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Abstract: This paper presents an experimental investigation of the mechanical properties of rub-
berised concrete confined with basalt-fibre textile-reinforced mortar (TRM) jackets. The main aim
is to evaluate the effectiveness of the TRM confinement scheme on cylindrical rubberised concrete
specimens by examining five different mixtures (rubber content ranging from 10.5% up to 42% of
the total aggregate volume), including a plain concrete reference mixture. Unconfined and confined
specimens with either one or two TRM layers were subjected to monotonic axial loading. The results
indicate a decrease in the compressive strength of unconfined concrete as the rubber content increased.
The stress–strain curves of rubberised concrete became smoother at the peak as the rubber content
increased, also exhibiting increased axial strain capacity post-peak. Rubberised concrete exhibited
less brittle failure than plain concrete, accompanied by increased lateral dilation. Confinement with
TRM increased the compressive strength, while also enhanced the performance in terms of toughness
and axial deformation capacity compared to unconfined concrete. Overall, it is concluded that there
is a promising potential for using TRM-confined rubberised concrete in applications with ductility
demands and low environmental footprint specifications.
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1. Introduction

Greenhouse gas emissions from the construction industry are estimated at 5–12% of
total national emissions in the EU, while the recovery and recycling of materials could save
up to 80% of the aforementioned emissions, according to the European commission [1].
In order to reduce those emissions, promote sustainability and circular economy, the EU
has established a framework about waste management [2], also prompting the use of
recycled materials in construction [3]. Such a material is granulated rubber recovered from
end-of-life tyres. The disposal of end-of-life tyres in landfills poses a serious threat for
both the environment and public health, as waste rubber is not biodegradable [4]. On
the other hand, rubber can be recycled and reused as crumbs in road construction [5], in
asphalt mixtures or for soundproofing. As part of the recycling process, steel wires and
textile fabrics are also recovered and can be reused [6]. According to recent statistics [7],
91% of end-of-life tyres are being recycled and reused in the European Union; 61.75% is
used for material recovery and 32.85% is used as fuel in the energy production. However,
there is still a high-energy demand and high overall cost of the recycling process of waste
tyres, which raises concerns about the viability of the methods used [8], especially since the
demand and applications of rubber particles are not yet established.

Various approaches for engaging recycled materials in construction have been consid-
ered, such as using them as alternatives for cement or as aggregate in concrete. Considering
the benefits of reusing rubber waste in the construction industry, the latter approach was
selected and rubberised concrete, also called crumb rubber concrete, was first introduced in
the early 1990s by the research community. This alternative concrete utilises recycled rubber
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as aggregate, yet it is not widely accepted. The main reason is that early studies [9,10]
reported that the incorporation of rubber in concrete severely diminished the compressive
strength. The reduction in compressive strength was reported to reach up to 80–90% in
high rubber contents. Similar reduction trends have been reported for tensile and flexural
strength [11], while rubberised concrete has also exhibited improved resistance to abrasion,
impact and fatigue [12]. Rubberised concrete also had lower workability and slump than
plain concrete, but still within acceptable values for casting [13]. Higher rubber content and
fine rubber particles seemed to result in a greater reduction in workability [14]. The incor-
poration of rubber in concrete also led to a lower density, especially when coarser particles
were used, as well as increased air content due to its hydrophobic nature. However, in
some cases, segregation and bleeding were reported when the rubber content increased [15].
These significant variations in its properties are possibly attributed to the low stiffness and
hydrophobic nature of rubber particles, which result in a weak Interfacial Transition Zone
(ITZ) and poor bond between the concrete matrix and rubber particles [9].

A point of interest is the stress–strain behaviour of rubberised concrete. In a typical
stress–strain diagram, the incorporation of rubber seemed to increase the axial strain ca-
pacity. However, the simultaneous decrease in stiffness and compressive strength resulted
in a decreased axial strain at the peak when compared to plain concrete [9,10,12]. Higher
rubber contents led to extensive increase in lateral strain with notable lateral dilation of the
specimens, as rubber tends to expand more than concrete due to its higher Poisson’s ratio,
and coarse rubber particles enhanced this effect. Hence, rubberised concrete exhibited less
brittle failure compared to plain concrete [12]. Another important factor is toughness. In
plain concrete, a primarily brittle material, the plastic energy capacity is low. It has been ob-
served that the incorporation of rubber in concrete increased the energy absorption capacity,
leading to higher deformation upon failure and higher toughness [9,10]. However, in high
rubber concentrations, toughness was observed to decrease due to the high reduction in
compressive strength [16].

