6.8 [224]. Because hypoxia is dependent on the magnitude
and duration of action of the causative factors, human and animal organisms can only
compensate for hypoxia if the causative agents stop acting for a long time. Normally,
various stress agents, such as physical and chemical stressors, viruses, other infectious
agents, hormones in excess, but also, long-lasting anxiety, emotions, conflict states, etc., are
able to affect the body as a whole [225–230].

Confronted with the external environment, the living organisms have several co-
ordinate physiological processes to keep their internal states of equilibrium [231]. The living
bodies react against aggression using metabolic energy obtained by the oxidation of organic
substances, including organic acids in the mitochondria [232]. Under normal conditions,
when the supply of oxygen is sufficient, cells can carry out aerobic respiration [233,234].
Hence, when busy, cells produce the energy they need from the food stores, including the
organic acids they possess. During the Krebs cycle, carbon dioxide, of a weaker acid type, is
released, normally outward [235,236]. Since stronger organic acids, such as succinic, malic,
2-ketoglutaric, and oxalylacetic acids, are replaced by carbon dioxide; the cell milieu tends
to be more alkaline, i.e., just blood and urine [237]. The tendency of blood alkalization
entails retention of carbon dioxide so that the pH of blood should alter as little as possible.
The retention of carbon dioxide in blood does not allow the oxygen to shift at a normal
rate in lungs [238,239]. As a consequence, oxygen pressure in blood and tissues decreases
although it stays normal overall. However, oxygen may reach quite a low level without
affecting cell breathing in any drastic way. Unfortunately, the busiest cells in the body need
more oxygen. As oxygen partial pressure decreases lower, these cells receive less oxygen
than they need, and fermentative processes develop alongside with breathing.

In fact, hypoxia is the natural environment in which DNA auto-replication and tran-
scription take place in vivo in all eukaryotes [240–243]. Nuclear division unfolds anaero-
bically using the energy produced by glycolysis [244–246]. Consequently, the cells forced
to manifest themselves in rather anaerobic conditions will divide more intensely [247].
Aerobic breathing, which provides cells with a great amount of energy, creates the neces-
sary conditions for the existence of fine structures of the cells, and the specific functions
run unimpaired [248]. Lack of oxygen, even partial, causes rupture of these structures,
leading to the gradual disappearance of specific functions of cells as well as contact in-
hibition. At the same time, lack of oxygen entails cell-division to a greater extent than
necessary for the tissue in question. It follows the first stage of the RpHI, which affects
cell respiration and division. Nevertheless, the organism possesses buffer systems, lung
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ventilation, and kidney mechanisms to control the concentration of hydrogen ions within
the cellular milieu (Figure 1) [2,249]. Alveolar ventilation is responsible for carbon dioxide
elimination [250]. Mild acidosis occurs primarily when alveolar airflow is reduced or if
CO2 generation is elevated. However, the organism has several compensatory systems
to minimize a decrease in pH. For example, non-oxygenated haemoglobin easily buffers
the blood environment to prevent significant pH alterations. Normally, carbon dioxide, a
stimulant of respiration, induces an increase in minute ventilation to normalize the pH by
eliminating increased quantities of CO2. Unfortunately, this effect is mitigated when CO2
concentrations remain elevated for more than a few hours. The kidneys are also capable of
controlling both the blood pH and some other blood parameters. However, this process
is slow and lasts for several hours or days. In fact, renal compensation begins in 6–12 h,
but maximal compensation occurs in 3–5 days. The kidneys enhance the expulsion of
protons, predominantly as ammonia. If the stress agents act continuously, the blood will
become slightly more alkaline than usual, and the blood oxygen concentration will be
lower than normal. Getting less oxygen than they need will lead to anaerobic fermentation
in the overstrained cells. The overstrained cells also cause a lower content of NADH+H+

