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Abstract: This paper reviews the history of the development of impressed current cathodic protection
of atmospherically exposed reinforced concrete from the first trials in 1959 on bridges to recently
installed systems on a wide range of structures around the world. The paper covers the research
efforts, anode developments, control systems and monitoring sensors which are reviewed and their
evolution explained. The research into the potential and actual side effects of cathodic protection
currents in concrete are summarised. The development of standards and guidance on impressed
current cathodic protection is also reviewed.
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1. Introduction

The corrosion of reinforcing steel in concrete has developed into one of the biggest
durability issues for reinforced concrete structures. Impressed current cathodic protection
(ICCP) was developed as a method for controlling this problem and extending the life of
reinforced concrete. The background to our understanding of the problem of the corrosion
of steel in concrete, its investigation and repair options are discussed elsewhere, e.g., see
Broomfield [1]. This paper reviews the author’s involvement in and understanding of
the history and development of ICCP for atmospherically exposed reinforced-concrete
structures, with some of the key papers in that development process.

2. Historical Development

Cathodic protection (CP) of metals in sea water was first reported in 1824, by Humphry
Davy [2]. However, it was not very successful in the application for which it was developed.
In the early 1940s CP was applied to an old natural gas piping network that had been
developing leaks at a rapidly increasing rate, to the point where the owner considered
abandoning it. The observed reduction in the number of leaks immediately after the CP
installation was considered impressive. A similarly substantial reduction in the frequency of
leaks on a cast iron water main was achieved at about the same time. Modern specifications
for the cathodic protection of active ocean-going ships were first described in 1950 [3].

The earliest applications of cathodic protection to reinforced concrete were to pre-
stressed concrete water pipelines, see for example Unz [4] and Heuze [5], with reported
applications before 1955 to buried reinforced concrete water tanks, steel reinforcement and
linings of nuclear reactor containment vessels and concrete coated piling, see Vrable [6].
Most of the early applications relate to reinforced concrete buried in soils. Such applications
allowed the use of conventional buried pipeline cathodic protection design principles and
anode systems.

The first major step toward impressed current cathodic protection (ICCP) of atmospher-
ically exposed reinforced concrete occurred in the USA as early as 1959 when Stratfull [7]
applied a trial system to bridge beams and pile caps on the seven mile long San Mateo-
Hayward Bridge in San Francisco Bay. This required a departure from conventional

Constr. Mater. 2021, 1, 1–21. https://dx.doi.org/10.3390/constrmater1010001 https://www.mdpi.com/journal/constrmater

https://www.mdpi.com/journal/constrmater
https://www.mdpi.com
https://dx.doi.org/10.3390/constrmater1010001
https://dx.doi.org/10.3390/constrmater1010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/constrmater1010001
https://www.mdpi.com/journal/constrmater
https://www.mdpi.com/2673-7108/1/1/1?type=check_update&version=2


Constr. Mater. 2021, 1 2

buried and submerged anode systems, with novel anode designs applied directly to the
concrete surface.

Between the first full bridge deck installation in 1973, also reported by Stratfull [8,9],
and 1989, a total of 287 systems were installed on US interstate highway bridges according
to Broomfield [10], predominantly on bridge decks suffering from de-icing salt attack,
although a number of substructure systems were also being installed in North America [11].
Many more systems were also applied to other structures as well as to additional bridges
outside the US interstate system.

The initial development of ICCP in North America was due to the fact that the
USA and Canada did not adopt the practice of applying waterproofing membranes to
highway bridge decks, as was more common in Northern Europe and other areas where
chloride based de-icing salts were used extensively [12]. Potholing of bridge decks due
to reinforcement corrosion became a major problem in North America and ICCP was
developed as a cost-effective strategy for extending bridge deck life. Although the lack of a
membrane and overlay led to chloride ingress and reinforcement corrosion, it also meant it
was straightforward to apply an ICCP anode system to the bare concrete bridge deck.

The “incipient anode” effect was identified as leading to the early failure of patch
repairs where the problem was chloride-induced reinforcement corrosion [13]. This occurs
because an actively corroding anode can be effectively cathodically protecting steel around it,
even if the local chloride level is at or above the threshold for corrosion. When corrosion
induced damage occurs and the anode area is repaired, the chloride-contaminated concrete
is replaced with new, uncontaminated concrete so the previous anode becomes a cathode.
This encourages the area around to become anodic and start corroding as shown in Figure 1.
This leads to cracking and spalling of concrete around the patch [14].

Constr. Mater. 2020, 1, FOR PEER REVIEW 2 

 

Francisco Bay. This required a departure from conventional buried and submerged anode systems, 
with novel anode designs applied directly to the concrete surface. 

Between the first full bridge deck installation in 1973, also reported by Stratfull [8,9], and 1989, 
a total of 287 systems were installed on US interstate highway bridges according to Broomfield [10], 
predominantly on bridge decks suffering from de-icing salt attack, although a number of 
substructure systems were also being installed in North America [11]. Many more systems were also 
applied to other structures as well as to additional bridges outside the US interstate system. 

The initial development of ICCP in North America was due to the fact that the USA and Canada 
did not adopt the practice of applying waterproofing membranes to highway bridge decks, as was 
more common in Northern Europe and other areas where chloride based de-icing salts were used 
extensively [12]. Potholing of bridge decks due to reinforcement corrosion became a major problem 
in North America and ICCP was developed as a cost-effective strategy for extending bridge deck life. 
Although the lack of a membrane and overlay led to chloride ingress and reinforcement corrosion, it 
also meant it was straightforward to apply an ICCP anode system to the bare concrete bridge deck. 

The “incipient anode” effect was identified as leading to the early failure of patch repairs where 
the problem was chloride-induced reinforcement corrosion [13]. This occurs because an actively 
corroding anode can be effectively cathodically protecting steel around it, even if the local chloride 
level is at or above the threshold for corrosion. When corrosion induced damage occurs and the anode 
area is repaired, the chloride-contaminated concrete is replaced with new, uncontaminated concrete 
so the previous anode becomes a cathode. This encourages the area around to become anodic and 
start corroding as shown in Figure 1. This leads to cracking and spalling of concrete around the patch [14]. 

