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Abstract: Inclined piles have been widely applied as one of the countermeasures against large
lateral spreading induced by soil liquefaction during earthquakes. However, the unsatisfactory
performance of inclined piles in past events has impeded their application in seismic areas. To
elucidate the performance of inclined piles when subjected to lateral spreading induced by soil
liquefaction, numerical analyzes were performed using the OpenSees framework. For this purpose, a
comprehensive three-dimensional finite element model was developed. Interface elements were used
between the soil and the pile to account for the friction and gapping mechanisms. A multi-yield-
surface plasticity constitutive relationship for sand was adopted to simulate the soil liquefaction
behavior. Based on the proposed numerical model, parametric analyzes were conducted to investigate
the influence of various factors on the behavior of inclined piles, including the raked angle of the pile,
the ground slope, the soil profile, and the amplitude of the input motion. The response of the system
indicates that inclined piles can behave better than vertical piles in decreasing soil deformation and
the cap response. The influences of the investigated factors are highlighted to adopt the appropriate
pile inclination in laterally spreading ground and maximize the advantages of using inclined piles.
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1. Introduction

Lateral spreading has been recognized as one of the prominent contributors to damage
in the pile foundations supporting bridges and offshore constructions during large-scale
earthquakes, such as the 1989 Loma Prieta earthquake [1], and the 1995 Kobe earthquake [2].
Although inclined piles are widely applied to resist significant horizontal loadings, their
suboptimal performance during previous earthquakes has discouraged their utilization
in seismic design codes or standards (e.g., [3,4]). For instance, inclined piles exhibited
poor behavior in the damaged bridges during the 2010–2011 Christchurch earthquake
sequence [5] and damaged the wharf structures in the 1989 Loma Prieta earthquake [1].
Pender [6] concluded that the disappointing seismic performance of the inclined piles could
be attributed to the graphical design methods utilized in earlier eras to estimate pile loads.
Gerolymos et al. [7] identified several frequently mentioned disadvantages of inclined piles,
including residual bending moment due to pre- and post-earthquake soil consolidation
and settlement, reduction in the flexural capacity from the developed tensile axial forces,
significant kinematic force, and undesirable rotation at the pile-cap connection.

Based on recent field studies and laboratory tests, the advantages of inclined piles have
been recognized. In particular, the effectiveness of inclined piles against lateral spreading
has been observed in a field study of the Landing Road Bridge after the 1987 Edgecumbe
earthquake [8]. Additionally, inclined piles have been shown to positively impact the
dynamic behavior of the soil–pile system in various seismic experiments conducted in dry
sand (e.g., [9–12]). In the experiments performed by McManus et al. [13] and Shahrour
and Juran [14], the use of inclined micro-piles in saturated soils has also been proven to be
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beneficial in restraining soil deformation and preventing a significant excess in pore water
pressure build-up. Nevertheless, further laboratory studies are still required to investigate
the seismic performance of the inclined piles in liquefiable soils.

Numerous experimental and numerical studies have investigated the performance of
vertical piles against lateral spreading. In terms of numerical investigations, in addition to
the commonly used Beam-on-Nonlinear-Winkler-Foundation approach (e.g., [15–17]), the
three-dimensional (3D) finite element method has also been extensively employed. McGann
et al. [18] proposed p-y relationships in modeling the pile behavior against liquefaction-
induced lateral spreading through 3D modeling. Cubrinovski et al. [19] and Li and Mo-
tamed [20], simulated the behavior of vertical pile groups behind waterfront structures
using 3D and 2D methods, respectively. Chang et al. [21] and Cheng and Jeremić [22],
investigated the behaviors of the soil–pile–superstructure systems in sloping grounds
numerically. However, when dealing with inclined piles, many numerical studies focused
on their performance when subjected to monotonic or dynamic loads on the pile head
(e.g., [23–25]). There are also some simulations of the response of the inclined piles under
dynamic loading. For instance, Gerolymos et al. [7], Giannakou et al. [26], Sadek and
Shahrour [27], and Sarkar et al. [28] investigated the seismic response of the pile groups
consisting of inclined piles installed in elastic soil deposits. Rajeswari and Sarkar [29] and
Wang and Orense [30], conducted parametric analysis to study the seismic behavior of the
inclined pile groups with consideration of soil liquefaction. In these studies, the beneficial
effects of inclined piles on the response of the soil–pile system were observed. However,
the performance of inclined piles against liquefaction-induced lateral spreading has not yet
been fully confirmed.

To elucidate the seismic performance of the inclined piles when subjected to liquefaction-
induced lateral spreading, a parametric analysis of a 3D finite element model (FEM) was
carried out through the OpenSees platform [31]. The specific objectives were:

(1) To construct a comprehensive 3D FEM model enabling the modeling of soil liquefaction
and the seismic performance of the inclined pile groups with different configurations.

(2) To conduct parametric analyzes to evaluate the effects of different factors on the
performance of the soil–pile system, including the pile inclination, the ground slope,
the soil profile, and the amplitude of the input motion.

(3) Summarize the practical applications of inclined piles against liquefaction-induced
lateral spreading.

The novelty of this research is that this study fills the gap left by previous inadequate
investigations of inclined piles against liquefaction-induced spreading in the literature
and provides insights into the effectiveness of inclined pile group configurations with the
presence of liquefaction-induced lateral spreading.

2. Numerical Analysis Description
2.1. Problem Definition

The problem under consideration is a 1 × 2 pile group embedded in the sloping
ground susceptible to liquefaction, as illustrated in Figure 1. The investigated parameters
and their ranges are presented in Table 1. To explore the effects of inclinations of the left
and right piles, three pile group configurations were analyzed with αL and αR ranging
from 0◦ to 25◦. These configurations include “IV” (an inclined left pile and a vertical right
pile), “VI” (a vertical left pile and an inclined right pile), and “II” (two symmetrically
inclined piles). Figure 1 depicts an example of configuration VI with αL = 0◦ and αR = 25◦.
Additionally, the configuration with two vertical piles (αL = αR = 0◦) was also analyzed for
comparison purposes.
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Figure 1. Schematic of model piles for configuration VI, with αL = 0° and αR = 25° and soil profiles 
(in meters). 

Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

Figure 1. Schematic of model piles for configuration VI, with αL = 0◦ and αR = 25◦ and soil profiles
(in meters).