and NADPH+H+ a higher content of NAD+ and NADP+. Therefore, a decrease of the
oxidation reduction potential will occur as well. The quantity of sulfhydryl groups in
the blood and tissues also decreases. A marked decrease in succinic dehydrogenase and
slight increase in cytochrome oxidase levels could be found, suggesting the alteration of
the Krebs cycle. For this reason, a cell with excessive fermentation will not reach an upper
energetic state if neighbouring cells and blood do not interfere with its metabolism. The
second stage of the RpHI is reached when lactic acid is produced due to hypoxic conditions.
In this case, the CO2 concentration may decrease; however, part of the produced carbon
dioxide is not removed because the cell content may remain slightly alkaline in spite of
the lactate production. Again, the kidneys should control the hydrogen concentration in
blood, releasing acidic species, such as ammonium ions or phosphates, into urine [251]. The
process is complicated by the existence of lactic acid in blood which decreases blood pH,
while intracellular pH of overstrained cells is increased. However, if the stress agents act
continuously, the neighbour cells involved in curing or rebalancing the overworked cells
will also work hard while being overstrained and deprived of oxygen. There follows a third
stage of the RpHI in which a real state of illness (infections, viruses) occurs. A very special
balance between the two types of cells (attacked cells and neighbour ones) is established.
The blood pH value is a little altered. If the stress agent is very strong, it can be lethal to the
organism, and such a case does not reach the cancer stage. It is the case of microorganism-
or virus-induced diseases, which, if untreated, can have a bad prognosis. On the contrary,
a long-standing action by the stress agents may cause a slow shift in this imbalance even
if the action is mild, resulting in a stepwise decrease of blood pH value. Long-standing
infectious pathologies can thus lead to an RpHI, which creates the conditions for either
the transformation of normal cells into preneoplastic cells, followed by the preneoplastic
to neoplastic pathway, or the multiplication of malignant cells. It is well-known that only
bodies with a significant amount of morbidity may become cancerous. Most cells become
glycolytic, while fewer remain normal but overstressed. This pathway leads to the fourth
stage of the RpHI, which is that of tumour formation.

Respiration and glycolysis are two independent biochemical processes that may occur
simultaneously in the living cell (Figure 2). Given an oxygen concentration of 10 per cent
or more in the surrounding atmosphere, respiration occurs in the living cell. Given a
concentration below 3% of oxygen, fermentation (glycolysis) will occur. Both processes
occur in the range from 3% to 10% oxygen (Figure 2). Growth and lifespan of human
diploid cell strains at oxygen levels below 20% is increased, and an enhancement of around
25% in the lifetime of both cell types has been achieved by long-term cultivation under
10% oxygen [252]. It is well known that there is extremely low O2 content in growing
tumours [253].
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Figure 2. Schematic presentation of the relative intensities of cellular respiration and glycolysis as a
function of oxygen partial pressure [103].

Indeed, if mitochondrial respiration in tumour cells were down-regulated, the ac-
cumulation of substrates from the Krebs cycle could also serve as a signal to stimulate
glycolysis [254].

Whenever a cell within the metabolic system (muscle, liver, kidney, lung, etc.) uses
oxygen at a faster rate than can be provided by the circulatory system, the cell begins to
function anaerobically, reducing the pyruvate to lactate instead of oxidizing it further, as
would happen if oxygen supplies were adequate [255–257]. Moreover, excess glucose can
be glycolytically converted to lactic acid if the glucose: oxygen ratio increases. Lactate
thus accumulates in that cell, diffuses through the bloodstream, and eventually reaches the
liver, where it is re-oxidised to pyruvate and converted to glucose via the gluconeogenic
pathway [258].

In fact, prokaryotic cells produce energy for their needs by glycolysis in the absence of
oxygen. Glucose is thus metabolized into lactate or ethyl alcohol, depending on the cell type.
In the cytoplasm of eukaryotic cells, including human cells, glycolysis takes place with the
release of pyruvic acid or lactic acid [259,260]. These acids enter the mitochondria where
they are degraded to CO2 and H2O, with the formation of reduced forms of NADH+H+
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and FADH2. In the respiratory chain, the hydroxyl-rich compounds are oxidized and the
chemical energy they contain is liberated and stored as ATP molecules. If there is insufficient
oxygen, then the respiratory chain is blocked and NADH+H+ and FADH2 are no longer
oxidized. Under these conditions, no new quantities of reduced NADH+H+ and FADH2
are formed; lactic and pyruvic acids accumulate in cells or are excreted extracellularly. This
is a very simple mechanism for switching from respiration to glycolysis [258,261–263].