 
Figure 1. The incipient anode or ring anode effect, where patching creates new anodic corrosion sites 
around the repair. Reprinted from Ref. [1] with permission. 

An example of the sequential patching caused by this effect on a US bridge deck is shown in 
Figure 2. A cathodic protection system can control corrosion across the area where the anode is 
installed, while alternatives, such as coatings, were demonstrated to be ineffective in controlling 
chloride-induced corrosion as found by researchers at Aston University UK [15]. Similarly, in the 
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An example of the sequential patching caused by this effect on a US bridge deck is
shown in Figure 2. A cathodic protection system can control corrosion across the area
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where the anode is installed, while alternatives, such as coatings, were demonstrated to
be ineffective in controlling chloride-induced corrosion as found by researchers at Aston
University UK [15]. Similarly, in the USA, Federal Highway Administration (FHWA)
sponsored research found that “the use of overlays, waterproof membranes and sealers
only serve to slow the corrosion rate. On the other hand, CP has proven to be successful in
retarding and controlling chloride-induced corrosion in reinforced concrete” [16].
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Figure 2. Example of multiple patches on a bridge deck due to the incipient anode effect.

In the UK, the initial interest in ICCP was the protection of bridge substructures where
salt leakage from the waterproofed decks leads to corrosion, the waterproofing having
minimised chloride ingress and corrosion and also making it difficult to install anodes
on decks. In a survey, over 20% of a sample of 400 bridges were found to be suffering
from reinforcement corrosion, primarily due to deicing salt ingress [17]. Some of the
earliest applications of ICCP systems to reinforced-concrete buildings were in the UK.
In some cases, a calcium chloride set accelerator had been added to the concrete mix in the
1960s construction boom, leading to corrosion rather than deicing salt or sea salt ingress [18].
Also, structures exposed on or near the sea front were identified as needing protection [19].
The initial UK research and development efforts, therefore, concentrated on conductive
coating anodes for vertical and soffit applications. Early installations on reinforced concrete
structures exposed to sea salt were also conducted in Australia [18].

3. Research Projects

Subsequent to Stratfull’s original research at the California Department of Transporta-
tion, the biggest single research project on ICCP for atmospherically exposed reinforced
concrete was the Strategic Highway Research Program (SHRP), set up by the National
Academy of Science and funded by the US State Highway Agencies and the Canadian
Provincial Highway Agencies. This ran between 1987 and 1992 and spent approximately
$150 million on concrete, asphalt, long-term pavement performance and maintenance.
SHRP spent $10 million on the investigation and rehabilitation of corrosion of reinforcement
in concrete bridges and produced approximately 40 reports on the subject, available on
the Transportation Research Board Website. SHRP research on ICCP included laboratory
testing as well as field investigations of existing installations, as reported in Broomfield [10],
and other reports are referenced later in this paper. There are also numerous reports on
cathodic protection systems applied to highway structures published by the US Federal
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Highway Administration (FHWA) and the Transportation Research Board, particularly
under the National Cooperative Highway Research Program (NCHRP), some of which are
discussed later in this paper.

In the UK, research was undertaken by the Transport Road Research Laboratory
(TRRL), initially emphasising the need for a lightweight, easily applied conductive coating
anode for reinforced concrete bridge substructures. A large-scale instrumented slab had a
conductive coating applied and was subjected to outdoor exposure and monitoring at a
commercial laboratory [20]. Further TRRL sponsored work was reported by McKenzie [21].
This confirmed the interest in protecting substructures rather than decks and looked at
the effectiveness of CP current, the effect of ICCP on steel to concrete bond strength,
and potential decay criteria. The success of this work led to initial trials on the Midland
Links elevated motorway cross heads [22] as described later in this paper. Other national
highway agencies carried out research projects on bridges, including the Norwegian
Public Roads Administration [23] and the Finnish National Roads Administration [24].
These projects helped to give confidence to highway agencies, consultants and contractors
in the new technology and encouraged manufacturers to develop materials and equipment
for the application of CP in new fields.

4. Anode Development

The requirements for an ICCP anode can be summarised as:

1. Resistant to attack by the acids formed by the anodic reactions for the required
design life.

2. Compatible with the concrete it is bonded to or embedded in.
3. Electrically conductive across the anode/concrete interface, i.e., capable of converting

electrons to ions and vice versa so that current flows from the anode through the
concrete to the steel.

The present range of impressed current anode systems for steel in concrete can be
divided into 4 generic types:

• Mesh or grid systems with cementitious overlays;
• Ribbon or strip systems grouted into slots or channels in the concrete cover;
• Discrete, probe or point anodes, grouted into holes drilled in the concrete;
• Coating anodes applied to the concrete surface.

However, the earliest anodes for reinforced-concrete applications fall outside these
categories. The earliest ICCP bridge deck systems were developed by US state departments
of transportation initially using simple high-silicon cast iron anodes in an asphalt overlay
made conductive by the addition of carbon particles applied to bridge decks. These could
be considered to be conventional silicon iron anodes, in an asphalt-modified coke breeze
back fill as used for pipelines in soil but “flattened out” for use on a bridge deck. In the
period 1973–1980, some 35 of these systems were installed and many were reported as still
operating satisfactorily in 1983–1985, as reported by Stratfull [9]. Broomfield and Tinnea
reported some of them still working in 1989 [25].