Table 1. Ranges of the investigated factors in the parametric analysis.

Factor Range

Peak base acceleration, amax,base 0.1 g and 0.3 g

Inclination of left/front pile, αL 0◦, 5◦, 10◦, 15◦, 20◦, and 25◦

Inclination of right/rear pile, αR 0◦, 5◦, 10◦, 15◦, 20◦, and 25◦

Ground slope, β 0◦, 2◦, and 4◦

Soil profile
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The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
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the front (upslope) and rear (downslope) piles, respectively. 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section
stiffness of EI = 505 MN·m2 (where E is the Young’s modulus, and I is the moment of
inertia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil
surface, is independent of the pile inclination and is fixed at four times the pile diameter,
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the
model base.

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Profile
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2.5D) thick medium-dense sand at the top with impervious soft clay. In addition to the
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The 1995 Kobe earthquake motion was used as the base input excitation but scaled to
different amplitudes (amax,base = 0.1 g or 0.3 g). The acceleration time history and response
spectrum shown in Figure 2a,c were normalized by the peak acceleration.
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2.2. Numerical Model Layout, Meshing, Boundary Conditions, and Analysis Settings

Due to symmetry, only half of the model was simulated, and the layout is shown in
Figure 3, where a pile group with αL = αR = 15◦ is displayed. The soil block is divided
into a mesh consisting of 8 node SSPBrickUP elements and implemented with the u-p
formulation [31]. The maximum allowable element height (hmax) at each depth is deter-
mined from the shear wave velocity, Vs, via hmax = Vs/f max/4/4, in which the maximum
frequency content of the excitation f max is conservatively set as 10 Hz, as suggested by
Ramirez et al. [34]. According to Khosravifar et al. [15], Vs for sand is calculated through
the relation Vs = 85[(N1)60 + 2.5]0.25, where the SPT (N1)60 value is estimated from the
relation (N1)60 = 46Dr

2. Vs for clay is calculated through the relation Vs = 14.87cu
0.69, as

suggested by L’Heureux and Long [35]. Additionally, soil elements are made finer in the
vicinity of the piles. The distribution of the maximum allowable element height (hmax,1 and
hmax,2 for sand and clay, respectively), and the actual element height (h) adopted in the
analysis are also displayed in Figure 3. The adopted element size was deemed appropriate
through a sensitivity analysis. The lateral extents of the soil in the x- and y-axes have been
decided based on past modelling experiences with the 3D FEM analysis of piles that were
subjected to lateral loads (e.g., [18,36]), and initial trial analyses were conducted to make
sure the lateral extents were wide enough to eliminate the impact of the boundaries on the
pile and the nearby soil. A total of 7866 soil elements and 9840 soil nodes were employed.

The model was fixed at the bottom against the three translational displacements (i.e.,
x, y, and z-axes). Nodes at the y = 0 and y = model width boundaries were fixed against
the y-axis, while nodes with the same depths at the x = 0 and x = model length boundaries
were constrained together and could move freely along the x-axis to simulate the laminar
boundaries. Moreover, a free drainage boundary was considered at the ground surface.

In the dynamic simulations conducted in this study, viscous damping was applied
through the Rayleigh formulation, where a damping ratio of 5% is considered. Moreover,
a small amount of numerical damping was introduced to facilitate convergence through
the integrator object in the OpenSees system. For this purpose, the Newmark integra-
tor was employed, with a convergence parameter of 0.6 and a damping parameter of
0.3025. To expedite the convergence, the Krylov-Newton algorithm [31] was utilized. The
norm displacement increment test [31] was utilized with a tolerance of 10−3 to verify the
achievement of convergence. Finally, in the solution phase, SparseSYM [31] was used.
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2.3. Soil Constitutive Model

The Pressure-Dependent-Multi-Yield (PDMY02) material [31] was adopted to simulate
the behavior of the sand. The PDMY02 material is suitable for simulating the undrained
or partially drained cyclic response of liquefiable soils, and is frequently employed in
the literature (e.g., [15,37,38]). The assumed PDMY02 parameters presented in Table 2
were derived from the method recommended by Khosravifar et al. [15] through linear
interpolation of relative densities, as suggested by Kramer et al. [39]. Detailed definitions
of this material can be found in the works by Yang et al. [37,38,40]. As according to
Choobbasti and Zahmatkesh [41], constant permeability coefficients (k) of 3.70 × 10−5 m/s
and 6.05 × 10−5 m/s were set for the dense and medium-dense sand layers, respectively.

An undrained cyclic triaxial test conducted by Arulmoli et al. [42] was simulated
with the PDMY02 parameters for Dr = 57%, as recommended by Khosravifar et al. [15]
(shown in Table 2). The test was conducted on Nevada sand with a relative density of
about 60%, an effective confining pressure of 40 kPa, an offset deviatoric stress of 8.6 kPa,
and a cyclic deviatoric stress of 26 kPa. Figure 4 presents the comparison between the
numerical and experimental results. It can be seen that the negative axial strain, i.e., dilation,
was significantly underestimated, and the variation of deviatoric stress at a high shear
strain was not accurately simulated. This inaccuracy could result in the failure to simulate
the momentary drops in excess pore pressure in centrifuge experiments. However, the
developments of the excess pore water pressure (EPWP), and the positive axial strain
(compression) were simulated properly by the PDMY02 material.

The pressure-independent multi-yield (PIMY) material [31] was adopted to simulate
the characteristics of the clay. The material parameters were derived from Rahmani [43],
in which layered clay was employed in simulating another centrifuge test of Wilson [44],
and the pile responses were captured satisfactorily in the simulation. The clay layer
was assumed to have low permeability, and k = 1.0 × 10−9 m/s was adopted in the
numerical model.



Geotechnics 2023, 3 325

Table 2. Material parameters for the PDMY02 and PIMY models.