The changes in the fresh and mechanical properties of rubberised concrete have led to
extensive research for the optimisation of the mixture design. Admixtures such as fly ash
and silica fume and the optimisation of the cement, water, rubber and (super-)plasticiser
contents have been investigated [15]. Additionally, rubber surface treatment has been
evaluated as a solution for the poor adhesion of rubber particles, but without consider-
able improvement in performance [17,18]. Fibre reinforcement has also been considered
as a means to improve the performance of rubberised concrete. For this purpose, the
incorporation of recycled steel fibres was investigated. The incorporation of steel fibres
had a minimal effect in the compressive strength, but mitigated the decrease in tensile
and flexural strength of rubberised concrete [19–21]. However, the toughness was further
enhanced when steel fibres were included [22].

The last 5–6 years of research have been focused on the strengthening of rubberised
concrete in order to mitigate the reduction in compressive strength and take advantage of its
increased energy dissipation properties. Composite materials such as fibre-reinforced poly-
mer (FRP) jackets have been successfully used to confine cylindrical prisms and columns
under monotonic and cyclic loading. Although limited studies have been conducted to date,
all of them reached to similar conclusions; confinement was more effective in increasing
the compressive strength and ultimate axial strain in rubberised concrete for an increasing
rubber content. The increase in FRP layers further enhanced both the compressive strength
and ultimate axial strain [23–28]. A possible explanation is that the increased lateral di-
lation of rubberised concrete increases the confinement stresses that act upon the FRP
jackets. FRP-confined rubberised concrete indicated explosive failure mode, governed by
prominent volumetric expansion. Tests under cyclic loading suggested promising potential
for FRP-confined rubberised concrete when high deformability is required. Compared
to confined plain concrete elements, major differences were observed in the hysteretic
behaviour and energy dissipation of the plastic hinge regions [29–32]. Rubberised concrete
columns had a slightly lower drift than plain concrete columns, but higher energy dissipa-
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tion and delayed rebar yielding at the same drift level as the plain concrete ones. The axial
loading of columns was also found to play an important role on the effectiveness of the
confinement scheme.

However, to the best of the authors’ knowledge, no other alternative composite
materials have been studied as a means of confinement for rubberised concrete elements.
Lately, the so-called textile-reinforced mortar (TRM) has been introduced as an alternative
to FRP in order to overcome the disadvantages of the organic matrix of the latter, such as
poor performance in elevated temperatures and high cost. In contrast, textile-reinforced
mortars employ inorganic matrices, usually cement-based, combined with fibre meshes [33].
The confinement of concrete via TRM jackets has proved to be effective in increasing both
the compressive strength and axial strain capacity of concrete, especially as the number of
layers increase [34,35]. It was reported that the effectiveness of TRMs was lower than FRPs
in confining concrete cylinders [34,36], but only slightly lower for concrete columns [37].
The most important differences are that TRMs showed less brittle failure mode and were
highly affected by the mechanical properties of the matrix.

Since TRMs have not been used to date for the confinement of rubberised concrete,
this study aims to assess a novel strengthening scheme that utilises TRM jackets as a means
of confinement. The mechanical performance of four trial rubberised concrete mixtures
was evaluated and compared with a reference plain concrete mixture. Both unconfined and
basalt TRM-confined cylindrical specimens were subjected to monotonic axial loading. The
possibility of developing a sustainable construction material that can be used when high
deformability is required is also investigated.

2. Materials and Methods

Five trial concrete mixtures were examined, one plain concrete mixture as reference and
four rubberised concrete mixtures, in which part of the mineral aggregates were replaced
by rubber particles by volume. From each mixture 8 specimens remained unconfined, while
3 were confined with 1 TRM layer and 3 with 2 TRM layers. The plain concrete mixture
was denoted by “Control Mix—CM” and rubberised concrete mixtures were denoted by
“RX”; the use of rubber was denoted by the letter R, while the aggregate replacement ratio
was denoted by the number X. Unconfined specimens were denoted by the abbreviation
“Unc”, while confined specimens were denoted by the abbreviation “1L” or “2L”, for 1 or
2 TRM layers, respectively.