A variation of these conductive overlay systems, with added sand and stone aggregates
to improve the mechanical properties, became a standard repair option for the Canadian
Province of Ontario. In a conference in 1985, which reviewed progress on the use of
ICCP by state and provincial highway agencies, the Ontario Ministry of Transportation
(OMT) reviewed their progress in addressing bridge deck rehabilitation, including ICCP,
and published its Rehabilitation Manual [26]. OMT had installed some 40 systems by 1987,
as reported by Schell, Manning and Pianca [27]. One of the problems with the conductive
overlay system was that in the winter, water froze at the conductive asphalt to concrete
interface so it was important that there was sufficient air entrainment in the concrete to avoid
freeze thaw damage to the concrete. This precluded its application to some older bridges,
built before air entrainment was routinely specified in areas prone to freeze thaw. Also,
most North American bridge decks were not originally designed for overlays. There was,
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therefore, frequently a preference that the anode system did not raise the running surface
on the bridge. To overcome this requirement an anode system was developed in which the
anodes were placed into slots cut into the deck. The earliest systems used a conductive
carbon-filled polymer mix around a primary anode, frequently using bare copper wire.
With time, carbon strand “primary anodes” in the conductive polymer were found to be
more durable. It was also found that a 300 mm (1 foot) spacing between slots gave even
current distribution on bridge decks [28]. The 300 mm spacing became the default spacing
for future slotted and probe anode systems for many years. These slotted conductive
polymer systems proved to have a limited life due to acid attack at the concrete/polymer
interface [29]. These types of carbonaceous anodes are now considered obsolete, although
many worked for several decades and some may still be operational, or at least were so
until the bridge deck was replaced. One of the problems with carbon-based anodes or
backfill around anodes is that one of the anode reactions is the evolution of carbon dioxide.
The carbon dioxide will carbonate the concrete, depleting the alkalinity in the pore water
and, therefore, increasing the risk of acid attack of the cement paste at the anode concrete
interface. Also, chloride gas evolves from the chloride ions attracted to carbon based
anodes, also forming acids to attack the paste.

One of the first commercially developed anodes was expanded titanium mesh with
a mixed metal oxide coating (MMOTi) that preferentially evolved oxygen rather than
chlorine [30]. An early installation is shown in Figure 3. This proved extremely durable
as an anode on bridge decks [31] but suffered from problems when applied with sprayed
concrete overlays to soffits or vertical surfaces where debonding could occur [32].
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Figure 3. Mixed metal oxide coated titanium mesh anode being installed on a ridge deck. Courtesy
Jack Bennett. Reprinted from Ref. [1] with permission. Copyright 2007 Taylor and Francis.

Another early commercially developed anode was a copper wire in a conductive
polymer cable [33]. This could be woven across a deck with a concrete overlay applied or
fixed to a vertical or soffit surface and a sprayed concrete overlay applied. Unfortunately,
as well as the risk of debonding of the overlay, the polymer cable proved to degrade too
rapidly when used at an anode, probably for the reasons described above for carbonaceous
anodes, and is no longer used in concrete [34,35].

Many currently applied anode systems are MMOTi. These anodes were developed
for use in the chloralkaline process, producing chlorine gas and sodium hydroxide from
electrolysis of salt water and running at hundreds of amps per square metre, and they
were easily adapted for the use at the maximum current density of 110 mA/m2 needed for
reinforcing steel in concrete. The highly corrosion-resistant mixed metal oxide coatings
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were modified from the requirement to evolve chlorine gas in a chloralkali cell to the
preferential evolution of oxygen. The anodes were formed into expanded mesh under
overlays [36], ribbon in slots cut into the concrete cover as shown in see Figure 4, or probes,
rods or tubes to be grouted into drilled holes in the concrete. An example of probe anodes
drilled into concrete is shown in Figure 5 where a basement wall suffered from localised
chloride ingress at cracks. As the chloride was localised around the cracks, anodes were
“stitched” either side of the cracks to provide protection to the steel at risk of corrosion.
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Figure 5. Probe anodes being installed in a basement wall to protect the reinforcement where there
was chloride ingress and through cracks.

Specialised proprietary sprayed concrete overlays to improve the bond between
overlay and parent concrete have been developed. Acid-resistant grouts for drilling in
discrete anodes have also been developed to reduce acid attack at the steel/concrete interface.
A well-documented example is the work on the development of a grout for the conductive
ceramic titanium oxide tube discrete anode [37,38]. This proprietary anode is made from the
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other material widely used as an ICCP anode in tube form drilled into the concrete. A case
history of its application on a bridge substructure is given in by Drewett and Bott [39].

The use of thermal spayed zinc as an impressed current anode for reinforced concrete
was first developed in the early 1980s by Caltrans [40]. This had the advantage of not
requiring an overlay, not adding to dead load or requiring drilling or slots cut. It was also
more resistant to moisture than the alternative conductive paint coatings when applied
to vertical and soffit surfaces. Its disadvantage is the complexity of the thermal arc spray
process compared to the ease of painting concrete. The lack of commercial support has led
to its limited application compared to the commercially developed aluminium–zinc–indium
alloy widely used as a galvanic anode [41] and occasionally as ICCP anode.

Conductive coatings with flaked graphite pigment or filler and an organic binder
were developed in the USA, Canada and the UK. They were originally developed for
bridge substructures [42,43] and were also applied to buildings [17] and car park soffits [44].
An early example is shown in Figure 6.
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in London, England. Reprinted from Ref. [1] with permission. Copyright 2007 Taylor and Francis.

Several hundred cross head beams had conductive coating anodes applied to deal
with de-icing salt leakage through the expansion joints on the elevated motorway sections
around Birmingham, UK, with 740 cross heads protected by 2013 [17,45]. An alternative
formulation used a conductive binder and has been employed extensively in Scandinavia,
particularly in multi-storey car parks [46]. The chief advantage of these products was lack
of dead weight, simplicity of application and comparatively low cost. The disadvantage
was limited life, especially when exposed to water runoff. A spray applied conductive
mortar with far better durability was also developed [47] and successfully applied to a jetty
soffit [48] among many other projects [49]. This product uses nickel-coated carbon fibres
rather than flaked graphite as the conductor.