Model
Parameters

Sand (PDMY02)
Clay (PIMY)

0.0–1.5 m 1.5–3.0 m 3.0–4.5 m 4.5–6.1 m

Dr (%) 55 57 80 - - - -
ρ (ton/m3) 1.98 1.99 2.03 1.53 1.53 1.53 1.53

pr (kPa) 100 100 100 100 100 100 100
Gr (MPa) 71.1 73.7 102.0 0.5 1.3 1.8 2.4
Br (MPa) 189.5 196.8 272.1 2.33 6.1 8.4 11.2
cu (kPa) - - - 2.5 6.5 9.0 12.0

ϕf (◦) 29.9 30.3 38.6 0.0 0.0 0.0 0.0
d 0.5 0.5 0.5 0.0 0.0 0.0 0.0

ϕPT (◦) 24.9 25.3 31.8 - - - -
c1 0.022 0.019 0.003 - - - -
c2 3.2 3.2 1.0 - - - -
c3 0.2 0.2 0.2 - - - -
d1 0.15 0.15 0.27 - - - -
d2 3.0 3.0 3.0 - - - -
d3 0.0 0.0 0.0 - - - -

liq1 1.0 1.0 1.0 - - - -
liq2 0.0 0.0 0.0 - - - -

γmax 0.1 0.1 0.1 0.1 0.1 0.1 0.1
NYS 20 20 20 20 20 20 20

c 0.1 0.1 0.1 - - - -
e 0.67 0.67 0.60 - - - -

Dr: relative density; ρ: saturated density; pr: reference pressure; Gr: reference shear modulus; Br: reference
bulk modulus; cu: undrained shear strength, used as a numerical constant for sand; ϕf: friction angle at peak
shear strength; d: pressure dependency coefficient; ϕPT: phase transformation angle; c1, c2, and c3: contraction
coefficients; d1, d2, and d3: dilation coefficients; liq1, and liq2: liquefaction constants; γmax: maximum shear strain;
NYS: number of yield surface; c: numerical constant; and e: void ratio.
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2.4. Soil–Pile Interface Modeling

The piles were modeled as elastic beam-column elements. Based on the work by Cheng
and Jeremić [22], a series of rigid links were bonded around the piles to shape the pile
geometry. Interface elements were inserted between the rigid links and the surrounding soil
nodes to enable the mobilization of the friction and separation mechanisms. The interface
was characterized by zero cohesive strength, Coulomb friction with a friction coefficient of
tan(2ϕf/3), in which ϕf is the friction angle of the sand, and with normal and tangential
stiffnesses of KN = KT = 1.0 × 107 kPa/m.

2.5. Model Validation

Prior to performing the numerical analysis, the model adopted needs to be validated.
In the case of pile response in the soil profile
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file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
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, Wang and Orense [30,45] discussed the
validation of the model, which indicated a satisfactory agreement between the pile response
in saturated sand in the numerical analysis and the experimental data. As for soil profile
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with a soft clay crest layer, a centrifuge test (Csp5-C) performed by Wilson [43] was
selected for the simulation. At the prototype scale, the soft clay layer on top has a thickness
of 6.1 m, and the underlying sand layer with Dr = 80% has a thickness of 11.4 m. The
Santa Cruz earthquake record from the 1989 Loma Prieta earthquake was scaled to 0.3 g
accordingly and used as the base excitation. The normalized acceleration time history and
spectrum were shown in Figure 2b,c, respectively. The sand and clay layers were simulated
by the PDMY02 and PIMY materials, respectively, with the parameters shown in Table 2.
According to Rahmani [43], different parameter values should be adopted for the clay layer
at different depths.

Figure 5 compares the results of the simulation with the experiment, including the
superstructure (SS) response, excess pore water pressure (EPWP) in the free field, and
the bending moment of the pile at specific depths. The SS response is a measure of the
structural behavior of the pile under seismic loading, and it is important for understanding
the overall performance of the foundation system. EPWP is an indicator of soil liquefaction,
and was examined at the depths of 0.7 m and 9.1 m below the ground surface. The
bending moments, which represent the forces acting on the pile, were from the depths
of 0.76 m and 1.52 m, respectively. In general, the numerical results and experimental
data matched reasonably well, with the exception of the numerical model not satisfactorily
capturing the fluctuations of the EPWP, especially in clay. The failure to adequately capture
the transient drops in EPWP could be attributed to several reasons. Firstly, the PDMY02
material may have underestimated the dilatancy behavior of sand, as evidenced by previous
studies [21,34]. Secondly, the PIMY material also lacks dilatancy formulations. These result
in the insignificant expansion of soil under shear loading. Additionally, it has been noted
by Wilson [44], that the records of the pore pressure in clay during the seismic loading of
the experiment may not be reliable due to the response time and arching effects around
the transducers [46]. Furthermore, the low and constant permeability of clay adopted
in the numerical model may also be inconsistent with the situation in the experiments.
Nevertheless, the fluctuations of EPWP in both clay and sand are relatively small, and they
do not significantly affect the overall trend of the increase in EPWP. It is important to note
that the current numerical study focuses on the responses of the sand and the pile, which
the model has properly captured. Therefore, the current modeling method is deemed to be
of acceptable accuracy, especially considering that the results of the 3D FEM analyzes in
this study were mainly expressed as ratios of the maximum responses.
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3. Analysis of the Results

Parametric analysis was performed to examine the seismic behavior of the 1 × 2 pile
groups in the level and inclined soil profiles (Figure 1). In the analysis, the surface clay layer
was modeled using the parameters for clay at depth 4.5 to 6.1 m (see Table 2) to simulate
a much stiffer crust relative to that observed in the experiment. These things considered,
seismic analyzes of the level and inclined ground without piles have also been conducted
for comparison.

Based on the study reported by Li et al. [10,11], a performance index P (in percentage)
was adopted to quantitatively evaluate the influence of a certain parameter:

P =
QI − QV

QV
× 100% (1)

where QI and QV are the calculated values of the parameter for the inclined and vertical
pile configurations, respectively. Hence, the performance of the inclined piles was able
to be examined through the performance indices of the maximum system responses. For
example, the performance index for the cap rotation can be calculated from the equation
Pθ = (θI – θV)/θV, in which θI and θV are the maximum rotation of the cap when supported
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by the inclined and vertical piles, respectively. Cap rotation refers to the angle between the
horizontal axis and the connection line of the pile heads. A positive or negative value of
Pθ can reflect the increase or decrease in the maximum cap rotation due to pile inclination,
respectively. Hence, the performance index is an indicator of how each examined parameter
was impacted by the inclination of the pile.

It is worth mentioning that other important factors, such as the diameter and non-
linearity of the pile, the pile spacing, the properties of the superstructure, the pile-to-cap
connection, and the characteristics of the input motion, may also have considerable in-
fluences. However, such a comprehensive parametric study is beyond the scope of the
current investigation.