Type II Portland cement with a characteristic strength of 42.5 MPa and crushed lime-
stone aggregate (hereafter referred to as mineral aggregate) with a nominal maximum
size of 16 mm was used for all the concrete mixtures. The aggregates were sieved in six
gradations for the purposes of this study (Figure 1a). Rubber particles obtained from
the tyre-recycling plant Retire ABEE in Drama Greece were used. Their size varied from
2–8 mm and they were sieved in two gradations, 2–4 mm and 4–8 mm, to match the mineral
aggregate ones (Figure 1b). The bulk density of the rubber particles was approximately 1/3
of that of the mineral aggregates, as measured in the lab. A superplasticiser was also used
in all mixtures to improve the workability of fresh concrete.

A plain concrete mixture (CM) was designed according to the grade distribution limits
set in the Greek Concrete Technology Code 2016 [38], as presented in Figure 2. When
designing the mixtures, the possibility of water absorption from the dry mineral aggregate
was also considered, and more water was added in the final mixture. Hence, the water to
cement ratio (w/c) was equal to 0.397 for all mixtures. The proportions of each concrete
mixture are presented in Table 1. In rubberised concrete mixtures, two of the fine aggregate
particle sizes (2–4 mm and 4–8 mm) were replaced by a volume with rubber particles of the
same size with replacement ratios of 25% (mixture R25), 50% (mixture R50), 75% (mixture
R75) and 100% (mixture R100). Therefore, the rubber particles comprised 10.5%, 21%, 31.5%
and 42% of the total aggregate volume in mixtures R25, R50, R75 and R100, respectively
(Figure 3).
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Table 1. Proportions of all concrete mixtures [kg/m3].

Material
Mixture Notation

CM R25 R50 R75 R100

Cement 365.8 365.8 365.8 365.8 365.8
Water 145.2 145.2 145.2 145.2 145.2

Mineral aggregate

8–16 mm 507.9 507.9 507.9 507.9 507.9
4–8 mm 432.7 324.5 216.3 108.2 0
2–4 mm 357.5 268.1 178.8 89.4 0
1–2 mm 169.3 169.3 169.3 169.3 169.3

0.5–1 mm 169.3 169.3 169.3 169.3 169.3
0–0.5 mm 244.6 244.6 244.6 244.6 244.6

Rubber particles
4–8 mm 0 36.1 72.1 108.2 144.2
2–4 mm 0 29.8 59.6 89.4 119.2

Superplasticiser 2 2 2 2 2

A concrete mixer with 200 L capacity was used. The mixing procedure of the rub-
berised concrete began by gradually adding each gradation of mineral aggregate and the
rubber particles and dry mixing for approximately 1 min to ensure a good distribution. The
cement was then added to the concrete and dry mixed for another minute. The superplasti-
ciser was diluted in the water, which was added gradually to the mixture. The concrete was
mixed for another 2–3 min until it reached the required consistency. The preparation of the
specimens was performed according to EN 12390–2:2019 [39]. The concrete was poured into
plastic moulds to prepare cylindrical specimens of 100 mm diameter and 200 mm height.
All moulds were filled with fresh concrete in three equal layers, while each layer was
compacted using a steel rod. The free surface was finished using a trowel. All specimens
were left to harden for a minimum of 24 h before removing from the moulds. Hardened
specimens were left to cure in air at least 14 days in ambient environment conditions before
the application of the TRM confinement.

To evaluate the workability of the fresh concrete, slump and air content were measured
for each mixture. A slump test was performed using a standard Abrams cone according
to EN 12350-2:2019 [40]. An air content test was performed using a hydraulic pressure
apparatus as determined by EN 12350-7:2019 [41]. After hardening, the bulk density of
hardened concrete was determined according to EN 12390-7:2019 [42].

TRM confinement was applied in 6 specimens from each mixture; 3 specimens were
confined with 1 TRM layer and 3 with 2 TRM layers, totalling in 30 confined specimens
from all five mixtures. A two-directional coated basalt-fibre textile with a 6 mm square
mesh was used for the TRM jackets. The particular mesh size was considered more suitable
for the size of the cylindrical specimens used in this study. The properties of the basalt
textile according to the manufacturer’s datasheets are presented in Table 2. A commercially
available cementitious mortar was used as matrix, comprising a water to binder ratio
of 0.23. The dry binder contained fine aggregates with a maximum size of 1.3 mm and
microfibres made of polypropylene. The strength of the mortar was found through flexural
and compressive tests on three 40 mm × 40 mm × 160 mm mortar prisms according to
EN 1015-11:2019 [43]. The average values of the compressive and flexural strength were
22.59 MPa and 4.02 MPa, respectively.