A description of impressed current anode types, their relative advantages, limitations,
applications life and cost is given in Broomfield [1] and updated in Corrosion Prevention
Association Technical Note 11 [50] and Note 12, which provides UK highway bridge costing
guidance for different anode types [51].
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5. Development of Control and Monitoring Parameters

Due to the very low current demand of steel in concrete compared to pipeline or
marine applications, the power supplies required for ICCP of steel in concrete bear little
resemblance to the high current output transformer rectifiers required for ICCP of buried
and submerged structures such as pipelines. Also, many early trials and installations in
many countries were in relatively benign, protective environments, with the control systems
located inside buildings or in small roadside cabinets in urban locations, often with easy
access to telecommunications. Air cooling was generally sufficient and electronic control
and remote monitoring were easily implemented. This meant that remote monitoring
and adjustment with continuous logging became the standard approach. A review of the
development and current designs of power supplies and monitoring systems is given by
Chess and Broomfield [52].

A recent review of the control criteria for ICCP of steel in atmospherically exposed
concrete has been published [53] and will not be repeated here. The 100 mV depolarisation
criterion became the standard control criterion for atmospherically exposed reinforced
concrete under most conditions although alternative criteria are given in ISO 12696.
The 100 mV criterion is easily implemented with microprocessor controlled systems and
had the great advantage that it does not require the use of calibrated embedded reference
electrodes, as long as they are stable for the duration of the depolarisation measurement.
Other simpler sensors were investigated such as the null probe [54]. This used a piece
of reinforcing steel embedded in a chloride rich mortar, connected to the main steel via
an ammeter. Before an ICCP system is switched on, it should be actively corroding,
with current flowing from the anodic null probe to the relatively cathodic reinforcing
cage. As the applied CP current increases, the current should decrease and then reverse.
The applied CP current at reversal of current flow between probe and reinforcing cage from
should show that the reinforcing cage is protected from corrosion as is the required applied
ICCP current for protection. One reason for the development of the null probe and similar
sensors was due to early unreliability of reference electrodes, especially when installed in
bridge decks subject to heavy traffic loads and vibration [26].

However, the durability problems of “true” reference electrodes were largely overcome
with the development of double junction silver/silver chloride and other reference electrodes
for embedding in concrete. The major problem for the reference electrode is its limited life
compared with MMOTi anodes and loss of connection to the concrete due to shrinkage
of the mortar used to embed the reference electrode. Pseudo-reference electrodes such as
coupons of graphite [55] and now more widely used mixed metal oxide-coated titanium
coupon electrodes are also used, usually in conjunction with “true” reference electrodes.
These are especially useful in systems with long design lives where the limited life of a
“true” reference electrode could lead to expensive access and replacement costs. Also,
loss of electrical contact is less likely than with a true reference electrode because of the
larger contact area. If the 100 mV depolarisation control criterion is used then the reference
electrode only needs to be stable over the period of measurement, which is usually feasible
for a MMOTi or graphite electrode. There is an American National Association of Corrosion
Engineers (NACE) state-of-the-art review of characteristics and embedment methods for
reference electrodes commonly embedded in concrete [56]. Chess and Broomfield [52]
describe probes and monitoring in chapter 11.

There has been much discussion in the industry about cables suitable for connection to
anodes, reinforcement and reference electrodes. The current understanding is summarised
in the Concrete Society Technical Report 73. “Cables with insulation or sheaths of polyvinyl
chloride (PVC), ethylene propylene rubber (EPR) or chloro-sulfonated polyethylene (CSP)
or other rubbers are unlikely to be suitable for long-term use in pH 2 to pH 13. Cables
with insulation and sheaths of cross linked polyethylene (XLPE) are likely to be suitable
for long-term use. Insulation of very chemically resistant materials such as Kynar may be
considered, but these have disadvantages of cost, a tendency to crack at low temperatures,
and they require particular care with respect to large minimum bend radii” [57]. If anodes
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are designed to last 40 to 100 years then it is important that other components can also last
many decades before needing replacement.

Where copper cables are connected to steel or to anode within the concrete it is
important that the connection method does not leave any dissimilar metals exposed.
This requires encapsulation with insulation resin to protect them from corrosion [57].
One popular method often used is to heat shrink sleeving which incorporates a resin fill.

6. Design, Anode and Cathode Current Densities

The basic design requirement of any cathodic protection system is to determine the
amount of current required to achieve protection. This is the surface area of steel to be
protected multiplied by a design current per unit area. The measurement of the steel area
requires measurement of steel bar diameters and lengths, overlap, and a determination
of the extent to which the layers of steel at different depth require protection or will
drain current.

Pedeferri presented one of the earliest investigations into the principles of cathodic pro-
tection of steel in concrete and the current density required for protection [58]. The various
protective effects induced by the cathodic polarisation, the differences between the cathodic
protection applied for controlling the corrosion rate of chloride contaminated structures
and to protect new structures expected to become contaminated were discussed. He also
looked at applying ICCP to steel corroding in carbonated concrete and the protection
conditions which avoid the risk of hydrogen embrittlement in prestressed structures.

The European and subsequent standard EN ISO 12696 [59] give recommendations
in an informative annexe on the design current density ranges to protect steel in concrete.
These are given as 2 to 20 mA/m2 for steel in chloride-contaminated concrete and 0.2 to
2 mA/m2 for steel in concrete not (yet) chloride-contaminated. A case study of calculation
of current densities and the resultant field performance on a bridge substructure using
the above current density ranges was published by Broomfield [60]. This subject was also
looked at mathematically by Hussainein et al. [61].

Bartholomew et al. [62] and Glass and Buenfeld [63] looked in detail at the current per
unit steel area (current density) required to protect steel in concrete. Bartholomew et al.
carried out laboratory trials to correlate the current density, amount of polarisation required
to achieve a corrosion rate of less than 25 µm/y at different chloride levels. However,
the work was done in dampened sand rather than in concrete. Glass and Buenfeld calculated
the current required to keep chlorides way from the steel and published theoretical curves
relating current density, potential shift and corrosion rate.

Many ICCP systems are overdesigned in terms of the design current required. There are
very few cases of systems being under designed in terms of anode or power supply capacity.
It is always safer to overdesign than to under design, and anode life can be considerably
extended when the maximum applied current density is significantly lower than the design
limit. However, this means that too much anode may be used and power supplies are
overrated and can, therefore, be less efficient.