3.1. Soil Response

In this study, the soil responses considered in our interpretation include the excess pore
water pressure ratio (ru, which is the ratio of excess pore water pressure and initial effective
confining pressure), and the horizontal displacement (Usoil) at different depths. The vertical
distributions of the maximum ru in the free field (model boundaries are displayed in
Figure 3) and at the soil center under the cap node (i.e., along the line AB in Figure 3) in the
soil–pile interaction cases with vertical piles (i.e., αL = αR = 0◦), are presented in Figure 6. In
addition, the maximum lateral displacements of the corresponding model cases are shown
in Figure 7. In both figures, the ground slope, the soil profile, and the amplitude of the
base motion are shown in the legends. For instance, the case of “4S-
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considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.3 g” indicates an
inclined soil profile
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The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

with a slope of 4◦ under excitation of amax,base = 0.3 g. Note that the
depth indicated in the figure was measured from the ground surface. Moreover, the results
for the non-liquefied soil profile
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The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

are not shown, as they are similar to those observed in
the non-liquefied soil profile
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The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
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.

(a) (b)

Figure 6. Distributions of the maximum ru in (a) the free field; and (b) the soil center in models with
vertical piles.
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It can be seen from Figure 6a that sandy soils at a shallower depth (up to 6 m) tend 
to liquefy (ru = 1.0) for the two soil deposits under amax,base = 0.3 g (i.e., ➀-0.3 g and ➁-0.3 g 
cases). Under steeper slopes, the maximum ru at the shallower depth is reduced slightly. 
The soil profile ➀ under a smaller amplitude (i.e., ➀-0.1 g), however, does not liquefy, and 
the inclination of the ground resulted in a slight increase in ru. Therefore, ➀-0.1 g cases 
were considered as “non-liquefied” cases, while the rest were deemed as “liquefied” cases. 
As illustrated in Figure 6b, the maximum ru in ➀-0.1 g cases barely changes with the use 
of vertical piles. For cases under a larger amplitude, vertical piles reduce the maximum ru 
all throughout the depth, which can be due to the strengthening effects of the pile groups 
on the soil. Therefore, the utilization of pile foundations can mitigate the occurrence of 
liquefaction. In addition,, abrupt increases in maximum ru were observed on top of the 
medium-dense sand layer in the soil profile ➁, which may be due to the resistance of the 
clay crust to drainage. 

As shown in Figure 7, the maximum soil displacements in cases with a level ground 
or a smaller excitation amplitude were markedly smaller than those observed in other 
cases. In Figure 7a, a sharp increase in displacements was observed at 8 m depth, which 
was the interface of the two sand layers. These abrupt changes were mitigated partly by 
the presence of the vertical piles, as the displacements near the interface shown in Figure 
7b changed moderately with the depth. The soil displacements at the clay-sand interface 
in the ➁-0.3 g cases also demonstrated a slippage which may be attributed to the sharp 
increase in ru shown in Figure 6. The presence of the pile group was found to increase the 
soil displacement in the level ground case, but also reduce that in the sloping ground case. 
The kinematic and inertial interactions of the soil–pile system can explain this phenome-
non. In the level ground case, the inertial force generated by the cap during the dynamic 
loading dominates the soil displacement, resulting in increased soil displacements. In the 
sloping ground case, however, the kinematic effect becomes dominant, and the strength-
ening effects of the pile groups on the saturated ground decrease the soil displacements. 

The distributions of the maximum ru along line A-B in the level ground scenario are 
demonstrated in Figure 8. Only the results from configuration II were shown, as similar 
trends were observed in the other configurations. The increase in pile inclination reduces 
the maximum ru in the upper zone of the medium-dense soil layer in Figure 8a,b, which 
may be caused by the reduced soil displacement displayed in Figure 9. It is worth men-
tioning that the reinforcement effects of the inclined piles on liquefiable soil deposits were 
also viewed in the shaking table tests performed by McManus et al. [13]. However, the 

Figure 7. Horizontal displacement of soil (a) in free field; and (b) at the center of models with
vertical piles.

It can be seen from Figure 6a that sandy soils at a shallower depth (up to 6 m) tend to
liquefy (ru = 1.0) for the two soil deposits under amax,base = 0.3 g (i.e.,
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Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
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The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.3 g and
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Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.3 g
cases). Under steeper slopes, the maximum ru at the shallower depth is reduced slightly.
The soil profile
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Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

under a smaller amplitude (i.e.,
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Figure 1. Schematic of model piles for configuration VI, with αL = 0° and αR = 25° and soil profiles 
(in meters). 

Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.1 g), however, does not liquefy, and
the inclination of the ground resulted in a slight increase in ru. Therefore,
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Figure 1. Schematic of model piles for configuration VI, with αL = 0° and αR = 25° and soil profiles 
(in meters). 

Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.1 g cases
were considered as “non-liquefied” cases, while the rest were deemed as “liquefied” cases.
As illustrated in Figure 6b, the maximum ru in
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Figure 1. Schematic of model piles for configuration VI, with αL = 0° and αR = 25° and soil profiles 
(in meters). 

Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.1 g cases barely changes with the use of
vertical piles. For cases under a larger amplitude, vertical piles reduce the maximum ru
all throughout the depth, which can be due to the strengthening effects of the pile groups
on the soil. Therefore, the utilization of pile foundations can mitigate the occurrence of
liquefaction. In addition„ abrupt increases in maximum ru were observed on top of the
medium-dense sand layer in the soil profile
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, which may be due to the resistance of the
clay crust to drainage.

As shown in Figure 7, the maximum soil displacements in cases with a level ground or
a smaller excitation amplitude were markedly smaller than those observed in other cases.
In Figure 7a, a sharp increase in displacements was observed at 8 m depth, which was
the interface of the two sand layers. These abrupt changes were mitigated partly by the
presence of the vertical piles, as the displacements near the interface shown in Figure 7b
changed moderately with the depth. The soil displacements at the clay-sand interface in the
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-0.3 g cases also demonstrated a slippage which may be attributed to the sharp increase
in ru shown in Figure 6. The presence of the pile group was found to increase the soil
displacement in the level ground case, but also reduce that in the sloping ground case. The
kinematic and inertial interactions of the soil–pile system can explain this phenomenon. In
the level ground case, the inertial force generated by the cap during the dynamic loading
dominates the soil displacement, resulting in increased soil displacements. In the sloping
ground case, however, the kinematic effect becomes dominant, and the strengthening
effects of the pile groups on the saturated ground decrease the soil displacements.