Figure 3 better suggests the molecular and biochemical pathways linking respiration
and glycolytic processes to oxygen supply and hypoxia. The human cell is made up of
the nucleus, which plays a role in the division and transmission of genetic information,
the cell membrane, through which oxygen, glucose and other nutrients flow, and the cell
organelles. Among the latter are mitochondria, which have an essential role in energy
production in the form of adenosine triphosphate (ATP) molecules, oxidative degradation
of fatty acids, metabolism of pyruvic acid and acetyl-Coenzyme A from fatty acids with
the formation of NADH+H+ and FADH2 molecules. These reduced forms of nicotinamide
dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) compounds are involved in
cellular energetics and multiple biochemical syntheses and constitute the fuel from which
ATP is formed in the so-called electron transport chain (ETC). Glycolysis takes place in the
cell cytoplasm and not in the mitochondria.
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pyruvate, Lac—lactate, HK—hexokinase, PGI—phosphoglucoisomerase, PFK—phosphofructokinase,
ALD—aldolase, TPI—triosephosphoisomerase, GAPDH—glyceraldehyde-phosphate dehydrogenase,
PGK—phosphoglycerate kinase, PGM—phosphoglycerate mutase, ENO—enolase, PK—pyruvate
kinase, LDH—lactate dehydrogenase, O2—molecular oxygen, ADP—adenosine diphosphate, ATP—
adenosine 5′-triphosphate, OXPHOS—oxidative phosphorylation, PDH—pyruvate dehydrogenase.

Glucose is degraded via the glycolytic pathway to pyruvate, which is either used as
acetyl-CoA in mitochondria or released into the cytoplasm as lactate (Figure 3). Most of
biochemical reactions are reversible. Several enzymes catalyse the conversion of glucose to
pyruvic acid (PYR) with the release of two molecules of ATP. Pyruvic acid then reacts with
Coenzyme A to form acetyl-CoA, which is broken down in the Krebs cycle with the release
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of CO2, while its hydrogen atoms reduce NAD+ and FAD to NADH+H+ and FADH2. These
energy-rich molecules are used in the electron transport chain to form ATP in the presence of
molecular oxygen. However, if oxygen is insufficient, the reduced NADH+H+ and FADH2
species cannot be used in ETC to generate the energy-rich molecules of ATP. The Krebs cycle
is thus blocked, and acetyl-CoA is no longer needed. As a result, the pyruvic acid formed in
the glycolytic process is no longer required in the mitochondria and is reduced to lactic acid
by the existing NADH+H+. In this way, glycolysis occurs in the presence of insufficient
oxygen levels to provide the required ATP, but glucose consumption is greatly increased for
the same ATP concentrations required by the cells. Furthermore, the increase in NADH+H+,
produced in the Krebs cycle due to hypoxia, inactivates phosphatase and tensin homolog
(PTEN), which is encoded by the PTEN gene [264]. PTEN is involved in the regulation of
the cell cycle, preventing cells from growing and dividing too rapidly. Thus, a close link
between the Warburg effect and metabolic alterations in cancer cells has been found; it
may gain a survival advantage and withstand therapeutic agents. The microenvironment
of solid tumours is characterised by hypoxia, high lactate levels, extra-cellular acidosis,
and depletion of glucose and glutamine [220]. Nevertheless, hypoxia might be responsible
for the autophagy induction in tumour cells via HIF1α. NRF2 promotes HIFα activation,
the metabolic switch, and colony formation [265]. ROS-induced NRF2 activates HIFα
and drives the metabolic switch toward glycolytic energy production. However, further
research is needed as such phenomena may be secondary to all physiological reactions.

However, if the glucose level is high enough, fermentative processes may occur due
to the presence of glycolytic enzymes. Therefore, the so-called RpHI appears to be more
complex and may comprise several biochemical pathways, which are interdependent.
Therefore, this review suggests that aerobic glycolysis and malignant transformation could
be controlled, at least in their early stages.