There has been much discussion of maximum anode current densities. Early work
found that a current density of 10 mA/ft (approximately 100 mA/m2) of active anode surface
minimised the acidification of the anode/concrete interface. Much of this work was based
on carbon based anodes such as the early FHWA grout in slot system and the conductive
cable in concrete overlay. This was adopted by manufacturers of the MMOTi mesh and
ribbon anodes. However, when the probe or discrete anode systems were developed
there was a strong incentive to make these as cost effective as possible by maximising the
anode/concrete interface current density to minimise the amount of holes drilled and the
number of anodes used. Detailed and long-term testing showed that anodes in suitable
mortar back fills could run at much higher current densities, up to 900 mA/m2 [37,38].
However, the standards still stipulate a long-term design current density of 100 mA/m2.

Anode spacing for ribbon and probe anodes is generally prescribed in manufacturer’s
literature based on the steel density and design current densities of anode and steel.
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The early designs of anodes in slots had a 1 ft (300 mm) spacing [27], and generally
designers stick to a 300 to 450 mm spacing to ensure even current distribution. Small scale
trials prior to a full installation [52] are also used to optimise anode spacing.

When considering the surface area of steel to be protected, it is usual practice to divide
the part of the structure being protected into zones. While the earlier systems covered a
whole bridge deck in a single zone, as more complex structures were protected, dividing
the structure into zones became the preferred method of design once it had been shown
that there was minimal interaction between zones and outside zones for atmospherically
exposed zones [18]. Zone sizes are determined by a number of factors:

• Overall size for even current spread and controllability; experience has shown that
anode zones of 50 to 100 m2 of concrete surface area are usually suitable, as discussed in
Chess and Broomfield [52]. However, much smaller zones are used on some structures,
and much larger zone can also be suitable, e.g., bridge or multistorey car park decks
or soffits.

• Direct current (DC) output levels of the power supply; these are typically 1 or 10 amps,
therefore limiting the zone to 50 m2 of steel at a design current density of 20 mA/m2

for a 1 amp unit or at the other extreme 1000 m2 at 10 mA/m2 for a 10 amp unit.
• Variations in steel density; the soffit of a beam may have far more steel than the sides

so the soffit may be one zone and the sides another.
• Exposure conditions, the most extreme being piers in marine situations where there

can be fully immersed tidal and splash zones which may require different anodes and
even different control criteria [64].

There is also the issue of the current density required for cathodic prevention systems
applied to new structures or those with negligible levels of chloride or carbonation [65].
The ISO standard advises that current densities of 0.2 to 2 mA/m2 but higher levels have
been reported [66].

7. The Development of Guidance Documents and Standards

It was reported that 287 ICCP systems had been installed on US bridge decks by
1989 [10] and the first standards were the American National Association of Corrosion
Engineers recommended practice NACE RP0290 and the European standard BS EN 12696,
both published in 1990. A little after that the American Association of State Highway
Transportation Officials (AASHTO) published the first national specification for ICCP of
bridge decks [67], nearly a decade after Ontario had published its Bridge Deck Rehabilitation
Manual, which included specifications for ICCP of bridge decks [25]. The SHRP programme
also published a manual of practice [68]. A guidance document on ICCP of reinforced
concrete was published by the UK Concrete Society in collaboration with the Institute
of Corrosion and NACE. This was published a year before the standards, in 1989 [69],
and was the basis for the European standard. The Concrete Society also published a model
specification [70]. These have now been combined and updated to incorporate galvanic
cathodic protection for steel in concrete and cover buried and submerged systems [57].
The UK Highways Agency published a guidance document on ICCP of highway structures,
recently revised [71]. This now covers ICCP and galvanic anode systems for highway
structures and includes appendices giving a comparison of the two systems and the merits
of applying CP. The UK Highways Agency also has a draft specification for CP of reinforced
concrete highway structures in final preparation as part of its manual of contract documents
for highway works but unpublished as yet.

The European standard was updated to include galvanic CP and buried and submerged
concrete structures and has been adopted as an ISO standard [59]. It is presently being
revised for ISO by the CEN committee that drafted the original document. The current
NACE standard practice is more concise, and only covers ICCP of atmospherically exposed
reinforced concrete [72]. There is a separate NACE standard on the application of CP to
buried and submerged reinforced concrete [73] and another on galvanic CP [74]. NACE has
also published a report on the evaluation of the effect of CP on steel in concrete, particularly
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where the control criteria in the standards are not met [75]. A comparison of the available
standards was published by Broomfield in 2006 [76] and in chapter 7 of Broomfield [1].
Although both analyses are of earlier issues of the documents, the changes have not been
substantial. An Australian standard has also been published [77]. In the middle east the
Saudi Arabia Basic Industries Corporation (SABIC) has also published an engineering
standard [78] primarily aimed at structures containing seawater, i.e., intake/discharge
ponds and/or basins, cooling towers, pump sumps, canals, basins and sumps due to the
high ambient chloride levels. The standard covers application of ICCP installed during
construction, often referred to as cathodic prevention, as well as retrofitting existing
structures after reinforcement corrosion has initiated.

NACE International has had formal training courses on cathodic protection for
many years. These were primarily aimed at pipeline, oil and gas and marine applications,
but increasingly cover concrete applications. When the European Standards Organisation
CEN, decided to set up a training and certification system for cathodic protection engineers
and operatives, it decided to set up separate modules for the different application areas [79]
Therefore, it specifically trains operatives in ICCP in steel in concrete. This standard was
revised and has been adopted by ISO [80]. Courses meeting the ISO standard are run by
national corrosion societies in several European countries. NACE runs its CP training
certificated courses throughout the Americas and many other countries, particularly in the
Middle and Far East.

Test methods for ICCP anodes were developed, originally by NACE. The one for
embedded mixed metal oxide-coated titanium anodes was originally a type certification
procedure for the desired design life of the anode. The latest revision includes a quality
assurance batch test to be conducted on samples taken from anodes either prior to dispatch
from the supplier or collected from the site [81]. These standard test methods were adopted,
with text format changes, by ISO [82].