Table 2. Properties of basalt textile.

Mesh Size Weight
with Coating

Equivalent
Thickness

Tensile
Strength

Modulus of
Elasticity

Failure
Strain

6 mm × 6 mm 250 g/m2 0.039 mm 1542 MPa 89 GPa 1.8%
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For the jacket application, the following procedure was followed: (a) a first layer of
mortar was applied on clean and dampened concrete surface; (b) the textile was pressed in
the mortar and wrapped around the cylinder in either one or two layers, including an over-
lapping zone equal to 1/3 of the specimen’s circumference (Figure 4); (c) additional mortar
was applied in between the layers and a final mortar layer was applied to completely cover
the textile; and (d) extra confinement was provided near the edges of the cylinders (20 mm
wide basalt textile strips) to prevent local concrete crushing due to stress concentration. As
a part of the curing process of the jackets, the specimens were immersed in water for one
minute for two consecutive days after the hardening of the jackets. Then, specimens were
left to cure in air in ambient environment conditions for at least 28 days before testing.
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Figure 4. Application of the TRM jacket.

Before testing, all specimens were capped with gypsum to ensure the levelness of
the testing surface. Potentiometers were used to record axial deformations in the majority
of specimens. Two potentiometers (POT A and POT B) were attached parallel to the
specimen’s longitudinal axis and placed diametrically opposed, as presented in Figure 5.
The compression tests were carried out using a 3000 kN capacity testing machine with a
constant displacement rate of 15 µm/s. Data were recorded using a fully automated data
acquisition system.
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3. Results and Discussion
3.1. Fresh and Physical Properties

The results of the fresh and physical properties of the concrete mixtures are presented
in Table 3. Contrary to previous studies [13–15], the slump was not found to be significantly
affected by the increasing rubber content except for mixture R100. This differentiation in
results is probably due to the use of a superplasticiser. Hence, mixtures CM, R25, R50 and
R75 had a similar collapsed slump which ranged from 150 to 165 mm. On the contrary,
in mixture R100, the slump value was reduced significantly to 65 mm, thus exhibiting
a decrease of 57% compared to the plain concrete mixture. In this case, rubber particles
comprise 42% of the total aggregate volume; they have a higher surface area than mineral
aggregates and the friction in fresh concrete increased resulting in reduced workability.

Table 3. Results of the fresh and physical properties.

Mixture Notation Slump [mm] Air Content [%] Bulk Density [kg/m3]

CM 150 2.8 2512.0

R25 155 2.2 2383.6

R50 165 2.4 2206.4

R75 160 3.9 2133.7

R100 65 n/a 1 1956.8
1 Data not available.

Entrained air increased up to 39% as the rubber content increased. This is in accordance
with previous studies [15,18,21], as the hydrophobicity of rubber particles entraps air
around them. Indicative of the increased air content of rubberised concrete mixtures with
high rubber content was the apparent porosity in the specimens’ surface. Additionally, the
bulk density of hardened concrete was reduced up to 22% with the incorporation of rubber
particles. This is mainly due to the lower density of rubber particles. Additionally, the
increased porosity and air voids in the rubberised concrete further decreased the density.
The overall decrease in density results in substantially reduced weight in rubberised
concrete members. This is a favourable property, particularly in the case of seismic loading
because it will lead to a reduced seismic mass.

3.2. Mechanical Properties

The experimental results related to the mechanical properties are summarised in
Table 4. Compressive strength was found as the average from eight tested unconfined
specimens, and from three confined ones per investigated parameter. Deformation data
were acquired from three specimens per mixture. Toughness was calculated as the area
under the stress–strain curve until the moment of failure of the specimens. Failure was
decided by the authors as the point where the stress dropped by 20% after the peak.

