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Abstract: For decades, the Barker hypothesis and thrifty phenotype hypothesis have driven re-
searchers to explore the development of metabolic syndrome through fetal programming. In this
short review, we provide peer-reviewed support for the fetal programming of neural genetic activity
and behavior in multiple neural regions: the prefrontal cortex, the cerebral cortex, the hippocampus,
the cerebellum, and the hypothalamic–pituitary–adrenal axis. We also introduce ionizing radiation
as a purported indirect driver of phenotypical changes. The predisposition of brain and behavioral
phenotypes after gestational exposure to stressors can lead to aversive and harmful outcomes, rather
than protective adaptations.
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1. Introduction: Brain and Behavior

Behavior is simply defined as an organism’s activity that can be observed or mea-
sured [1]. Behaviors are internally coordinated and are produced in response to internal
and external stimuli. Sexual reproduction, resource gathering, predation, and survival
rely on appropriate behavioral responses to stimuli and those responses have the ability
to change within individuals of most species [2–5]. Modifications in normative behavior
can occur during an organism’s lifespan through experiential learning. Organisms learn to
avoid or carefully approach high-risk situations through first-hand or observational expe-
riences [6,7]. In contrast, rewards lead to an increased likelihood of repetitive behavioral
responses [8]. This is an operant conditioning paradigm of learning; classical condition-
ing may also modify behavior through association and reinforcement [1]. Phenotypical
behavior changes may occur through epigenetic mechanisms, serving as evolutionary adap-
tation and plasticity to enhance survival and fitness; however, they may also predispose an
organism towards maladaptive impulses and pathophysiology [9].

Changes in behavior may lead to increased chances of survival and enhanced fitness;
however, not all modifications lead to a positive result for the individual. Modifications
may lead to the progression of disease or disorders and are considered maladaptive [10,11].
Reward-seeking behavior influencing addictions can develop from short-term reward-
based and disrupted learning processes [10,12]. The ability to inhibit responses and focus
on long-term rewards instead of short-term rewards is less likely to influence addictions [13].
Inhibition and impulsivity have been linked to poor academic performance and risk-taking
behaviors, such as gambling [14,15]. Obsessive compulsive disorder, post-traumatic stress
disorder, major depressive disorder, and schizophrenia are all psychological disorders with
significant maladaptive behaviors that disrupt the ability for individuals to function prop-
erly [16,17]. These disorders not only highlight maladaptive behavior but also neurological
dysfunction in various regions and organizational levels [18].

The brain is comprised of specialized electrochemical cells called neurons that influ-
ence behavior and cognition. Neurons were first introduced to the world in detail in the
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1800s by Camillo Golgi and Santiago Ramón y Cajal, who was also the founder of the
concept of plasticity [19,20]. Plasticity refers to environmentally dependent phenotype
expression (an organism’s ability to adapt and change to its environment [21]). Neurons
are physiologically diverse and function in circuits that are separated regionally. During
fetal development and for a period after birth, mammalian neural circuitry undergoes
significant modifications to structure and connectivity [22]. This period of development is
sensitive to environmental factors and may lead to neurological and behavioral disorders
later in life if exposed to stressful and inadequate conditions [23,24]. Most mammals have
functional homology, making comparative biology a reasonable experimental process for
understanding both human and animal behavior and disease.

2. Fetal Programming of Brain and Behavior

Fetal programming explains the process whereby early environments influence the
physiological phenotype of the offspring [25,26]. Sometimes referred to as the Barker
hypothesis and originally referred to as the thrifty phenotype hypothesis, Hales and Barker
described the phenomenon in 1992 [27]. The researchers associated early-life nutritional
deprivation with the development of adult metabolic syndrome. Through replication and
further study, developmental plasticity during the fetal period of gestation became the
forefront of consideration of evolutionary processes, hypothesizing that the adaptation to
deficient environments would lead to development of the disease [28,29].