The distributions of the maximum ru along line A-B in the level ground scenario
are demonstrated in Figure 8. Only the results from configuration II were shown, as
similar trends were observed in the other configurations. The increase in pile inclination
reduces the maximum ru in the upper zone of the medium-dense soil layer in Figure 8a,b,
which may be caused by the reduced soil displacement displayed in Figure 9. It is worth
mentioning that the reinforcement effects of the inclined piles on liquefiable soil deposits
were also viewed in the shaking table tests performed by McManus et al. [13]. However,
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the pile inclination enhances the development of maximum ru at deeper depths, with
the maximum ru closer to 1.0 (Figure 8b,c). Similar to the observations seen in the flat
ground case, the inclined piles were further away from the observation points, and thus the
stiffening effect of the piles was weakened. Figure 9 shows the time histories of ru and the
horizontal displacement Usoil of the ground at different depths for the cases with soil profile
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, amax,base = 0.3 g, β = 4◦, and αL = αR = 0◦ and 25◦. Although the rates of development of
ru at deeper depths were increased due to the presence of inclined piles, those of the Usoil
at the corresponding depths were found to have significantly decreased. Therefore, the
lateral stiffness of the whole soil–pile interaction system increased on the whole due to the
utilization of the inclined piles. The increase in pile inclination may thereby only decrease
the soil confinement in the middle part of the model.
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-0.3 g.

Based on Equation (1), the performance indices for soil displacement, PUsoil, were
evaluated and subsequently illustrated in Figure 10. Note that the soil displacement in
the analysis refers to the maximum displacement at Node A in Figure 3, which is at the
ground surface and right below the cap node. The pile inclination α represents αL, αR, and
αL = αR for pile configurations IV, VI, and II, respectively. Most indices were negative,
and showed decreasing tendencies with the pile inclination, which means that the use of
inclined piles reduces the soil displacement, with larger pile inclinations boosting such
positive effects. Indices for the sloping ground cases (Figure 10b,c) were even lower than
those seen in the level ground cases (Figure 10a), indicating that inclined piles in the
sloping ground have more noticeable positive effects than in the level ground. The positive
effects of configuration VI (with PUsoil being down to -50%) are more noticeable than those
of configuration IV (with PUsoil being down to −37%), but less noticeable than those of
configuration II (with PUsoil being down to −60%). The soil displacement seems to be
reduced by the inclined piles, as the lateral stiffness of inclined pile groups was larger
than that of the vertical pile groups. Moreover, the indices from the liquefied cases were
generally smaller than those seen in the non-liquefied cases, demonstrating that inclined
piles exhibit more noticeable beneficial effects when the soil liquefies. Therefore, pile
groups with an inclined rear pile are more advantageous to the ground when considering
the soil response.
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3.2. Cap Response

For the cap response, attention has been paid to the maximum inertial force (FI = mcapacap,
in which acap is the horizontal acceleration of the cap), lateral displacement (Ucap), and
rotation (θ, the rotation of the cap node is along the y-axis). The corresponding performance
indices (i.e., PFI, PUcap, and Pθ) are presented in Figures 11–13.

The values of PFI for the level and sloping ground cases are shown in Figure 11.
The utilization of pile configuration IV in the soil profile
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Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

showed a detrimental effect
in terms of the inertial force. Although configuration II in the soil profile
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force on the soil profile. The structure and pile in the model were still subjected to vertical 
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shows a
beneficial effect in level ground, this effect becomes detrimental in the sloping ground.
Therefore, configuration VI displays more beneficial effects on soil profile
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demonstrate that the maximum inertial force
can be reduced due to the presence of inclined piles. Experiments by Li et al. [10,11]
also illustrated similar beneficial effects. Moreover, this beneficial effect becomes less
pronounced as the soil liquefies. Compared with the pile groups containing only one
vertical pile, pile configuration II produces lower PFI, representing more pronounced
beneficial effects generally. For most situations, PFI decreases with the pile rake angle.
However, indices for configurations II and VI under a large amplitude of motion were
either insensitive to or even decreased with pile inclinations that were larger than 15◦.

As shown in Figure 12, indices for the cap deflection PUcap were found to be negative.
This beneficial effect on the cap deflection has also been reported in other similar studies
(e.g., [10,11,26,27,45]. Moreover, PUcap decreases with the pile inclination and soil lique-
faction occurrence. The inclined piles were less beneficial in the level ground than in the
sloping ground, as the indices shown in Figure 12b,c were lower than those observed in
Figure 12a. Additionally, pile configurations II and VI showed more clear positive effects
compared to configuration IV.
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Figure 13 illustrates the Pθ for cases with different slopes. In level ground (Figure 13a),
only the small pile inclinations (α < 10◦) were able to reduce the cap rotation (e.g., Pθ for
α = 5◦ went down to −83%, while Pθ for α = 25◦ went up to 256%). It has been noted that
the utilization of inclined piles often produces significant cap rotation [10,26]. However,
beneficial effects on cap rotation have been observed in the experiments of Li et al. [11],
which may support the negative Pθ computed for cases with small pile inclinations. For
the sloping ground cases, not only are the indices for the
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-0.3 g cases negative, but the
positive indices for the other cases also decreased. Configurations IV and VI produce a
lower Pθ than configuration II, except in the cases involving small pile inclinations (α < 10◦)
in liquefied sloping ground. These results show that, in terms of limiting the cap rotation,
the combined use of the vertical and inclined piles is generally better than the symmetrically
inclined pile groups.

In summary, pile inclination is beneficial in reducing the maximum inertial force
and the lateral displacement of the cap in the level and sloping grounds (with PFI being
down to −46%, and PUcap down to −78%). Configuration II produced the lowest PFI, and
an optimal pile inclination seems to exist at around 15◦. Configurations VI and II were
found to be more beneficial than configuration IV in reducing the cap deflection. With
regard to the cap rotation, remarkable detrimental effects were observed, except for small
pile inclinations (α ≤ 10◦) in the level ground and non-liquefied sloping ground cases.
However, less detrimental effects were observed in the sloping ground case. Compared
with configuration II, the combination of using the vertical and inclined piles together has
more advantages in reducing the cap rotation.