3.2.1. Compressive Strength

The statistical analysis of the concrete compressive strength was performed using the
statistical program SPSS Statistics (v. 27). The effect of rubber content (CM, R25, R50, R75
and R100) and type of confinement (0L, 1L and 2L) on concrete strength was explored
with a 5 × 3 ANOVA with rubber content and confinement as the between-subjects factors.
Post hoc comparisons using Tukey’s method were conducted when necessary. Data are
presented as mean values (±SEM) and are plotted by rubber content in Figure 6. Statistical
significance was set at a <0.05.
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Table 4. Results of the mechanical properties of the rubberised concrete. Numbers in parentheses
refer to the standard deviation.

Mixture Notation Compressive
Strength [MPa] Strain at Peak [‰] Toughness [104 J/m3]

Unc_CM 33.70 (2.91) 2.120 (0.24) 5.645 (0.98)
Unc_R25 18.86 (1.97) 1.672 (0.30) 3.121 (0.57)
Unc_R50 11.25 (1.38) 1.285 (0.10) 1.829 (0.05)
Unc_R75 9.30 (0.47) 1.935 (0.78) 2.235 (1.26)

Unc_R100 7.39 (0.52) 1.591 (0.78) 2.220 (0.22)

1L_CM 39.01 (2.07) 1.811 (0.29) 5.454 (1.09)
1L_R25 24.79 (1.32) 1.740 (0.54) 4.217 (0.78)
1L_R50 15.18 (1.06) 2.543 (0.69) 4.571 (0.80)
1L_R75 12.41 (0.35) 1.190 (0.39) 14.677 (1.37)
1L_R100 10.01 (0.66) 1.736 (0.32) 12.316 (2.99)

2L_CM 41.00 (3.63) 2.314 (0.14) 11.492 (2.04)
2L_R25 24.99 (1.18) 1.649 (0.29) 23.622 (1.72)
2L_R50 14.45 (0.71) 2.325 (0.77) 39.642 (1.25)
2L_R75 12.23 (0.41) 1.427 (0.38) 41.020 (3.62)
2L_R100 10.21 (0.29) 1.672 (0.54) 29.085 (5.93)
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As suggested by previous studies [9,10,13,14], the compressive strength of unconfined
rubberised concrete decreased for an increasing rubber content, and in some cases, the
decrease was up to 85%. The statistical analysis of concrete compressive strength revealed
a significant main effect of rubber content (F(4, 53) = 569.92, p < 0.001, partial η2 = 0.98).
Post hoc comparisons revealed that increasing the rubber content decreased compressive
strength (CM: 37.90 ± 0.49, R25: 22.88 ± 0.48, R50: 13.63 ± 0.48, R75: 11.32 ± 0.48,
R100: 9.21 ± 0.53, CM vs. R25 vs. R50, R75 vs. R100; p < 0.05). Replacing mineral
aggregates with rubber particles reduced the compressive strength by 44.1%, 66.6%, 72.4%
and 78.1% for mixtures R25, R50, R75 and R100, respectively (Figure 6), signifying the
severe impact of incorporating rubber particles in concrete. The poor adhesion of the rubber
particles with the cement paste and the high porosity of the mixture further reduced the
compressive strength. The reduction rate was higher up to mixture R50 due to the rubber
content increasing up to the point where the rubber particles highly affect the concrete’s
behaviour [19].

Confinement with 1 TRM layer increased the compressive strength by 15.8% for
CM and to 35.5% for R100. In the case of two TRM layers, the increase was 21.7% for
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CM and 38.1% for R100 (Figure 6). The statistical analysis indicated that confinement
also significantly affected strength (F(4, 53) = 154.45, p < 0.001, partial η2 = 0.69). More
specifically, specimens confined by one or two layers exhibited a higher strength compared
to the unconfined specimens (0L: 16.1 ± 0.26 vs. 1L: 20.28 ± 0.42 and 0L: 16.1 ± 0.26 vs.
2L: 20.58 ± 0.44; p < 0.001). Similar to what has been reported for FRP confinement [25,28],
the effectiveness of the TRM confinement was enhanced for a higher rubber content, as the
increased lateral dilation caused by the rubber particles led to the earlier activation of the
TRM jackets. The de-creasing trend of the compressive strength was comparable to that of
the unconfined specimens as the rubber content increased.