Over the progress of fetal programming research, it became clear that nutritional
deprivation was not the only prenatal stressor that could lead to maladaptive phenotypes.
Malnutrition has been hypothesized to influence programming through several mecha-
nisms, such as inflammation, oxidative stress, dysregulated metabolism, a decrease in
placental enzymes, and an increase in steroidal hormones [30,31]. Maternal plasma glu-
cocorticoid levels have been shown to be increased with food restriction, along with the
activation of the hypothalamic–pituitary–adrenal axis and a decrease in glucocorticoid-
binding factors, leading to higher concentrations of active hormones free to interact with
the fetus [32,33]. Through the administration of exogenous steroids, glucocorticoids could
stimulate the same physiological phenotype as malnutrition, which displays hypertension,
hyperglycemia, hyperinsulinemia, and changes in behavior [34]. Active endogenous gluco-
corticoids are prevented from interacting with the fetus via an enzymatic barrier present in
the placenta, the 11β-hydroxysteroid dehydrogenase type 2 (11β2HSD), which catalyzes
the conversion of cortisol into cortisone. If the endogenous hormone concentrations are
high, or if the mother is exposed to synthetic hormones, which are poor substrates, the
enzymatic barrier is inefficient, and glucocorticoids will interact with the fetus [34]. Exoge-
nous hormones are often given for organ maturation for mothers at risk of preterm labour
and lead to alterations in behavior, including hyperactivity, reduced cognitive function,
and anxiety-related behavior in the offspring [35–37]. Endogenous hormones circulating
due to maternal stress, such as anxiety, have also been linked to increased anxiety in their
children [38]. Once glucocorticoids bind to their receptors, they are able to change gene
expression directly, by enabling DNA methylation and by the production of reactive oxygen
species (ROS) [39,40].

3. Ionizing Radiation as a Stressor

Stress is defined as an internal or external stimulus with a perceived threat to our
survival and health [41]. Stress may be an illness, injury, familial loss, mental-health issue,
or exposure to xenobiotics (Figure 1). Once exposed to a stressor, the body may react via
the production of glucocorticoids, which may produce ROS [39,40,42]. ROS may also be
produced through direct and indirect mechanisms of ionizing radiation. Ionizing radiation
is the emission or transmission of energy, either through a particle or a wave, that has
sufficient energy to remove an electron from an atom or molecule, producing a highly
reactive ion or free radical [43]. Free radicals, also known as ROS, can induce direct DNA
damage and cellular oxidative stress [44].
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Figure 1. Various maternal stressors. Created with BioRender.com. 
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Prenatal exposures to ionizing radiation may come from diagnostic imaging or work-
place exposures [45]. Primarily, diagnostic imaging through X-rays and computed tomog-
raphy (CT) scans are low linear energy transfer (LET) radiation exposures. DNA damage
through low LET exposure is predominantly through indirect chemical processes from
radiolysis reactions, where energized particles interact with water molecules within the
cell, transferring energy, thereby ionizing the molecule and creating ROS [46]. The extent
of the damage incurred from these processes is related to individual, genetic susceptibility
with DNA repair systems, the dosage, and the stage of development if a fetus or infant
is exposed, leading to chromatid and chromosomal aberrations and instability that may
be transmissible to future generations through fetal programming and epigenetic mech-
anisms [47]. In early gestation, exposure to radiation can lead to fatality and significant
organogenesis disruption. Malformities in appendages, growth restriction, and neuronal
death in rodents are a few of the postnatal effects listed in a review conducted by Sreetharan
and colleagues [45]. Exposures of 100–3000 mGy in late gestation led to neuronal cell loss,
decreases in overall neural volume, and behavioral [48] changes [45]. However, diagnostic
exposures are considered low-dose ionizing radiation, which has been shown to have a
horemetic response, whereby doses may provide protection, rather than significant damage
that increases linearly [49–52]. Single and multiple exposures of CT scans to cancer-prone
TRP58 heterozygous mice have been shown to extend lifespan due to an increased latency
to develop cancer and a slowed progression of existing tumors, respectively [51,52]. Dose
rate, as a variable, should also be carefully considered, as research provides evidence
of significant physiological and morphological outcomes at low dose rates. Low dose
rates of 0.2 and 0.4 mGy/hr during zebrafish neurological development produced numer-
ous deleterious outcomes, including an increase in mortality, malformities, and physical
malfunction [48]. Evaluation of timing, dosage, dose rates, and the heritable effects is im-
portant in understanding safety and adverse phenotypes; here, we focus on dosage during
late gestation.
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3.1. The Prefrontal and Cerebral Cortices

The prefrontal cortex (PFC) is new on the scale of neurological evolution and is re-
sponsible for complex behavior and cognition; however, it is not specifically defined based
on structure or function [53]. Research links the region to emotion, social interaction, and
decision making—all components of cognition [54]. Reflexive behaviors are stereotyped
and the focal point of other neural structures, but the PFC is known for top-down pro-
cessing, whereby behavior may be influenced by stimuli input, providing contextually
relevant responses.

