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Abstract: This work investigates the equilibrium stage of the crack propagation of a fine-grained soil
after several drying and wetting cycles (shrinkage and swelling hysteresis). This stage is found to be
crucial in practical engineering since the soil continues to show its irreversible hydraulic settlement,
which is a potential risk for some severe structural damages. The shrinkage area and the shrinkage
crack area were determined by using the image processing method. For the cyclic experimental
investigations, the shrinkage cracks were followed during six months of successive wetting and
drying cycles for two samples (with two different initial water contents). These long-term tests
were completed by some short term single drying path tests performed on samples prepared at
different initial states. The results showed the existence of a unique equilibrium stage at the end of
the wetting and drying cycles for the two studied samples. The equilibrated soil subsidence was
separated into two parts: the reversible settlement of the equilibrium stage and the irreversible
settlements cumulated during successive wetting and drying cycles. At the equilibrium stage, the
reversible deformation was 5.9% and the irreversible deformation was 3.8%. A simplified theoretical
approach was also used to predict the cracking equilibrium stage and its soil subsidence. The fitted
parameters of the theoretical approach for each cycle were stabilized to confirm the existence of this
equilibrium stage.
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1. Introduction

Fine-grained soils and, particularly, swelling clays are often exposed to complex
suction/stress paths, causing many problems both in surface structures built on them
(shallow foundations, retaining structures, landfill liner systems, and earth dam cores) and
in buried structures (tunnels, drains, and deep foundations). Furthermore, fine-grained
soils include significant variation in physical properties, such as bulk density [1], pore size
distribution [2–4], and field-saturated hydraulic conductivity [5–8], with changes in the soil
water content. Cumulative swelling or shrinkage strains have been largely reported in the
literature as clayey samples are subjected to successive wetting and drying cycles. All these
results obtained in the laboratory or field conditions indicate that the soils show signs of
hydraulic stabilization or an equilibrium elastic state at the end of several cycles [9–17].

In a typical fine-grained soil, individual particles cluster together in aggregates, which
in turn group together as a matrix. Assuming that the particles themselves are not porous,
the smallest pores are those that occur between individual particles. The packing together
of aggregates also forms pores that are typically larger and more connected than the
“interparticle” pores [18–21]. Interparticle and interaggregate pores decrease in size as
the soil dries and increase in size as the soil wets. As the soil dries, typically, shrinkage
cracks begin at the soil surface [22,23]. As the soil profile dries, these cracks will extend
vertically from the surface to some finite depth and often will become interconnected in the
horizontal direction. As such, shrinkage cracks can be considered to demarcate individual
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pedons [24–26]. Additionally, during shrinkage the soil surface can vertically subside,
which can be considered to be an independent porosity domain that forms external to the
soil matrix.

Several laboratory tests were performed to characterize the crack propagation in the
compacted clayey soils at different hydraulic conditions [27–38]. Field Cracks have been
often characterized using in situ measurements of either crack volumes [39–41] or vertical
subsidence [42,43]. Shrinkage and cracking can be expressed as functions of water content
(u) or suction head (h) [44,45].

In recent years, many scholars have researched theoretical models of soil cracking to
predict whether the soil will crack and the crack propagation, such as the depth and width
of the cracks [46–52].

The effect of successive wetting and drying cycles on the crack propagation has
been less investigated in the literature. Some studies, primarily focused on laboratory
samples [53,54], have contended that recognizing the hysteresis in shrinking–swelling
processes is an important issue. However, the discussing issue is about the existence of the
cracking equilibrium stage, which can be only obtained after several wetting and drying
cycles. Experimentally, it is more accessible in the laboratory conditions, but it becomes
more problematic in in situ conditions since a longer period is necessary to reach this
equilibrium stage.

In this context, this work has investigated the effect of several drying and wetting
cycles (shrinkage and swelling hysteresis) on the crack propagation of a fine-grained soil
in laboratory conditions. Several shrinkage crack measurements were performed on the
soil samples prepared at different initials states during a single drying phase, then during
several wetting and drying cycles to reach the equilibrium stage. A simplified theoretical
framework proposed for the soil shrinkage crack was also used to quantify the shrinkage
crack and the soil subsidence after several hydraulic cycles at the equilibrium stage.