Interestingly, no significant difference was found between specimens confined with
one or two layers (1L: 20.28 ± 0.42 vs. 2L: 20.58 ± 0.44; p > 0.05) (see Figure 6). The
confinement effect was similar to all concrete specimens regardless of the rubber con-
tent, as implied by the non-significant “rubber content × confinement type” interaction
(F(8, 53) = 2.1, p > 0.05). More specifically, confinement with two TRM layers did not sig-
nificantly increase the compressive strength (increase up to 5%) when compared with one
TRM layer-confined specimens. This is attributed to the late activation of the jackets and
their early failure at one of the two ends of the cylindrical concrete specimens; the provided
additional confinement at the two ends proved to be inadequate.

3.2.2. Stress–Strain Behaviour

Typical stress–strain curves for the unconfined and confined specimens are presented
in Figures 7 and 8, respectively. Failure is marked on each curve at the drop of stress
by 20%. It is evident that the incorporation of rubber in concrete significantly decreased
the compressive strength, but also increased the axial strain capacity post-peak by the
means of increased ultimate axial strain, although the axial strain at the peak was reduced
when compared to plain concrete. Indicative is that plain concrete exhibited strain at the
peak around 2‰, while rubberised concrete ranged from 1.3‰ to 1.9‰ and the reduction
was greater for mixture R100. It was also observed that the curve progressively became
smoother at the peak and the effect was more pronounced as the rubber content increased.
Comparable to previous studies [9,10,13], the ultimate axial strain increased as the rubber
content increased. This can also be observed when comparing the normalised strain at
different stress levels after the peak load, as presented in Figures 9 and 10 for the unconfined
and confined specimens, respectively. The axial strain of each mixture is normalised with
the strain at peak load. As it is observed in Figure 9, the plain concrete indicated almost no
increase in axial strain after the peak as it failed immediately after reaching its maximum
stress. When the rubber content increased, the axial strain capacity post-peak of rubberised
concrete also increased, especially in higher rubber contents. Indicative of this behaviour
is the fact that the specimens failed (denoted by drop of stress by 20%) in higher ultimate
strain values than plain concrete, as noted in Figure 9 with an increasing rate. Thus, the
rubberised concrete exhibited less brittle behaviour than the plain concrete because of the
progressive cracking development.

It is evident that confinement enhanced the compressive strength and further increased
the axial strain capacity post-peak in all mixtures. Specifically, the ultimate axial strain
ranged from 1.7‰ to 3‰ for unconfined specimens, while confined specimens exhibited an
ultimate axial strain of more than 10‰ in most cases. The effect was more pronounced as
the rubber content increased. However, in all confined specimens after achieving the peak
stress, a significant drop in strength was observed, as presented in Figure 8, due to the late
activation of the jackets. As a result, the confinement remained inactive until the concrete
core expanded enough laterally in order to activate the jackets. This is probably attributed
to the large thickness of the mortar and the inadequate additional confinement provided at
the edges. Yet, after the activation, some specimens managed to recover part of the initial
lost strength, while all of them exhibited enhanced axial strain capacity post-peak.

When comparing confinement between one and two TRM layers, one will notice very
minor differences in terms of overall behaviour. In both cases, when the rubber content
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increased, the drop in stress was not as abrupt, since a higher rubber content led to increased
lateral expansion, thus resulting in the earlier activation of the jackets. This can also be
observed through the comparison of the increase in the axial strain after the peak. For
mixtures CM, R25 and R50 confined with one TRM layer, specimens failed almost abruptly,
hence the marginal increase in axial post-peak strain (Figure 10a). However, mixtures R75
and R100 indicated a higher axial strain capacity post-peak. The high increase in post-peak
strain resembles ductile materials. On the other hand, specimens confined with two TRM
layers showed enhanced axial strain capacity post-peak and had a slightly less abrupt loss
of strength (Figure 10b). The activation of the jackets was enhanced, therefore leading to a
rapid increase in the axial strain post-peak in mixtures R50, R75 and R100.