9. Discussion

Stress factors influence the body neurochemically, hormonally, and immunologically,
and these factors have an impact on the carcinogenic process, suggesting a relationship
between them and stress-induced changes in tumour growth [266]. Social stress influ-
ences tumour growth [267]. Reactive oxygen species (ROS) are also stressors that play
important roles in a variety of normal biochemical functions and abnormal pathological
processes [268]. Thus, ROS can induce cellular aging and cell death [269]. Conversely,
an increase in ROS is related to an abnormal growth of cancer cells and indicates a dis-
turbance of redox homeostasis, either due to an increase in ROS output or a decrease in
ROS scavenging activity [270]. When ROS increases to a certain critical threshold that is
incompatible with cell survival, ROS can cause a cytotoxic action, leading to cancer cell
death and reduced cancer proliferation. Nevertheless, under intrinsic oxidative stress, most
cancer cells adapt well to such stress and develop enhanced endogenous antioxidant ability.

Thus, low levels of ROS can increase the ability of cells to cope with stress, while
an increase in ROS can cause damage to normal cells that can be killed or transformed
into cancer cells. Furthermore, an exaggerated increase in ROS concentration can cause
apoptosis of normal cells, but not cancer cells. Only very high amounts of ROS work as
anti-tumorigenic agents [271]. Adequate levels of ROS are essential as excess ROS damages
cellular membranes and nucleic acids [272]. Inadequate levels of ROS disrupt signalling
mechanisms, which are useful for cell growth-like inactivating phosphatases and tensin
homologues as well as tyrosine phosphatases. The Warburg effect can alter the redox
potential of mitochondria, leading to ROS formation [273].

Hypoxia can induce enzymatic breakdown of cellular constituents into simple subunits,
a phenomenon capable of sustaining glycolysis to maintain cellular ATP production [220].

It has been hypothesized that the primary reason for cachexia is elevated acidity of
body tissues, which leads to increased and non-specific proteolysis of cell proteins. Hence,
moderate hypoxia may be tightly linked to lactic acid formation throughout the body, not
just around the cancer cells [274]. Indeed, hypoxia promotes acidosis by shifting from
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oxidative phosphorylation to glycolytic metabolism [275]. Inhibition of mitochondrial
respiration induces increased NADH+H+ concentration, which can subsequently inactivate
PTEN (phosphatase and tensin homologue) through a redox modification mechanism [264].
Cachexia can be a progressive body wasting disorder marked by loss of adipose tissue and
skeletal muscle tissue in cancer, infection, acquired immunodeficiency status, and heart
congestion [276,277]. Sarcopenia judged by skeletal muscle mass volume is a prognostic
marker in some cancer patients [278,279]. It is related to ageing, but can also be caused by
poor nutritional status, and inflammatory, endocrine, and malignant diseases [280]. The
relationship between cancer and sarcopenia is well-recognized. Numerous inflammatory
agents that facilitate tumour progression are also associated with cancer cachexia, pain,
weakness, and poor survival.

Inflammation is a critical component of tumour progression [281]. The role of inflam-
mation in the pathogenesis of various diseases has also been examined [282]. Inflammatory
responses may occur acutely following traumatic tissue injury or infection, or may be
induced chronically by malignant cells, degenerative alterations or tissue ischemia due to
oxygen deprivation [283]. Many cancers arise from areas of infection, chronic irritation and
inflammation. Inflammatory cells clearly participate in the neoplastic process, promoting
proliferation, survival, and migration. Furthermore, tumour cells take up innate immune
system signalling molecules, such as selectins, chemokines, and their receptors for invasion,
migration, and metastasis. Therefore, an anti-inflammatory therapeutic approach can be
considered in cancer.