In order for the PFC to produce contextually appropriate responses, it requires en-
vironmental feedback from other neural regions. A key pathway connects the PFC to
the basolateral amygdala (BLA), a structure that regulates emotion. The BLA provides
significant positive feedback in early development that gradually declines with maturity;
however, this decline is accelerated under stress, such as maternal deprivation [55,56].
Disruption of BLA input, through optogenetic manipulation, induces synaptic depletion
and interferes with fear-cue learning processes [57]. Chronic stress to rodents, such as
random exposure to restraint, forced swim in cool water, tilted cages, and shaking cages
for fourteen days, leads to a decline in inhibition feedback, inducing abnormal aggression,
inability to recognize novel objects, and increased locomotive activity [58]. Reversal of all
abnormal behaviors was possible with the introduction of a designer receptor exclusively
activated by designer drugs (DREADDs) to reactivate connectivity between the PFC and the
BLA. Fetal programming through irradiation is supported by previous research involving
various radiation sources, multiple doses, and different gestational timings. Low-dose
exposures of 100 mGy–1000 mGy to C57Bl/6J radioresistant mice during gestational day
(GD) 11 produced a dose response in physical and social behaviors as well as in anxiety
and cognitive measures in conditions as low as 100 mGy [22,59–61]. Correlated with these
responses, changes in frontal cortex volume and cerebella volume were noted with a 31%
and 33% decrease, respectively [62,63].

The cerebral cortex in primates is convoluted to increase surface area; in rodents,
it is smooth, but it is still located on the surface and is divided into functional regions
called lobes. Often, the cerebral cortex and the prefrontal cortex are used interchange-
ably in the literature and may seem ambiguous; however, the neural function of the PFC
is distinct [64–66]. Here, we focus on the cortical region involved in stimuli processing.
Research into this region has correlated impoverished environments that are reduced in
sensory and motor stimulation with a decline in stimuli processing development [67]. To
explore the modification of the cerebral cortex’s visual processing, pre-weaned rat pups and
their mothers were placed in opaque cages to limit visual input. The effects of rearing pups
in a diminished environment led to a delay in weight gain, visual maturity, motor activity,
and a reduction in the brain-derived neurotropic factor (BDNF), insulin-growth factor-1
(IGF-1), and glutamate decarboxylase (GAD) gene expression. Prenatally malnourished
rats show diminished β-adrenoceptor and BDNF expression levels, as well as impaired
learning through long-term-potentiation deficiencies and visuospatial issues [68]. Expres-
sion levels and other functions were restored with exposures to environmental enrichment,
lending to the concept of adaptive modifications and plasticity in brain function. Late
gestational exposure to synthetic glucocorticoids increased the regulation of early growth
response 1 (EGR1) in the cerebral cortices and hippocampi of guineapigs [69,70]. EGR1
expression is linked to neuronal activation and is indicative of physiological changes in the
cerebral cortices.

Earlier research exposing 1000 mGy of ionizing radiation on either GD 13, 15, or 17 to
rats led to thinning of the cortices and differential physical development and function [71].
On GD 15, pregnant Sprague-Dawley rats were exposed to whole-body X-rays of 0, 25, 50,
75, or 125 R, which demonstrated significant morphological changes to the frontal and cere-
bral cortices [72]. The resulting changes were dose-dependent, were matched by changes
in body weight, and were more striking with age. A decrease in cortical thickness was
measured and noted to be 1/2 the thickness of age-matched controls, with a loss of neurons
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as the contributing factor. Using a larger mammalian model, 13 macaques were irradiated
with 175–600 cGy in either early or mid-gestation and were raised along with 7 controls,
resulting in a significant reduction in frontal cortex volume by 26 and 29%, respectively [73].
Notably, ionizing radiation exposures to the prefrontal cortex during the first trimester in
humans may be linked to neurological disorders, such as schizophrenia [74,75]. Within the
cerebral cortex, however, X-ray exposure delays neuronal migration in infant brains and
gamma irradiation has led to neuronal loss and defects [76,77]. The ambiguity and inter-
changeability of the terms prefrontal cortex and cerebral cortex throughout the literature
add a level of uncertainty to distinct regional changes with respect to fetal programming.
A clear separation of anatomical regions is required to provide a clear representation of
genetic phenotypes.

Another brain region providing feedback to the PFC is the hippocampus, a structure
foremost known for learning and memory, which is also connected to the amygdala.
The connection between the PFC and the hippocampus provides experiential context
based on episodic memory formation and retrieval [62]. Multiple early-life insults, from
nutritional deficiencies to smoking and alcohol exposures, have been associated with
cognitive disorders and memory impairments in the hippocampus and PFC [63]. Without
normal development and connectivity from the PFC to these regions, behavioral responses
are modified and aversive.