When comparing the stress–strain curves of the same mixture, it was observed that
confinement resulted in a compressive strength and axial strain capacity post-peak increase
but not effectively for every mixture. For the plain concrete mixture (CM), the increase in
compressive strength is evident, as well as the abrupt stress drop post-peak (Figure 11a). In
this case, confinement was activated too late, after the stress was reduced by 20% (where
the failure is denoted), meaning that confinement was not totally effective. Mixture R25
(Figure 11b) exhibited a similar behaviour to plain concrete, signifying that the rubber
content was relatively low, and specimens did not manage to expand enough laterally
in order to activate the jackets. This resulted in a marginal increase in terms of ultimate
axial strain, which remained below 5‰. Mixture R50 (Figure 11c) had a better performance
when confined with two TRM layers, as strain hardening was observed leading to a high
axial strain capacity post-peak, indicating ultimate axial strain on average 27.5‰. Yet, the
increase in compressive strength was marginal compared to one TRM layer confinement.
The best performance was observed in mixture R75 (Figure 11d) as both confined specimens
managed to attain a high axial strain capacity post-peak; the ultimate axial strain was 22‰
and 28‰ on average for one and two TRM layers, respectively. Especially, specimens
confined with two layers exhibited strain hardening post-peak and a less abrupt drop of
stress. This is probably due to the quicker activation of the jackets, as the specimens with
increased rubber content exhibited larger lateral deformations. However, the performance
of specimens from mixture R100 (Figure 11e) was inferior when compared to those from
mixture R75. This is attributed to the very high rubber content, which significantly de-
creased compressive strength up to a point where all the mechanical properties of concrete
are highly affected by rubber particles. As a result, confined specimens from mixture R100
failed when the ultimate axial strain reached 10‰ and 27‰ on average for one and two
layers, respectively.
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3.2.3. Toughness

The toughness of each mixture was calculated as the area under the stress–strain curve
until failure (denoted by drop of stress by 20%). For the unconfined specimens, xplain
concrete mixture (CM) exhibited the highest toughness, and the rest of rubberised concrete
mixtures had similar lower values (Figure 12). This indicates that, despite their higher
axial strain capacity post-peak compared to plain concrete, the significant loss of strength
prevented rubberised concrete from achieving a high energy absorption capacity.
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Concerning the specimens confined with one TRM layer, the plain concrete (CM)
exhibited a higher toughness than mixtures R25 and R50 by 22.7% and 16.2%, respectively.
On the contrary, mixtures R75 and R100 exhibited a higher toughness than plain concrete
by 169.1% and 125.8%, respectively. This is attributed to the relatively low axial strain
capacity post-peak of the former mixtures. In the case of specimens confined with two
TRM layers, the plain concrete exhibited a lower toughness than all the rubberised concrete
mixtures. The increase in toughness ranged from 105.6% to 256.9%. In both cases, the
rubberised concrete was expected to have a higher toughness due to its increased axial
strain capacity post-peak. However, the significant loss of strength due to the high rubber
content and early failure of the confinement prevented some specimens from enhancing
their toughness and energy absorption capacity. Hence, better results are expected if the
optimisation of the mixtures and the confinement scheme are accomplished. Addition-
ally, specimens confined with two TRM layers exhibited a ductile-like behaviour, having
increased toughness, an important property when high ductility and/or deformability is
required in concrete members.

Table 5 presents the toughness of three different mixtures that exhibit similar compres-
sive strengths and can aid the evaluation of the confinement effect on both compressive
strength and toughness. More specifically, the toughness of an unconfined mixture (R50)
with a compressive strength of 11.25 MPa is compared to two confined mixtures that exhibit
similar compressive strengths of 10.01 MPa and 10.21 MPa. The unconfined specimens
from mixture R50, in which rubber particles comprised 21% of the total aggregate volume,
had an average compressive strength of 11.25 MPa. When the rubber content was doubled
(42% of the total aggregate volume) in mixture R100, the confined specimens with one and
two layers had similar compressive strengths, 10.01 MPa and 10.21 MPa, respectively. It is
evident that an increase in rubber particles in the mixture reduces the compressive strength,
but the confinement can counteract this decrease and provide a significant increase in
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toughness. The increase in rubber content in addition to confinement by one or two TRM
layers resulted in a toughness increase by 573% and 1490%, respectively. Therefore, the
same compressive strength can be achieved while taking advantage of the high toughness
provided by the rubber particles when increasing the rubber content, but also applying con-
finement. That system could be potentially used in applications where high deformability
is required, such as columns in seismic-prone areas.

Table 5. Comparison between specimens with similar compressive strengths.