2. Material and Image Processing Method

The physical properties of the studied soil were listed in Table 1.The fine-grained soil
was powdered with a grain size less than 80 µm with almost the same quantity of clay and
silt in its texture. Soil specimens were prepared by mixing the soil powder with distilled
water. Prior to any testing, the prepared specimens were covered for at least 24 h to reach
uniformly their initial water content (between 25%, close to liquid limit, and 60%, which
is two times more than the liquid limit as reported in Table 2). The specimens were then
placed in two Plexiglas molds at their desired initial state. The molds have a square shape
with the same length and width of 24 cm and height of 15 cm.

Table 1. Physical properties of soil.

Soil Property Value

Specific gravity 2.65

Liquid limit 30.9%

Plastic limit 17.7%

Plasticity index 13.2%

USUC Classification ML-CL

Grain size analysis

Sand (pores between 50 and 80 µm) 20%

Silt (pores between 2 and 50 µm) 45%

Clay (pores less than 2 µm) 35%
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Table 2. Initial states for the different tested samples.

Test Water Content (%) Dry Density (Mg/m3) Sample Height (cm)

D1 60 1 4

D2 60 1.15 3.6

D3 50 1 4.2

D4 45 1.25 1.05

D5 45 1.2 1.3

D6 30 1.4 2

D7 25 1.55 4.5

A variable dry density varying between 1 and 1.55 mg/m3 (as presented in Table 2)
was also controlled for the different test. To reach this dry density, the weight of the samples
was measured at the beginning of the tests. Then, the samples were compacted to their
desired height varying between 1 and 4 cm (as summarized in Table 2).

Along with the tests, the specimens were weighed to an accuracy of 0.01 g to monitor
the water loss at varying intervals. At the same time, a camera was fixed above the
specimens at the same place to monitor crack patterns which will be used for image
analysis to determine the related geometrical parameters. At least, two images were taken
at each measurement step.

The surface area of cracks within the quadrats were quantified by first converting the
digital images to a gray scale, then renormalizing them using a custom ImageJ software
such that cracks were black and soil was white. The number of black pixels was then
counted and converted to an area. The initial square area and its boundary are fixed at the
beginning of the tests. They are then used during the tests to distinguish first the lateral
shrinkage and finally the shrinkage crack area.

A set of examples crack images, before and after processing, is shown in Figure 1.
After analyzing the images, the ratio between the shrinkage area and the sample area is
defined as Shrinkage Intensity Factor (SIF). The ratio between the crack area and the sample
area is determined as the Crack Intensity Factor (CIF). The shrinkage crack area is the sum
of SIF and CIF, expressed as Shrinkage Crack Intensity Factor (SCIF).
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SIF =
Shrinkage Area

Total Sample Area
(1)

CIF =
Crack Area

Total Sample Area
(2)

SCIF = SIF + CIF =
Shrinkage Crack Area

Total Sample Area
(3)

3. Cracking Equilibrium Stage after Successive Wetting and Drying Cycles

Since successive wetting and drying cycles are experimentally time-consuming, a
limited number of tests can be carried out for this issue in the laboratory. This limited
number makes complicated the interpretation of the cyclic experimental results. To fill this
gap, some additional short-term tests were additionally performed by submitting a single
drying path to samples. Seven samples were prepared at different initial water contents and
initial dry densities (Tests D1 to D7). Table 2 summarizes all the performed tests presenting
their initial water content, initial dry density, and initial height.

Figure 2 shows the evolution of shrinkage crack area (SCIF) and the crack area (CIF)
for these seven tests by using the image processing method detailed in Section 2.
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It can be observed that the shrinkage crack area increases with the increase in the
initial water content of the samples (Figure 2a). Additionally, the water content in which
the shrinkage cracks are initiated is increasing with the initial water content of the studied
samples. Figure 3 proposes a linear correlation between these two parameters. No major
effect of the initial dry density is detected for the water content of the crack initiation.
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Figure 3. Linear correlation between the initial water content of the studied samples with their water
content of the shrinkage crack initiation.