3.3. Pile Response

The pile responses examined in this study include the maximum bending moment
M, the shear force FS, and the axial force FA. Note that the negative axial forces (tension)
may be generated during the seismic loading, which may damage concrete piles easily in a
real-life scenario. Therefore, both the maximum and minimum axial forces were considered
herein. The maximum pile deflection was not investigated here due to space limitation;
however, it can be determined from either the bending moment distribution, or the shear
stress distribution in the piles.

3.3.1. Maximum Bending Moment

Figure 14 illustrates the maximum bending moment profiles that developed in the
inclined rear pile of configuration VI. The maximum bending moment generated on the
piles increased considerably with the slope inclination. The maximum values generally
occurred at the pile heads in the cases of the level ground (i.e., Figure 14a,d,g) and the
non-liquefied sloping ground (i.e., Figure 14b,c). As displayed in the other figures, the peak
bending moments in the piles with small inclinations occurred close to the bottom of the
medium-dense soil layer. As the pile inclination increases, the bending moment at the pile
heads and at the depths around the interface of soil layers generally decreases, especially in
the liquefied cases. The decreased bending moment at the pile head has also been observed
in the literature (e.g., [7,10,11,26]). According to Giannakou et al. [26], the prevalence of
inertial loading results in smaller bending moments.
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(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
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tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 
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The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
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middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
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Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
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Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.3 g.

Figure 15 presents the performance index for the maximum bending moment PM in
both the front (Figure 15a–c) and rear piles (Figure 15d–f). In the non-liquefied level ground
(0S-
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depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
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(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
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with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
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force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
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-0.1 g), only configuration II results in a smaller maximum bending moment. In the
sloping ground and liquefied level ground, however, both configurations VI and II were
determined to be beneficial (with PM being down to −35%). As for the liquefied cases,
the presence of an impermeable crust exhibited minor effects on the bending moment.
The beneficial effects of configurations VI and II became less pronounced (with PM being
down to −20%). As the pile inclination increases, generally more pronounced effects in the
non-liquefied cases were induced, but this only had a minor impact in the liquefied cases.
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As explained by Giannakou et al. [26], due to the significant stiffness ratio of piles to the
liquefied soil, the additional stiffness provided by the pile inclination can only exhibit a
minor influence on the system response.
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Therefore, when considering the maximum bending moment, the utilization of asym-
metric pile groups would be detrimental in non-liquefied level ground. In the presence of
lateral spreading induced by liquefaction, pile group configurations VI and II are effective
in decreasing the maximum bending moment in the piles.
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3.3.2. Maximum Shear Force

Figure 16 illustrates the profiles of maximum shear force in the front pile of config-
uration II. It can be observed that the shear force profiles increase considerably with the
increase in slope inclination. The locations of the peak maximum shear force along the
piles were within the medium-dense soil layer. Abrupt changes in the distributions were
observed at the interfaces of the soil layers, which were around 8 m and 1.8 m in the soil
profile
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(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

. These findings also correspond to the locations where noticeable changes in soil
displacement profiles appear in Figure 7. As for the maximum shear force profiles, the pile
inclination tends to amplify the maximum shear force at the pile head and the peak value
at a lower location in the liquefied cases (i.e., Figure 16a,d,g), but tends to decrease those in
the non-liquefied cases.
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Figure 16. Distribution of the maximum shear force experienced by the front pile for the pile
configuration II: (a) 0S-
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stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
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middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
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Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 
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Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 
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depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
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Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
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The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 
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The performance indices corresponding to the maximum shear force PS are demon-
strated in Figure 17. In non-liquefied cases (i.e.,
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also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
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-0.1 g), utilizing pile configurations VI
and II is beneficial in decreasing the maximum shear force (with PS being down to −34%).
With a crust on the ground surface, the pile inclination generally plays a beneficial role,
except for the front pile in the sloping ground. In the liquefied level ground without a
crust, the use of the inclined piles amplifies the maximum shear force by around 34% at
most. However, with the increase in the slope inclination, this negative effect becomes
less noticeable, and even turns out to be positive, except for configuration IV. Compared
with pile configuration IV, the other two configurations (i.e., VI and II) mainly exhibited
beneficial effects, with the exception of the
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stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
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depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 
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force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 
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In summary, when considering the maximum shear force, the pile inclination in
configurations VI and II has a positive effect in the sloping ground and non-liquefied level
ground cases. With an impermeable crust on top, the utilization of inclined piles exhibits
more beneficial effects with respect to the shear force.

3.3.3. Maximum Axial Force

Figure 18 illustrates the maximum axial force profiles for configuration VI in the
sloping ground (β = 4◦). For the vertical front piles, the peak compression force occurs
at the pile heads. For the inclined rear pile, however, the peak values are in the vicinity
of the bottom of the medium-dense soil layer. The pile inclination tends to increase the
maximum axial force along the vertical piles. For the inclined piles, the pile inclination also
amplifies the maximum axial force at depth but decreases that at the pile head. Giannakou
et al. [26] observed even more significant reductions in the axial force at the pile head. The
numerical simulations of Gerolymos et al. [7] and Sadek and Isam [47], also confirmed
the amplification effect experienced by the piles in the deeper layer and put the blame on
the lateral displacement of the soil. The sharp changes in the soil displacement profiles as
shown in Figure 7 tend to support this explanation.

Geotechnics 2023, 3, FOR PEER REVIEW  21 
 

 

In summary, when considering the maximum shear force, the pile inclination in con-
figurations VI and II has a positive effect in the sloping ground and non-liquefied level 
ground cases. With an impermeable crust on top, the utilization of inclined piles exhibits 
more beneficial effects with respect to the shear force. 

3.3.3. Maximum Axial Force 
Figure 18 illustrates the maximum axial force profiles for configuration VI in the slop-

ing ground (β = 4°). For the vertical front piles, the peak compression force occurs at the 
pile heads. For the inclined rear pile, however, the peak values are in the vicinity of the 
bottom of the medium-dense soil layer. The pile inclination tends to increase the maxi-
mum axial force along the vertical piles. For the inclined piles, the pile inclination also 
amplifies the maximum axial force at depth but decreases that at the pile head. Giannakou 
et al. [26] observed even more significant reductions in the axial force at the pile head. The 
numerical simulations of Gerolymos et al. [7] and Sadek and Isam [47], also confirmed the 
amplification effect experienced by the piles in the deeper layer and put the blame on the 
lateral displacement of the soil. The sharp changes in the soil displacement profiles as 
shown in Figure 7 tend to support this explanation. 