NACE also developed a test method for conductive coatings [83]. This is more
problematic than testing MMOTi as it is not possible to accelerate testing on anode coatings
on concrete due to acid formation at the concrete/anode interface, which is usually critical
to the durability and performance and the anode. The test should be considered to
demonstrate that a coating system that fails the test is not suitable as a coating anode.
However, only extended field trials will demonstrate the performance and durability of a
conductive coating anode in practical applications.

There is also a specification for applying thermal sprayed zinc to steel developed by
the American Welding Society [84].

There is little guidance in the standards on the suitability of ICCP in comparison
with other concrete repair options. NACE Standard Practice 390 is the only standardised
guidance on how to assess the corrosion condition of a reinforced concrete structure
with guidance on treatment options and maintenance requirements [85]. The European
standards for concrete repair include a part on principles of repair [86]. This lists ICCP
as suitable for treating reinforcement corrosion, especially once corrosion has started
referencing BS EN 12696, now ISO 12696.

In the technical literature, American Concrete Institute report 222 [87] discusses ICCP
along with other treatment options and reports their limitations. However, the references
regarding ICCP are quite old along with the descriptions of the outdated coke asphalt
and silicon iron anode system. Broomfield [1] includes a table, listing pros and cons of
different repair options including barriers, patching, ICCP, galvanic CP, electrochemical
chloride extraction and realkalization. There is also an online model for assessment of
structures and selecting and relative costing of treatment options including conventional
and electrochemical treatments [88]. While these standards and guidance documents can
be useful, a suitably qualified and experienced specialist or team should investigate the
problem and select the optimal treatment based on the condition, prognosis and service
requirements of the structure.
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8. Issues with the Application of Impressed Current Cathodic Protection (ICCP)

For an ICCP system for atmospherically exposed reinforced concrete to perform
correctly, a number of parameters must be satisfied.

• The anode must bond to the concrete and current must flow evenly from anode to
steel at a sufficiently low resistance.

• There must be no electrical short circuits between anode and steel.
• The reinforcement and all other embedded metal must be electrically connected

together. (continuity and stray current).
• There must be no adverse reactions in the concrete such as alkali aggregate reaction or

significant loss of bond between steel and concrete.
• The variations in resistivity of new and previous repair patches must allow current to

pass evenly to the steel in order to achieve protection.

The issue of anode to concrete bond had been discussed above in the context of anode
maximum design current density. The acids generated by the anodic reactions can degrade
the cement paste. Carbon-based anodes are most susceptible to this due to the generation
of CO2 which carbonates the concrete. Loss of bond of anode to concrete and increasing
circuit resistance frequently occur as carbonaceous anode systems age as discussed above.

The issue of electrical short circuits has occurred on a number of projects, either due
to lack of cover or tie wires directly shorting the anode to the steel, although these are
rarely reported in the open literature. This issue is more significant on some anode types.
Thermal sprayed zinc is highly conductive and a short circuit will disable an entire zone.
One solution is to attach a resistance meter between anode and reinforcement during
the spraying process so that short circuits can be identified promptly. The problem is
also significant when MMOTi ribbon anodes are used for cathodic prevention systems,
applied to new construction where anode ribbons are attached via isolating spacers to the
reinforcing cage [89]. In this case also a resistance meter between anode and steel during
the construction process can give warnings of short circuits. However, while it is relatively
easy to stop a thermal spray process and identify a short circuit, the author has found
that it is far harder to stop a concrete pour during construction to identify and rectify a
short circuited ribbon anode. Also, a large zone with wet concrete between anode and
reinforcement does not have a very high electrical resistance, so identifying the change in
resistance due to a short circuit between them can be difficult.

The continuity of the steel reinforcing bars and any other embedded steel within the
zone is important. If any steel is not connected to the negative terminal of the DC power
supply, current will flow from the anode to one part of the steel, cathodically protecting it,
but then must flow out of the isolated steel to the steel continuous with the power supply.
This location will be an anode and corrosion will occur. This is known as stray current and
its detection and mitigation from ICCP systems and other sources are given in a NACE
report [90] and a Standard Practice [91].

While most reinforcement cages are sufficiently electrically continuous from the cage
fabrication process, problems occasionally arise with badly corroded steel especially if
elements are lightly reinforced and also on structures with multiple separate reinforcing
cages. An early example of the need to bond reinforcement together for the application of
ICCP is given in the description of the ICCP system applied to the substructures of four
wharves at Mina Zayed, Abu Dhabi [92]. The test for discontinuity of embedded steel
from the main cage for ICCP is based on work done by Bennett [93] which has never been
formally reported or duplicated but is the basis for the requirements in the standards. It was
also for ICCP although it is applied to galvanic systems which, with lower driving voltage,
may need higher conductivity between reinforcing bars. It was found that there was
adequate continuity with a resistance of 1 ohm or less measured between two embedded
pieces of steel, and the same reading with leads reversed. A simple multimeter is frequently
used as it uses a very small current making it most sensitive to small separations by thin
layers of corrosion products rather than metal to metal contact. An alternative is to measure
the potential difference between the two pieces of steel and a static reference electrode with



Constr. Mater. 2021, 1 13

a high impedance (>500 Mohm) voltmeter. The readings should not differ by more than
10 mV.

The issue of the effect of the alkali silica reaction (ASR) was raised due to the increase
in alkali content at the reinforcement due to the cathodic reaction [94]. There was a concern
that concretes containing aggregates with marginal susceptibility to ASR would react.
However, the application of ICCP to a number of structures with marginal or more serious
levels of ASR susceptibility has shown no adverse effects. The ISO standard 12696 [59]
Annex 6 states that cathodic protection applied in accordance with the standard has been
demonstrated to have no influence on the alkali silica reaction.