Figure 2b shows the same increase in the crack area with water content. Furthermore,
an evident effect of the initial dry density of the samples on the crack areas was confirmed.
The maximum crack propagation happened for the samples with an initial dry density
of 1.25 mg/m3. No crack propagation was observed for the samples with the initial dry
density of 1 mg/m3.

Then, the tests D1 and D3 were continued, and several wetting and drying cycles were
performed at the end of the first drying path. Three additional drying wetting cycles were
performed for these tests for six months. To wet up the samples, the necessary quantity of
water was added each day for a total period of 5 days to disappear the cracks in the samples.
Globally, a water content close to 40% was necessary for both samples to disappear the soil
cracks on the surface for each wetting path.

Figures 4 and 5 present the Shrinkage Crack Intensity Factor (SCIF) and the Crack
Intensity Factor (CIF) for these tests. To follow the experimental values of different wet-
ting and drying paths presented in these figures, Table 3 summarizes also the maximum
and the minimum values obtained at the end of wetting and drying cycles and at their
corresponding water contents.

Generally, it can be observed that the shrinkage crack area tends to an equilibrium
stage after several wetting and drying cycles. This equilibrium stage is more evident for
the test D1 with the initial water content of 60%. The wetting and drying loops are closer
for this test. For the test D3, the loops are more deviated, and some further wetting and
drying cycles are still necessary to reach the equilibrium stage. The same observations for
the crack areas can be pronounced. CIF values are closer during the last cycles for test D1
while the loops for the test D3 are more distanced. One or two further wetting and drying
cycles are still necessary for the test D3 to reach the equilibrium shrinkage crack state.
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Table 3. SCIF and CIF values at the final water content of each drying and wetting path (Tests D1
and D3).

Initial Water
Content (%) Cycle First Drying First

Wetting
Second
Drying

Second
Wetting

Third
Drying

Third
Wetting

Fourth
Drying

60

Final water
content (%) 7.7 46.7 10.0 38.0 7.75 42.1 11.9

SCIF (%) 16.03 7.5 10.57 6.91 11.04 5.74 11.51

CIF (%) 0.00 0.00 4.27 0.11 3.50 0.00 4.48

50

Final water
content (%) 5.3 39.3 6.2 31.1 4.0 36.7 9.2

SCIF (%) 14.29 4.76 12.81 7.61 12.03 5.95 12.25

CIF (%) 0 0.69 3.75 0.24 1.97 0.00 2.4

Some dispersion can be observed for the estimated results (mostly for CIF data) that
can be related to the image processing method and threshold choice. Any improvement in
the image processing can result in a higher resolution of the whole estimated results but
the same scattering can be found during the successive wetting and drying cycles.

4. Prediction of the Cracking Equilibrium Stage and the Soil Subsidence after Several
Wetting and Drying Cycles

Numerous conceptual and mathematical models have been developed to describe
the shrinkage of soil aggregates. Such models identify up to four distinct shrinkage
phases, including: (i) structural shrinkage; (ii) proportional (i.e., basic or normal) shrinkage;
(iii) residual shrinkage; and (iv) zero shrinkage [55–58]. During periods of drying, indi-
vidual clay particles shed hydration layers, causing compaction of the soil aggregates.
This process results in subsidence and cracking of the soil [20,59]. To demonstrate the
distinction among these three domains (aggregate, cracking, and subsidence), Stewart
et al. (2016) [52] report an example of the porosity distribution at different water contents.
The aggregate porosity is represented by beginning at the minimum porosity φmin and
extending to the maximum porosity φmax; as the aggregate porosity decreases (due to
shrinkage), the shrinkage crack and/or subsidence porosities necessarily increase. This
extra aggregate (i.e., cracking and/or subsidence) porosity can be seen as the space between
the soil shrinkage curve and φmax. The total porosity of a clayey soil φtotal is partitioned
into the following domains: (i) aggregate (φaggr); (ii) shrinkage cracks (φshrink/crack); and
(iii) vertical subsidence (φsub). The distribution of porosity between these three domains
varies as a function of soil water content [21,60].