 
Figure 18. Distribution of the maximum axial force from the pile configuration VI in the sloping 
ground with β = 4°: (a) front pile-➀-0.1 g; (b) front pile-➀-0.3 g; (c) front pile-➁-0.3 g; (d) rear pile-
➀-0.1 g; (e) rear pile-➀-0.3 g; and (f) rear pile-➁-0.3 g. 

Figure 18. Distribution of the maximum axial force from the pile configuration VI in the sloping
ground with β = 4◦: (a) front pile-

Geotechnics 2023, 3, FOR PEER REVIEW  3 
 

 

 
Figure 1. Schematic of model piles for configuration VI, with αL = 0° and αR = 25° and soil profiles 
(in meters). 

Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
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i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.1 g; (b) front pile-
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soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
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depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 
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file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
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-0.3 g.
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Figure 19 presents the performance index for the maximum axial force PFA. Almost all
indices were determined to be positive, except for the front pile for configuration IV in the
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stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
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middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
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-0.1 g cases. Inclined piles in the non-liquefied cases exhibited the lowest PFA. With the
presence of soil liquefaction and slope inclination, the detrimental effect of pile inclination
becomes much more significant. Compared with the front pile (with PFA being up to 82%),
indices for the rear pile were much higher (with PFA being up to 298%), especially for
sloping ground cases. Additionally, configuration II commonly attracted larger axial forces
compared to the other pile groups containing only one inclined pile.
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3.3.4. Minimum Axial Force

Figure 20 demonstrates the minimum axial force profiles experienced by the front
pile of configurations VI and II in the sloping ground with β = 4◦. It can be observed that
extensive negative axial forces or tensile forces have been generated due to the occurrence of
soil liquefaction. Compared with the front pile, the rear pile has not experienced significant
tensile forces, and was thus not presented in Figure 20. The presence of the impermeable
crust had negligible effects on the minimum axial force. Although the negative FA on the
vertical pile can be eliminated as the pile inclines, the negative axial forces on the inclined
piles were amplified in most cases. Therefore, inclined piles are not appropriate to be used
when considering the tensile axial force. As the minimum FA in the vertical piles may be
close to zero, the computed performance indices will be predicted to be exceptionally high.
Hence, the performance indices were not used in analyzing the minimum FA.
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The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
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middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
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Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 
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Geotechnics 2023, 3, FOR PEER REVIEW  3 
 

 

 
Figure 1. Schematic of model piles for configuration VI, with αL = 0° and αR = 25° and soil profiles 
(in meters). 

Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.3 g; (c) VI-

Geotechnics 2023, 3, FOR PEER REVIEW  3 
 

 

 
Figure 1. Schematic of model piles for configuration VI, with αL = 0° and αR = 25° and soil profiles 
(in meters). 

Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.3 g; (d) II-

Geotechnics 2023, 3, FOR PEER REVIEW  3 
 

 

 
Figure 1. Schematic of model piles for configuration VI, with αL = 0° and αR = 25° and soil profiles 
(in meters). 

Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.1 g; (e) II-

Geotechnics 2023, 3, FOR PEER REVIEW  3 
 

 

 
Figure 1. Schematic of model piles for configuration VI, with αL = 0° and αR = 25° and soil profiles 
(in meters). 

Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.3 g; and
(f) II-

Geotechnics 2023, 3, FOR PEER REVIEW  3 
 

 

 
Figure 1. Schematic of model piles for configuration VI, with αL = 0° and αR = 25° and soil profiles 
(in meters). 

Table 1. Ranges of the investigated factors in the parametric analysis. 

Factor Range 
Peak base acceleration, amax,base 0.1 g and 0.3 g 
Inclination of left/front pile, αL 0°, 5°, 10°, 15°, 20°, and 25° 
Inclination of right/rear pile, αR 0°, 5°, 10°, 15°, 20°, and 25° 

Ground slope, β 0°, 2°, and 4° 
Soil profile ➀ and ➁ 

The piles were modeled to be elastic and have a diameter of D = 0.72 m, with a section 
stiffness of EI = 505 MN·m2 (where E is the Young�s modulus, and I is the moment of iner-
tia). The pile spacing, i.e., the center-to-center distance between the two piles at the soil 
surface, is independent of the pile inclination and is fixed at four times the pile diameter, 
i.e., 4D = 2.88 m. The pile heads were connected by a rigid link with a lumped mass in the 
middle to simulate the cap (mcap = 100 tons), which is 1.0 m above the soil surface. The 
depth of embedment of the pile group is 14.0 m, and the pile tips extend 6.0 m above the 
model base. 

Two-layered soil deposits (Figure 1) on top of the rigid base were considered: (a) Pro-
file ➀: a fully saturated sandy soil deposit with the water level at the ground surface; and 
(b) profile ➁: a soil deposit with an impermeable clay crust near the ground surface. The 
soil profile ➀ is composed of two soil layers: a dense sand layer (relative density Dr = 80%) 
with 12.0 m thickness at the bottom, and a medium-dense sand layer (Dr = 55%) with 8.0 
m thickness on the top. On the other hand, the soil profile ➁ replaces the 1.8 m (i.e., 2.5D) 
thick medium-dense sand at the top with impervious soft clay. In addition to the level 
ground case (i.e., ground slope β = 0°), inclined ground (i.e., β = 2° and 4°) has also been 
considered to induce lateral spreading towards the positive x-axis. The sloping ground is 
also adopted in other simulations and experiments (e.g., [22,32,33]) as one of the common 
methods to consider the influence of lateral spreading load on pile foundations. In Open-
Sees, a sloping ground could be modeled by inclining the direction of the gravitational 
force on the soil profile. The structure and pile in the model were still subjected to vertical 
gravitational force. Depending on the ground slope, the left and right piles can be called 
the front (upslope) and rear (downslope) piles, respectively. 

-0.3 g.

Thus, the pile inclination normally increases the peak maximum axial force, and more
considerable increases can be detected as the soil liquefies, or when lateral spreading is
induced. Compared with the front pile, which is close to the top of the slope, the detrimental
effects of the inclinations of the rear pile are more pronounced. As for the minimum axial



Geotechnics 2023, 3 342

force along the pile, the use of inclined piles generally results in the development of larger
tensile forces.