Specimen ID Rubber Content
[%] Confinement Compressive

Strength [MPa]
Toughness
[104 J/m3]

Unc_R50 21 no 11.25 1.829

1L_R100 42 1 layer 10.01 12.316

2L_R100 42 2 layers 10.21 29.085

3.3. Failure Modes

All unconfined CM specimens exhibited a similar brittle failure as a result of extensive
longitudinal cracking; a typical failure mode is presented in Figure 13a. The use of rubber
particles altered the failure mode to a more gradual one as the rubber content increased.
The incorporation of rubber particles led to an increased number of finer cracks in the
specimens, as presented in a typical specimen from mixture R100 in Figure 13b. In high
rubber contents, extensive cracking appeared at the top or bottom surfaces of the cylindrical
specimens. Additionally, specimens with increased rubber content exhibited larger lateral
dilation due to rubber’s high elasticity.
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The confined specimens failed due to the fibre rapture of the textile. Failure was
initiated at one of two ends of the specimens, proving that the provided additional confine-
ment at the edges was inadequate. The typical failure modes of the confined specimens
exhibiting fibre rupture are presented in Figure 14, where one can notice the failure at the
edge of the jackets. In almost half of the specimens, the debonding of the TRM jacket at
the end of the overlap zone was observed as well as fibre rupture. The failure in this case
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was also initiated at one edge and progressed towards the middle of the specimen. The
typical failure modes of confined specimens, including the debonding of the TRM jacket,
are presented in Figure 15. In addition, the confined specimens exhibited notable lateral
dilation as the rubber content increased and the effect was further pronounced when two
TRM layers were applied.
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4. Conclusions

This study experimentally investigated the mechanical performance of TRM-confined
rubberised concrete subjected to monotonic axial loading. Cylindrical specimens from one
reference plain concrete mixture and four rubberised concrete mixtures with increasing
rubber content were tested. In total, 70 specimens were tested both unconfined and
confined with either one or two TRM layers. As a result, compressive strength, stress–strain
behaviour and toughness were assessed for each mixture and confinement scheme. The
main conclusions are presented below:

• Slump and entrained air increased up to 6.67% and 39%, respectively, when the rubber
content increased to 31.5% of the total volume. Further increase in the rubber content
reduced the workability. The density of hardened concrete was reduced up to 22%.

• Replacement of mineral aggregates with rubber particles in the concrete mixture
resulted in a decrease in concrete compressive strength. The reduction was 44% for
rubber content of 10.5% and reached up to 78% for rubber content 42% of the total
aggregate volume. Confinement increased compressive strength up to 35.5% and
38.1% for one and two TRM layers, respectively.

Statistical analysis revealed that the rubber content and the application of confinement
are significant parameters affecting the compressive strength. However, the number of
confinement layers was found of no significance.

• Stress–strain curves became smoother at the peak, especially when the rubber content
increased, while exhibiting increased axial strain capacity post-peak. The behaviour of
confined rubberised concrete with one and two TRM layers was similar, but the latter
seemed to further enhance the axial strain capacity.

• Ultimate axial strain of the mixture with the highest rubber content (42%) was less
than that of the mixture with the second highest rubber content (31.5%) when confined.
This could be attributed to the very high rubber content of the former, indicating the
importance of the rubber content optimisation.

• For unconfined specimens, plain concrete mixtures exhibited the highest toughness,
because the significant loss of strength prevented rubberised concrete from achieving
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a high energy absorption capacity. Confined rubberised concrete indicated increased
toughness up to 169.1% and 256.9% for one and two TRM layers, respectively, while
confinement with two TRM layers was more effective, and specimens exhibited a
ductile-like behaviour.

• Rubberised concrete indicated a less brittle failure mode than plain concrete, accom-
panied by increased lateral dilation, which was even more pronounced as the rubber
content increased.

Overall, the above results indicate that rubberised concrete when confined with TRM
jackets can exhibit improved axial strain capacity post-peak and toughness. These prop-
erties could be proved helpful in applications where high deformability is required, such
as members that are subjected to seismic loads. Additionally, the use of a recycled mate-
rial (rubber particles) promotes sustainability in construction as part of a goal to reduce
greenhouse gas emissions. Future research could focus on the optimisation of the rubber
content and gradation in the concrete mixtures. Further examination of TRM systems is
also recommended in order to evaluate the influence of the mortar’s properties as well as
the different textiles’ mechanical properties and geometries.
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