In this work, the shrinkage crack porosity is separated into two parts: one is the
shrinkage porosity (φshrink), and the other part is the crack porosity (φcrack).

φshrink/crack = φshrink + φcrack (4)

Since the crack porosity is an important element in this investigation, the crack porosity
is proportional to the shrinkage crack porosity. Equation (1) can be then separated into two
following parts:

φcrack = fcrack ∗ φshrink/crack (5)

φshrink = (1 − fcrack) ∗ φshrink/crack (6)

where the function of fcrack was experimentally determined in the last sections by means of
the single drying tests. Figure 6 proposes a second-degree polynomial equation to relate
the function fcrack to the initial dry density of the studied samples.
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Figure 6. The second polynomial equation for the relation between fcrack and initial dry density of
the studied samples.

For several wetting and drying cycles, the equations proposed by Stewart et al.
(2016) [52] are written incrementally since the initial state of each path corresponds to
the final state of the previous path, as follows:

∆ϕaggr(U)

∆U
= (ϕmax −ϕmin)(

(1 + ε).q.U−q−1

(ε + U−q)2 ) (7)

∆ϕsub(U)

∆U
= (ϕmax −ϕpedon)(

−q(1 + ε)Uq−1

(1 + ε.Uq)2 ) (8)

∆ϕshrink/crack(U)

∆U
= (ϕ pedon −ϕmin)(

−q(1 + ε)Uq−1

(1 + ε.Uq)2 ) (9)

U =
u

umax
(10)

where u is the water content, umax is the maximum water content, U is the normalized water
content, φpedon is the total porosity attributable to the combination of cracks and aggregate
porosities at U = 0, and ε and q are fitting parameters. Note that the proposed equations
need only four parameters (ε, q, φmax, and φmin) to be calibrated. φpedon can be expressed in
terms of the shrinkage geometry factor χ [61] as follows:

ϕpedon = ϕmax − 1 + [1 − (ϕ max −ϕmin)]
1/χ (11)

where χ is a constant parameter taken equal to 3.
The theoretical approach is then used to quantify the crack and shrinkage crack of the

tests D1 and D3 during several drying and wetting paths. Tables 4 and 5 summarize the
best fitted parameters (Initial dry density for fcrack in Equation (2), and ε, q, φmax, and φmin
in Equations (3) to (7)) for each drying and wetting path to model the experimental results.

Comparisons have been made for all the wetting and drying cycles between the
simulations and measurements. Figures 7 and 8 show specifically the experimental and
calculated evolution of SCIF and CIF during the third drying and wetting cycle. The
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theoretical approach is capable to take into account the general evolution of the shrinkage
crack and crack during successive wetting and drying cycles. Furthermore, the fitted
parameters for each cycle make it possible to consider the hysteresis phenomenon in
the simulations.

Table 4. Fitted parameters for the analytical simulations of several drying and wetting cycles (Test D1).

Parameter
Cycle First

Drying
First

Wetting
Second
Drying

Second
Wetting

Third
Drying

Third
Wetting

Fourth
Drying

Equilibrium
Stage

Initial dry density 1 1.9 1.35 1.4 1.4 1.5 1.5 1.5

ε 5 0.1 2 2 2 2 2 2

q 4 0.65 0.65 7 0.6 6 1.5 1.5

ϕmax 0.54 0.5 0.45 0.4 0.45 0.37 0.45 0.45

ϕmin 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283

Table 5. Fitted parameters for the analytical simulations of several drying and wetting cycles (Test D3).

Parameter
Cycle First

Drying
First

Wetting
Second
Drying

Second
Wetting

Third
Drying

Third
Wetting

Fourth
Drying

Equilibrium
Stage

Initial dry density 1 1.9 1.15 1.5 1.65 1.5 1.5 1.5

ε 5 0.1 0.5 2 0.5 2 2 2

q 4 0.7 0.4 1 4.2 1 1.5 1.5

ϕmax 0.5 0.5 0.6 0.45 0.45 0.4 0.45 0.45

ϕmin 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283

Another important point in the analytical simulations is the convergence of the shrink-
age cracks toward an equilibrium stage. Figure 9 shows also the evolution of the parameters
(Initial dry density, ε, q, and φmax) during the drying and wetting cycles. The parameters
(Initial dry density, ε, φmax, and φmin) are more or less stabilized after several wetting and
drying paths. Furthermore, no hysteresis effect can be detected for these parameters. For
the parameter q, the different values on the wetting and drying path can be observed
during the last wetting and drying cycles. This means that the hysteresis will be uniquely
controlled at the equilibrium stage by the parameter q.