A wider issue of the effect of CP current on reinforcement pull out strength has also
been raised. Early laboratory tests identified potential problems suggesting that bar pull out
strength may be reduced by about 20% in those bridge decks subjected to CP current levels.
This reduction was ascribed to the accumulation of migrating sodium and potassium ions
leading to softening of the concrete around bars under the influence of applied CP currents
while earlier studies suggested 10% reduction. Hydrogen evolution was also suspected
of reducing bond strength. However, many early tests were conducted at unrealistically
high current densities [95]. An analysis in the SHRP program found no problems see
SHRP-S-337 [96]. No problems were found in tests and samples of bars taken from the
field [97]. Neither were there issues found in tests of concrete subject to electrochemical
chloride extraction where the current density is typically 100 times that of ICCP (1 amp/m2

compared to 10 mA/m2 for ICCP) [98].
Since monatomic hydrogen can be evolved at the cathode (steel) at potentials more

negative than the hydrogen evolution potential it is important to define the hydrogen
evolution potential and any steel in a structure that might be susceptible to hydrogen em-
brittlement. There is also the issue that notched specimens were had a higher susceptibility
to brittle failure than smooth specimens. While the NACE and ISO standards agree that
all steel potentials should be more positive than −1100 mV vs. copper/copper sulfate or
−1000 mV vs. Ag/AgCl/0.5 M KCl reference electrode to minimise hydrogen evolution on
all steels, more positive limits are required in the presence of steel susceptible to hydrogen
embrittlement. NACE produced a state-of-the-art report on the criteria for CP of pre-
stressed concrete structures [99] based on extensive work by Hartt et al. [100]. This suggests
qualification criteria for applying CP based on steel condition, stress and susceptibility,
with suggested test regimes, including on strands extracted from post-tensioned structures
to be treated with ICCP. ISO 12696 states that although the recommended limit is −900 mV
vs. (Ag/AgCl/0.5 M KCl electrode), hydrogen can be evolved at more positive potentials
particularly if the steel is corroded (i.e., with notches in it).

Pedeferri and colleagues pioneered the application of ICCP to bridge decks with
post-tensioning, in mountain regions of North Italy, using a self-limiting control system to
achieve the criteria he developed [101]. This approach has not been used elsewhere.

In practice, if CP of high-strength steel is essential or unavoidable, the preferred
method for protecting steel susceptible to hydrogen embrittlement is to use galvanic anodes,
preferably zinc-based. These are very unlikely to polarise the steel beyond the hydrogen
evolution potential. However, the potentials and the steel condition should be monitored
carefully and the NACE qualification criteria [99] applied.

It has been a major issue in practice on some projects to identify steels that might be
susceptible to hydrogen embrittlement when subject to CP. The most common situation
is where ICCP is applied to normal strength steel but there is post tensioning nearby.
The author has been involved in a trial where post-tensioned beams were connected
to conventionally reinforced-concrete bridge cross heads subjected to ICCP. Monitoring
showed no significant shift in potentials of the steel. In another case the reinforcement in a
hollow box girder bridge was subject to galvanic CP with the post-tensioned anchorages
monitored for potential shifts. No significant or detrimental shift in potential was measured.
In a third case a sea wall was subject to galvanic CP. The high-strength steel anchorages
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were initially found to be at risk of hydrogen embrittlement. However, more refined testing
at the potentials observed in the galvanic system found no susceptibility to embrittlement.

There has been much discussion by cathodic protection design engineers about the
resistivity of concrete used in repairs with ICCP systems for reinforced concrete structures.
It has long been the consensus that epoxy mortars and mortars containing conductive
fibres are incompatible with ICCP. The statements in the European and ISO standards
have changed with each edition. Broomfield [102] summarised the problems of measuring
resistivity in the field and stated that the laboratory-tested resistivity, vacuum saturated and
tested in compliance with RILEM TC-154 [103], should generally not exceed 150 kohm.cm
or should be within 50% to 200% of the resistivity of the parent concrete measured, as far as
possible in a comparable manner.

9. International Expansion and Case Histories

In the first section we discussed how the initial development of ICCP for atmospher-
ically exposed reinforced-concrete structures was in the USA, due to the use of “bare”
concrete bridge decks. While there was a rapid initial expansion in its use from 1973 to the
early 1990s [10], it then started to lose popularity as state highway agencies discovered
that they did not have the capacity to maintain the systems. This was summarised in a US
National Cooperative Highway Synthesis Report in 2004 [104]. This stated that cathodic
protection systems have been used; however, they have not proven to be maintenance-free
or cost-effective. The issue of the ability of US bridge owners to maintain ICCP systems
had been raised in an earlier SHRP report [24]. Alternative options such as overlays, deck
sealers, partial depth and full deck removal were found to require lower maintenance.
Fewer systems were applied to standard bridge decks in North America but more were
applied to substructures and to non-standard bridges where the durability of other options
was more limited. These systems were found to be more cost effective [105].

Examples of large-scale applications to US highway bridges include the substructures
of historic bridges on the Oregon coast [106,107], where the substructures had thermal
sprayed zinc applied to many thousands of square metres of concrete, see Figure 7.
These were also studied for their long-term performance as an anode [108].
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Figure 7 shows a leaf pier in the central reservation of a motorway in the UK with
thermal-sprayed zinc applied to the main surface and probe anodes installed at the ends
and under the bearing shelf where there were higher moisture levels [109].

In Missouri, a series of post-tensioned box girder bridges where the reinforced deck
(away from the post tensioning ducts) was suffering from reinforcement corrosion and
had ICCP applied [110]. The Florida State Department of Transportation (FDOT) found
significant problems with its highly corrosive coastal areas and the bridges substructures.
FDOT has installed large numbers of ICCP and galvanic anode systems to the substructures
of coastal bridges [111].

The Ontario Ministry of Transportation installed large numbers of ICCP systems on
bridge decks and substructures, refining the early silicon iron and conductive asphalt
system before moving on to a wider variety of anodes. Like many highway agencies, they
found the regular maintenance of large number of ICCP systems of different types and
control systems hard to sustain [27].