DNA damage mediated by chronic inflammation increases cytokine expression or
ROS release contributes to type 2 diabetes, heart disease, various cancers, and stroke [282].
The release of proinflammatory cytokines, such as TNF-α and IL-1, modulates innate
immune cells that release inflammatory mediators, chemokines, interferons, recruited
neutrophils, and adhesion molecules. Figure 4 shows a suggestive scheme illustrating
the relationship between stressors, chronic inflammation, the Warburg effect, and various
medical conditions. TNF-α stimulates COX-2 expression and nitric oxide synthesis by
activating NF-κB [284,285]. COX-2 catalyses the synthesis of inflammatory prostaglandins
(PGs) from arachidonic acid, which in turn causes chronic inflammation [286].
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Disturbed copper homeostasis is seen in many types of cancer. It may be related
to increases or decreases in protein status. Moreover, copper consumption by growing
cancer cells increases. Both proteins involved in copper metabolism and copper-containing
proteins are exposed to multiple dysregulations, which results in higher carcinogenicity.
Oxidative stress, aerobic glycolysis, hypoxia, etc., create conditions for increased acidity
around cancer cells and body fluids and increased intracellular pH. Copper ions react with
phosphate ions with the formation of insoluble copper phosphate, resulting in decreased
copper concentration in some biological fluids. Excess copper, relative to the amount of
phosphate available, can react with lactic acid produced by glycolysis. The result would
be increased copper ion concentration in other media. In addition, as the pH of a solution
increases, copper ions increasingly bind to proteins and peptides to form complexes.
This may explain the measurements of variable copper concentrations in patients with
malignant tumours.

However, a correct understanding of biochemical and physiological processes that
manifest in a cancer pathology is only possible if our conception of living organisms
is greatly improved. Eugen Macovschi advanced a so-called biostructural theory on
cancerogenesis [287,288]. In addition, older hypotheses and theories, all based on the
molecular outlook on living systems, should be replaced by others that are more adequate
to understanding living phenomena [289]. For example, carcinogens in the environment,
acting on living tissues, cause partial, sometimes reversible, breakdown of the biostructure
described by Eugen Macovschi [290]. They cause cellular hypoxia which induces alteration
of the state of the biostructure, and thus, of living matter. The whole body is affected, and
malignant cells are in fact normal cells that receive less oxygen than necessary and undergo
glycolysis, dividing more than necessary. Therefore, carcinogens that come into contact
with living tissue must be removed at all costs. These carcinogens cannot be destroyed or
removed by the body alone despite its exhausting efforts. The main cause of cancer would
thus be a so-called respiration and pH imbalance, and not gene mutations, as the molecular
theory claims.

Current molecular medicine relies on physico-chemical laws to investigate biologi-
cal phenomena associated with cancer, which are thought to occur only at the molecular
level of living organisms/Only chemical reactions take place there [223]. However, a
structural-phenomenological outlook seems to be more appropriate to illustrate the ob-
served aspects of living organisms and the relationships between the biological levels and
soul (psychostructural level), mind (noesistructural level) or between mind and conscious-
ness. In other words, cancer can be conceived as a phenomenon which occurs on both
biological (biostructure) and physico-chemical structures, while cancer aetiology seems
to be related to specific breakdown of the biostructure of the whole organism. The cancer
cell biostructure is found under an altered, abnormal state and the investigation of this
state is essential to understand carcinogenesis. In addition, a mathematical hypothesis
of networks of multidimensional hierarchic evolution with various ranks was advanced,
and the self-organization of living was analysed in the frame of Macovschi’s biostructural
conception [291,292]. The network’s complexity varies horizontally, within the same level,
and vertically, from the lower to the upper level.

The Warburg effect appears to be a normal physiological process due to the low oxygen
supply relative to the needs of rapidly multiplying cells. Nerve cells and circulatory system
cells are exceptions to this rule. Their overload usually leads to their destruction as opposed
to excessive multiplication. Malignant cells adapt to the partially anaerobic environment,
undergo protein degradation processes, and are unable to behave normally in the presence
of oxygen. The phenomenon of excessive multiplication is similar to wound healing. The
cells involved are too overworked to cope with the stress of the external environment,
receive too little oxygen in relation to their increased needs, multiply excessively, and then
the body eliminates the unnecessary cells. In the case of cancer cells, the body is no longer
able to destroy cells that have multiplied in excess of the needs of the tissue in question.
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Pathways leading to increased glycolysis can also cause inhibition of mitochondrial
activity [293]. HIF-1 is thought to stimulate essential glycolysis pathways, but also regulates
genes that control angiogenesis, cell survival, and invasion. However, high levels of HIF-1
are observed in some tumours, even in the presence of oxygen. Therefore, not only hypoxia,
but also other factors (e.g., hormones and growth factors) could induce stabilisation of
HIF-1 expression [294].