Both tests show the same series of the fitted parameters for the last drying path,
confirming the equilibrium stage is unique for both samples constituted of the same material
although they are prepared at two different initial water contents. These parameters
(reported in Tables 4 and 5), and constant SCIF and CIF values of 5.85% and 0%, respectively,
(the average value of the experimental SCIF and CIF values at the end of the third wetting
path reported in Table 4) are used to reproduce the shrinkage crack curve at the equilibrium
stage of the drying path. Figures 10 and 11 show the simulated SCIF and CIF results for
the fourth drying cycle and the equilibrium stage of the drying path compared to the
experimental results of the tests D1 and D3 at their fourth drying path. The simulation
results confirm that the equilibrium stage has already been reached for the Test D1, while
one or two additional drying and wetting cycles are still necessary for the test D3. This is
also the reason that no prediction is presented for the equilibriums stage of the wetting
path. The q value ranges between 1 and 6 for the last wetting path of the tests D1 and
D3. One or two additional cycles are necessary to stabilize definitely the q value of the
wetting paths.

Since it was complex to measure the vertical subsidence of the samples because of its
variability on their surface, these proposed equations let us additionally predict the vertical
subsidence of the studied samples during the successive wetting and drying cycles.
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Figure 12 shows the evolution the soil subsidence (∆H/H) during the wetting and
drying paths for both tests. A unique equilibrium line is also defined for the last drying
cycle of both tests. For the sake of simplification, a linear approach is used to present the
nonlinear variation of the last cycle. It shows that both samples can produce a reversible
deformation of 5.9% and an irreversible deformation of 3.8% at their equilibrium stage.

The findings of this work can be used for any future application of crack propagation
in field conditions. Some laboratory experimental investigations of the soil surface can
let us define the final field subsidence of the soil after several wetting and drying cycles.
It simplifies the complex long term in situ measurements and helps us to estimate the
long-term differential soil settlement, which causes the damages in structures built on
these soils.
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5. Conclusions

Several laboratory tests were performed on the fine-grained samples prepared at
different initials states. The samples were submitted to a single drying phase, then to
successive wetting and drying cycles. The shrinkage area and the shrinkage crack area
were determined during each test at different water contents by using the image processing
method. Globally, the shrinkage crack quantity tends toward an equilibrium stage after
several wetting and drying cycles.

A simplified theoretical approach was also able to predict the experimental results
by considering shrinkage and swelling in the hysteresis processes. Particularly, both tests
presented the same series of the fitted parameters at their last drying path confirming the
existence of the unique equilibrium stage after successive wetting and drying cycles. The
equilibrium stage is important for practical engineering since the soil settles down before
reaching this reversible phase and it can cause some damages in concerned structures.

The soil subsidence was finally predicted during the wetting and drying cycles. It
can be separated into two parts at the equilibrium stage: the reversible settlement of the
equilibriums stage and the irreversible settlements cumulated during successive wetting
and drying cycles. The reversible deformation was 5.9% and the irreversible deformation
was 3.8% at the equilibrium stage.

This work has been developed in the laboratory conditions where it is easy to apply
successive wetting and drying cycles with the controlled extreme conditions. The next
step is to use its findings for long-term field applications. It becomes more complicated
since there is no control on the extreme conditions of the environmental solicitations. Some
simple field measurements on the soil subsidence and the laboratory characterization of the
soil shrinkage crack are necessary to elaborate the proposed approach in field conditions.
The approach can be also used to predict whether the in situ soil has already reached its
equilibrium stage and how far is it from this stage. This makes it possible to estimate
the long-term in situ soil cracking equilibrium stage and the final soil subsidence after
successive wetting and drying cycles.
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