4. Discussion

In the parametric analysis, several factors, including pile inclination, ground slope,
and soil liquefaction occurrence, were investigated for a specified model configuration and
input motion. Based on the results, the systematic performance of the inclined piles against
lateral spreading can be examined. The results demonstrated that inclined piles could
outperform vertical piles in reducing soil deformation and the cap response, including
inertial force, lateral displacement, and rotation. This beneficial effect is consistent with
the experiments conducted by Li et al. [10,11]. The presence of an impermeable crust
on top of the liquefiable soil layer magnifies the soil–pile responses, but only exhibits
non-significant impacts on the effects of the inclined piles on the system, except for the
total base shear force. Regarding the pile responses, such as the bending moment, the shear
force, and the axial force, the performance of the inclined piles depends on the pile group
configuration. Inclined piles were found to decrease the bending moment at the pile head,
which is consistent with previous literature (e.g., [7,10,11,26]). This study also confirms the
reduction in the axial force at the pile head, as previously reported by Giannakou et al. [26].

Pile inclinations ranging from 0◦ to 25◦ were investigated within the scope of the
current paper. Generally, the beneficial or detrimental effects of inclined piles vary with
the increase in pile rake angle. However, there are still some situations in which there is
an optimal inclination, which is between 0◦ and 15◦, considering the balance between the
beneficial or detrimental effects. Hence, in real projects, an appropriate pile inclination
should be adopted to magnify the beneficial effects and minimize or even remove the
detrimental effects of inclined piles.

There are three pile group configurations investigated herein. Based on the indices of
the system responses, configuration IV, which comprises a vertical rear pile and an inclined
front pile, was found to be unsuitable for use in the sloping ground. Under the influence
of soil liquefaction, and slope and pile inclinations, either configurations II or VI perform
better in terms of the different system responses. Therefore, using inclined pile groups with
an inclined rear pile could maximize the efficiency of the inclined pile groups. However, it
should be noted that the axial compressional force experienced by this inclined pile could
be notably enlarged. Therefore, additional mitigations can be adopted with respect to the
compression properties of the pile, whilst still benefiting from the advantageous effects of
the inclined piles.

5. Conclusions and Recommendations

To justify the beneficial or detrimental effects of using inclined piles in sloping ground,
this paper examined the seismic behavior of the inclined piles against lateral spreading
induced by liquefaction using a parametric 3D FEM analysis. The main conclusions can be
drawn below:

• In the sloping ground case, better performance can be obtained with the use of two
pile group configurations, “II” (two symmetrically inclined piles), and “VI” (the
combination of a vertical front pile and an inclined rear pile).

• In the non-liquefied ground scenario, the utilization of inclined piles with appropriate
configurations can be beneficial to most of the soil–pile system responses, except
for the cap rotation and the axial force (either compression or tension) on the pile.
Conversely, inclined piles with small inclinations can also be beneficial for cap rotation.

• In the liquefied level ground scenario, inclined piles were found to be detrimental to
the maximum pore water pressure in the near-field soil, and in the cap rotation, shear
force, and axial force (either compression or tension) on the pile.

• In the liquefied sloping ground scenario, in which a large lateral spreading has been
induced, inclined piles become beneficial in reducing the rotation of the cap and the
shear force on the pile. Moreover, pronounced beneficial effects were observed in
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the displacement of the soil and cap, bending moment, and cap rotation. As for the
compressive and tensile axial forces, however, the detrimental effects were amplified
significantly for the large ground inclinations.

• Compared with the non-liquefied scenario, inclined piles in the liquefied ground case
could have more pronounced beneficial effects on the lateral displacement of the soil
and cap, and less pronounced detrimental effects on the cap rotation. However, there
were also more pronounced detrimental effects on the axial compression or tension on
the pile, and less pronounced beneficial effects on the inertial force under the cap, as
well as the bending moment and shear force on the pile.

Within the scope and conditions examined in this study, the utilization of inclined piles
with suitable configurations can generally result in better performance of the soil–pile–cap
system. With the occurrence of liquefaction-induced lateral spreading, the performance of
the inclined pile groups tends to be better than that in the level ground case, except for the
fact that the additional compression demand on the pile should be met.

It is important to note that the results of this study are subject to certain limitations
imposed by the constitutive models and numerical models used. Specifically, the soil
constitutive model employed tends to underestimate the post-liquefaction settlement in
sandy soils, and the pile group configurations investigated may not be fully representative
of all practical applications. Additionally, while the parametric analysis did include several
significant factors, other important variables that can affect the performance of inclined
piles include the pile diameter, pile nonlinearity, stiffness of the pile cap, natural frequency
of the superstructure, properties of the input motion, and permanent lateral loading or
ground deformation. Therefore, a more developed constitutive model is recommended,
more comprehensive investigations should be performed, and, when possible, physical
model tests or case studies should be integrated to formulate design guidelines for future
use in practice.
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Nomenclature
The following notations were used in this manuscript:

(N1)60 SPT value
acap Horizontal acceleration of the cap
amax,base Peak base acceleration
Br Reference bulk modulus
c Numerical constant
cu Undrained shear strength
c1, c2, c3 Contraction coefficients
d Pressure dependency coefficient
D Pile diameter
d1, d2, d3 Dilation coefficients
Dr Relative density

https://www.nesi.org.nz
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e Void ratio
FA Maximum axial force in pile
FI Maximum inertial force on pile
fmax Maximum frequency content of the excitation
FS Maximum shear force in pile
Gr Reference shear modulus
hmax Element height
k Permeability of soil
liq1, liq2 Liquefaction constants
M Maximum bending moment in pile
mcap Mass of the cap
NYS Number of yield surface
pr Reference pressure
Pusoil, Pθ , PFI, Pucap, PM, PFA Performance indices for different quantities
ru Excess pore water pressure ratio
Usoil, Ucap Horizontal displacements of soil and cap
Vs Shear wave velocity
αL Inclination of left/front pile
αR Inclination of right/rear pile
β Ground slope
γmax Maximum shear strain
θ Maximum rotation of the cap
ρ Saturated soil density
ϕf Friction angle at peak shear strength
ϕPT Phase transformation angle
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