North American usage of ICCP has expanded beyond highway structures. A recent
example is its application to reinforced concrete water infrastructure using expanded
titanium mesh anodes on a reservoir outlet tower [112].

In Europe, the Netherlands have installed a number of highway systems and kept
track of their performance [113]. They reported on 150 structures protected with ICCP.
Degradation of components and systems appears to have occurred in a limited number
of systems. On average, the time until minor repair of parts was necessary was about
15 years. There was a follow up report in 2014 [114] in which they found that of the 150
structures with ICCP applied covering 85,000 m2 over 25 years, only 2 had been removed.
They found limited durability problems, mainly around poorly detailed connections and
primary anodes, frequently due to the corrosion of copper in both cases. An earlier report
from Switzerland described systems applied to tunnel walls as well as bridges [115]. In
Italy, Pedeferri and colleagues pioneered the application of ICCP to bridge decks with
post-tensioning [101].

In the UK, a wide variety of structures were being protected with ICCP from the
earliest applications including buildings and marine structures [18,116]. On the motorway
system, over 700 cross heads supporting motorway bridge decks had ICCP applied by
2012 [45], initially with conductive coating anodes, along with improvements in drainage
to extend the life of the anodes.

In the Middle East, the prevalence of salt in the soil, air, water and cast into concrete
means that up to 74% of reinforced concrete structures showed significant corrosion damage
after as few as 10 to 15 years [117]. This means that cathodic prevention systems are widely
used on new construction including industrial plants [89]. The environment is so aggressive
that there are examples where the current density required on the steel can be significantly
higher than that recommended in the standards. Callon et al. [118] found that although
ISO 12696 recommends cathodic prevention design current densities of 0.2 to 2 mA/m2,
the current density on newly constructed bridges on the coast of Bahrain was 5 mA/m2.
Chaudhary et al. gave examples of good long-term performance of ICCP systems on
seawater cooling conduits in chemical plants [119]. Callon recently gave a case history
of ICCP and galvanic CP applied to 100,000 m2 of reinforced concrete in a ship repair
yard [66].

An overview of the international perspective of ICCP for atmospherically exposed
reinforced-concrete structures is given in Corrosion Prevention Association Technical Note
3 [120]. This estimates the number of square metres of anode that has been applied in
different parts of the world and the range of structures, including the Carillon Tower of the
National War Memorial in New Zealand [121], the walkway supports of the Sydney Opera
House [122], cooling towers and other industrial plant in the Middle East [78,123].
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10. Concluding Remarks

It has been estimated that around 50% of construction industry spend in the UK is on
repair and refurbishment, see Matthews and Morlidge [124]. As the built infrastructure
constructed in the construction boom of the 1970s approaches the end of its functional
life, or at least reaches the point where major repair and maintenance is essential to keep
it functioning, this ratio may increase. Reinforcement corrosion is a major cause of the
deterioration of reinforced concrete structures. In a review of concrete repair work it
was found that only 50% of repairs were classed as being wholly satisfactory when last
inspected and 60% failed in the first 10 years. The common causes of failure were reported
as being incorrect diagnosis, incorrect design of the repair, selection of unsuitable repair
materials, and poor workmanship, according to research by Tilly [125]. The development
of improved standards and training means that we can hope that the repairs and treatment
we carry out now are an improvement on those of the past.

While the standards and guidance documents described here can be useful, a suitably
qualified and experienced specialist or team should investigate the cause and extent of
deterioration in any reinforced-concrete structure and select the optimal treatment based
on the condition, prognosis and service requirements of that structure.

ICCP is the only treatment for chloride-induced corrosion that can control reinforcement
corrosion successfully over many decades. The systems need to be installed with a correct
diagnosis of the cause of deterioration. They must be appropriately designed, including
the most appropriate anode system. They must be designed and installed by appropriately
qualified personnel and then correctly operated and maintained. All of this is as required
in the international standards [59]. While anodes can last 40 to 100 years, other components
can be less durable. The electronics probably have the shortest life but are by far the easiest
element to replace. Reference electrodes have limited lives but can be supplemented with
graphite or MMOTi probes.

There is a range of other electrochemical corrosion control treatments, one of the
more recent developments being a hybrid anode system comprising a galvanic anode
which receives an initial electrical charge [126–128]. It has the advantage over ICCP of
not requiring a permanent power supply. However, it requires the separation of anodes
from steel, cabling, monitoring and maintenance to check that protection is achieved
and maintained.

ICCP is not the easiest treatment to apply or maintain. However, any reinforced-
concrete structure suffering from significant chloride-induced corrosion will require ongoing
maintenance and repair whatever treatment option is selected. If a service life beyond
20 years or so is required and if the access costs are significant, then ICCP is likely to be a
competitive option. The particular requirements and expertise required of an ICCP system,
however, means that for some clients it is not suitable for their business models. This may
be part of the reason that it is no longer widely used on North American bridge decks,
along with the fact that newer bridge decks contain fusion-bonded epoxy coated rebar
which are more corrosion-resistant in many circumstances.

While ICCP is rarely used any more on the reinforced concrete bridge decks for which
the technology discussed here was originally developed, it has found a useful place in
the preservation and life extension of bridge substructures, buildings and a wide range
of reinforced-concrete structures exposed to sea salt, deicing salts and other sources of
chloride ions.

Further refinements of the anode system and materials and of the control equip-
ment may make ICCP more flexible as regards where and how it is applied. However,
attempts to further automate control and monitoring systems should be viewed with
caution. The improvement in training of ICCP designers, installers and operators to
international standards means that the condition of the structure can be fully understood by
an appropriately trained and experienced engineer and appropriate action taken to ensure
that protected structures remain at low risk despite the aggressive environment, rather than
relying on artificial intelligence or other automated systems. For clients requiring simpler
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maintenance regimes than those offered by ICCP, there are the alternatives of conventional
repair, galvanic cathodic protection and other electrochemical techniques as discussed
elsewhere, e.g., Broomfield [1] or NACE Standard Practice 0390 [85].
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