3.2. The Hippocampus

As previously mentioned, the hippocampus is well known for learning and memory
function, which are key to appropriate behavioral responses [78,79]. The hippocampus
is dense with glucocorticoid receptors and is the site of neurogenesis, which is linked to
cognitive flexibility and the inhibition of depression and anxiety [80]. Multiple connections
with other brain regions support the memory and learning function of the hippocam-
pus, particularly fear cues and inhibition with feedback to the amygdala and prefrontal
cortex [81]. Maternal stress has been linked to a decline in neurogenesis, correlated to de-
creased neuronal functionality, language delays, and decreased cognition [31]. Female rats
born to dams who were restrained in late gestation had decreased levels of glucocorticoid
receptors and impaired spatial learning and memory, implicating a significant disruption
of hippocampal physiology and function due to prenatal stress [82]. Multiple generations
of female offspring exposed to glucocorticoids have been shown to have dysregulated gene
expression and DNA methylation within the hippocampus [83]. Sexual dimorphism in
brain regions is not uncommon; 21-day-old Long-Evans female rats have been noted to
have significant gene dysregulation related to growth factors in the hippocampus after
exposure to prenatal stress [84]. Pregnant rats were stressed by placing their cages on an
elevated platform for a total of 20 min per day during gestational days 12–16 and this
environment was sufficiently stressful to show substantial gene regulation changes via
microarray analysis, with 200 dysregulated genes in the female hippocampus compared to
167 in the males. Rat pups are not born fully developed and maternal care during early life
has also been implicated in hippocampal plasticity, gene methylation, and gene expression
in offspring aged 7–17 weeks [85–90].

Whole-body X-ray irradiation exposure to doses ranging between 0 and 1000 mGy
to C57Bl/6J mice during early neurogenesis on gestational days 11 and 12 has shown
locomotor and spatial memory deficits in the offspring [91]. In addition, forty-one genes
were differentially expressed related to p53 signaling, DNA damage, apoptosis, and signal
transduction, and there was a significant reduction in cortical thickness and hippocampus
proliferation. X-ray exposure to C57Bl/6J mice on gestational day 11 altered post-synaptic
density protein 95 (PSD95) in the hippocampi, with 1000 mGy, supporting research impli-
cating the sensitivity of the hippocampus with stress and modifications [92]. Within the
hippocampus, frontal cortex, and cerebellum changes in microRNA, methyltransferase
DNMT3a, and global methyltransferase expressions were differentiated based on region
and sex [93].
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A decrease in volume of the hippocampus and the subsequent dilatation of the lateral
ventricles were also related to prenatal X-ray exposures [94]. Swiss albino mice were
exposed to 500 mGy of γ radiation between gestational days 11 and 19 and offspring
were tested for a variety of behavioral responses, where exposures to all gestational-day
treatment groups produced activity, anxiety, and memory deficiencies in the 3-month-old
offspring [95]. Earlier exposures to pregnant C57Bl/6J mice on GD 5 to 20 cGy displayed
memory and motor deficits that were sexually dimorphic [96]. Offspring were tested at
three different stages of adulthood for behavioral effects and the males had pronounced
changes in anxiety and learning tasks at 3 months of age that matched Cornu Ammonis
fields, CA1 and CA3 pyramidal neuron counts. At 6 months, the males displayed a recovery
of this behavior, which declined again at the age of 12 months. With each study, it is clear
that hippocampal exposure during fetal neuronal development may produce aversive
behavioral events and significant physiological modifications.

3.3. The Cerebellum

The cerebellum was originally thought to only control motor function; however, it
has recently been shown to be involved in cognition, addictions, and depression [97].
Exposure to prenatal stress, such as a diet insufficient in zinc and fatty acids, leads to
decreased cerebellar volume, linked to attention deficiencies, poor impulse control, and
behavioral disorders [63]. C57Bl/6J offspring, prenatally exposed to high levels of folic acid,
displayed significant gene dysregulation in the cerebellum in both male and females [98].
Genes differentially expressed were linked to autism disorder and neurodevelopment.
In contrast to the high levels of folic acid, a study with vitamin deficiencies showed
proteomic, cellular, molecular, and behavioral support of cerebellar disruption due to
early-life stress [99]. In humans, a significant reduction in grey matter within multiple brain
regions, notably the prefrontal cortex, cerebral cortex, and cerebellum, was associated with
mid-gestation self-reported anxiety [100,101]. Cerebellar weight and volume in rat offspring
were also sensitive to a single exposure to a synthetic glucocorticoid, betamethasone, in
late gestation [102]. The single exposure was also associated with anxiety-related behavior
and increased expression of calbindin-D28K, a neuroprotective protein whose expression is
associated with levels of glucocorticoids. On GD 21, pregnant Wistar rats were X-irradiated
with 2 and 2.5 Gy or exposed to a cyclotron with 0.75 and 1.5 Gy exposures [103]. Within
the X-irradiated cerebella of the offspring, Purkinje cells were shorter, with irregularly
oriented dendritic branches, and some failed to migrate altogether. Similar to the previously
highlighted neural regions, the cerebellum is clearly sensitive to early-life stressors.