The cell’s response to hypoxia is also controlled by HIF-1, which activates expres-
sion of specific genes involved in angiogenesis, glucose uptake, glycolysis, growth factor
signalling, apoptosis, invasion, and metastasis [295]. Hypoxia can induce enzymatic break-
down of cellular constituents into simple subunits, a phenomenon capable of sustaining
glycolysis to maintain cellular ATP production [220]. Thus, HIF-1 not only stimulates
glucose influx and utilization in tumour cells, but also stabilizes mitochondria through
various mechanisms. Stimulation of mitochondrial activity would cause cellular energy
metabolism to return to the phenotype characteristic of non-malignant cells and would
also promote ROS production by mitochondria, leading to apoptotic cell death of tumour
cells [218,296]. We believe, however, that hypoxia causes the breakdown of the triplet states
of the biologically active molecules in ECT responsible for the electromagnetic transfer of
energy from NADH and FADH2 to ATP [297]. This hypothesis is also supported by the fact
that hypoxia greatly reduces the number of mitochondria in the body’s cells [298,299].

The anti-cancer effect of many conventional treatments, such as ionising radiation,
etoposide, and arsenic trioxide, is based on the stimulation of ROS production [218,300].
According to the General Adaptation Syndrome (GAS) described by Hans Selye, there
are different stages of stress, namely (i) alarm, (ii) resistance, and (iii) exhaustion [189].
The psychological factors can also play a significant role in the stress process. Prolonged
stressors can cause psychosomatic disorders, depending on their intensity and duration.
Under the action of stressors, at any stage, a person can die. However, we believe that
there may be a fourth, cancerous stage in which the body fluids become more acidic due to
fermentative processes.

Studies during the past decade suggest that the WE is more closely related to alter-
ations in signalling pathways that govern glucose uptake than to mitochondrial defects [93].
Although glycolysis is indeed greatly increased in cancer cells, mitochondrial respiration
continues to function normally at rates proportional to oxygen uptake. There is, instead, an
up-regulation of glycolysis, not a switch from OXPHOS to glycolysis [301].

10. Concluding Remarks

A substantial body of research links stressors, including psychosocial factors, to the
Warburg effect and increased cancer incidence. The literature findings reviewed here
support the idea of a close relationship between oxidative stress, or other forms of stress,
hypoxia, aerobic glycolysis, and carcinogenesis. Currently, there are all the prerequisites
for a correct understanding of the aetiology of the various forms of cancer and their
development and treatment. However, given the multitude of cancer-causing factors as
well as different forms of cancer, it is difficult to design a unified theory of oncogenesis.
In addition, theories based solely on chemical reactions appear to be unable to provide a
satisfactory explanation for the relationship between stress and disease. A nature-of-life
approach is possible, which takes into account the whole biological phenomenology of
disease and not just its molecular aspects. In this brief review, we have sought general
information, leaving aside some particular aspects of several forms of cancer, although these
too would have better completed the picture of this disease. From the few findings reviewed
here, a picture emerges in which the importance of physiological and biochemical aspects
is highlighted. The role of hypoxia and the way in which it occurs and manifests itself has
thus been highlighted in greater depth, although it is more likely to be a matter of oxygen
insufficiency of overstimulated cells. It was highlighted that respiration and glycolysis
are two biochemical processes that can occur simultaneously in living cells, and aerobic
glycolysis also takes place under normal physiological conditions. The Warburg effect can
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thus be considered a normal physiological process due to the low oxygen supply in relation
to the needs of the overworked cells. The recently advanced physiological mechanism may
better explain the Warburg effect than the older theories on cancer occurrence. Starting from
molecular biology and medicine, supramolecular theories could be developed, followed by
improved biostructural and structural-phenomenological concepts of the disease state to
fully understand and design revolutionary therapies for different forms of cancer.
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