3.4. The Hypothalamic–Pituitary–Adrenal Axis

The hypothalamic–pituitary–adrenal (HPA) axis is pivotal in allostasis—adapting to
stressors in order to maintain homeostasis—by utilizing glucocorticoids, hormones pro-
duced in the adrenal cortex, as a biofeedback system [104]. It is a fundamental process
in driving adaptive or maladaptive responses from an organism and disruption has been
associated with mental and neurological disorders, such as schizophrenia, depression, ad-
diction, and mood disorders [104,105]. Just as with the other neural regions, the HPA axis is
sensitive to early-life stress, where deprivation can lead to modifications in behavioral phe-
notypes [106]. For example, nine-day-old Wistar rat pups deprived of maternal care have
showed increases in serotonergic activity and anxiety, indicating changes in the hypothala-
mus [106]. Significant research efforts have expanded the understanding of methylation and
fetal programming, focusing on the HPA axis and hippocampus, due to the high density of
glucocorticoid receptors and glucocorticoid feedback in these regions [70,107,108]. Further-
more, synthetic glucocorticoid administration has been associated with HPA modification,
hyperactivity, and metabolic impairments [38,109].

During neuronal growth, differentiation, and migration, fetuses undergo a critical
period of species-dependent development. Gestational day (GD) 11 through 17 for mice
and the second trimester in humans have produced deleterious effects after environmental
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exposures, such as cognitive impairments, that are both physiological and behavioral,
including schizophrenia [22,110]. An early study, in 1996, exposed Sprague-Dawley rats
on GD 16–18 to 4 Gy γ ionizing radiation [111]. This exposure led to the induction of
neuronal stem cell death and disrupted activity levels of the p53-mediated apoptotic
pathway. At a far lower dose of 15 mGy X-irradiation, another study reported physiological
and behavioral changes in Wistar rat offspring exposed on GD 8 and 15 [112]. The authors
noted a paucity of peer-review published effects at low doses less than 100 mGy, while their
exposure produced profound adverse phenotypes. The various behavioral and genetic
changes across the literature support the idea that ionizing radiation may induce behavioral
adaptations in response to maternal stress. Adaptations, due to the physiological and
functional changes in the brain regions presented here, may not be preferential in particular
circumstances and require further study.

Neural regions interact with each other to provide feedback, control, and mod-
ulation. The hippocampus and prefrontal cortex have both been implicated in HPA
modulation [113,114]. Glucose metabolism research shows prefrontal cortex activation
during stressful events that is inversely related to salivary cortisol levels [114]. Hyperac-
tivity of the HPA axis also leads to decreased prefrontal cortex activity and depressive
behaviors [115]. Through lesioning, the hippocampus has been implicated as an HPA
modulator due to functional changes when compared to lesions in other regions [113]. The
cerebellum has reciprocal pathways connected to the hypothalamus and has been impli-
cated in depressive symptoms, implicating HPA involvement as well [116]. The strength in
the relationships between these regions and the HPA axis may implicate a strong response
to prenatal stress. Unfortunately, there is a paucity of literature on the involvement of the
cerebral cortex, which may be due to the ambiguity of anatomical delineation with the
prefrontal cortex.

4. Conclusions

Early gestational exposures to ionizing radiation show clear and significant damage
to multiple organs and molecular processes; however, late gestational changes are varied
and behavioral phenotypes are not always present or investigated, which may be due
to the choice of testing paradigms [117]. The neural regions previously discussed have
clear sensitivities to exposures to early-life stress, such as ionizing radiation and, together,
are implicated in important behavioral responses. Considering the regional influences on
behavior, inhibition, sensory input, cognition, fear, and memory consolidation, this review
focused on providing a portrait of behavioral and neural genetic phenotypes with respect
to early-life exposures to low doses of ionizing radiation. Inhibition of risk-taking behavior
and stress-coping strategies are valuable to survival and different stressors may bring about
adaptive phenotypes affecting similar behavioral and genetic expression patterns.
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