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Abstract: The classical Neumann boundary value problem of an isotropic, homogeneous elastic half-
plane under plane strain conditions is readdressed as the limiting case of the fully three-dimensional
problem. Analytical solutions of the stress and strain tensors are obtained by taking the limit from
known three-dimensional solutions. It is shown that the displacement fields for the plane strain
problem are not well defined. A small number of simple expressions are developed, which provide
a general solution for linearly-varying traction over arbitrary regions on the boundary. A simple,
efficient, and rapidly convergent algorithm is developed which uses these solutions as analytic
elements and provides a solution approach to the general boundary value problem. The method is
verified against known solutions for Hertzian contact between parallel cylinders. Two numerical
examples are presented for the analysis of shallow foundation systems. In the first, the boundary
conditions are informed by analytical elastoplastic calculations and a strain influence analysis is
performed and compared with the Schmertmann method. Subsequently, empirical laboratory contact
traction distributions measured by Bauer et al., in both the normal and tangential directions are
employed as boundary conditions for an analysis of the underlying stress field.

Keywords: plane strain; shallow foundations; soil-structure interaction; elasticity

1. Introduction

The problem of an isotropic and homogeneous elastic half-plane under plane strain
with given conditions on its linear boundary has been well-studied for over a century.
Various equivalent open-form integral solutions have been obtained for the Neumann
problem, where the distributions of boundary traction are prescribed. The problem was
first solved by Flamant [1] for concentrated point forces; boundary integral representations
of the stress and strain fields under distributed traction can be obtained by making use of the
classical Flamant solution as a fundamental solution (e.g., [2]). Alternatively, the solutions
can be obtained directly from the governing equations using Fourier transforms [3] or by
manipulating potentials in the complex domain [4,5]. Analytical closed-form solutions of
these fields, which are easy to evaluate at any point of interest in the material domain, are
available only for a select few, simple cases of interest [2,4].

The plane strain problem in linear elasticity has a history of application in the analysis
of soil-structure interaction problems. The assumptions that the out of plane strain is zero
is suitable for long strip foundations, allowing for analysis of only the center line of contact
with the underlying soil and reducing the problem to from three to two dimensions. There
are clear limitations to representing a granular soil body as an isotropic and homogeneous
linear-elastic solid. The approach represents perhaps the most extreme simplification, in
which the complex interaction of discrete grains are homogenized by a representative
elastic continuum. However, the ability to solve for closed-form expressions has made
elastic solutions very attractive for quick approximations of the stress, strain, and settlement
of foundation systems. Boussinesq, who pioneered the earliest closed-form solutions for
boundary value problems [6], also wrote explicitly about the mechanics of granular soils
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decades before soil mechanics were properly formulated in the early 20th century [7].
Later, when Love calculated some of the first closed-form solutions for distributed normal
tractions, he framed his work as “an attempt to throw some light on the important technical
question of the safety of foundations [8]”. These fundamental elastic solutions became
the foundation of many methods assessing the equilibrium and settlement of shallow
foundation systems. Newmark used these solutions as the basis of his popular stress
influence method, providing graphical charts to aid in engineering calculations [9]. The
famous strain influence method of Schmertmann [10,11] is similarly based on tabulated
values of the strain fields calculated in an elastic half-space. More recent works continue to
use fundamental calculations from linear elasticity to assess the settlement of foundation
systems [12–17]. This list is far from exhaustive.

Recent work [18] has suggested that using physically-accurate boundary conditions
(that represent the stress states between footings and real granular materials) can import
some of the nonlinear behavior due to the discrete granular assembly into the linear elastic
analysis. This approach may lead to a better representation of the stress and strain fields
within the loaded elastic body representing an underlying soil. In order to conveniently
study the behavior of these fields and their dependence on the boundary data for the plane
strain case, mathematical tools are required to represent them (at least approximately)
within the half-plane. This could be achieved through either direct analytical or numerical
integration of the known open-form integral solutions. The former approach is tedious or
intractable for boundary traction fields of arbitrary complexity. On the other hand, point-
wise numerical integration of the boundary integrals can be computationally expensive
and prohibits an in-depth study of the behavior of stress and strain fields under evolving
boundary conditions.

The present paper provides simple analytical tools for the representation of the ten-
sor field solutions for the Neumann plane strain problem. New simplified closed-form
solutions are presented for low-order monomial boundary conditions; these are obtained
by taking analytic limits from known closed-form solutions of the 3D problem [16,17].
Surprisingly, a relatively small number of simple analytical expressions are found to com-
pletely determine the problem. These expressions are then applied as analytic elements to
form continuous approximate solutions to higher-order and arbitrary boundary conditions.
Applications to geotechnical problems of soil–structure interaction are then presented,
which involve analytical and empirical boundary data.

2. Methodology
2.1. Plane Strain as a Limit of the Fully Three-Dimensional Half-Space Problem

Recent work has been done to provide analytical closed-form solutions for the elastic
stress, strain, and displacement fields on a fully three-dimensional isotropic and homoge-
neous elastic half-space under polynomial Neumann boundary conditions [16,17,19,20].
Consider the half-space H3 = {(x, y, z) ∈ R3|z > 0} as described by the three-dimensional
Cartesian coordinate system shown in Figure 1. For static conditions without body forces,
the solid is ultimately governed by the system of elliptic partial differentials equations [21]:

(λ + µ)
∂D
∂x

+ µ∆u = 0

(λ + µ)
∂D
∂y

+ µ∆v = 0 (1)

(λ + µ)
∂D
∂z

+ µ∆w = 0.

Here λ, µ are the Lamé elastic constants, (u, v, w) are the elastic displacements in the Carte-
sian (x, y, z) directions, D = ∂u

∂x + ∂v
∂y + ∂w

∂z is the strain dilation, and ∆ = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is
the Laplacian differential operator. The problem is defined when boundary traction func-
tions qx, qy, p are prescribed (acting in the x, y, and z directions, respectively) over a subset
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R ⊂ ∂H3. The half-space boundary ∂H3 consists of the points in the plane z = 0, and R can
in general be the union of any disjoint subsets, outside of which the boundary conditions
are assumed to be zero. It is also assumed that the displacements, and consequently the
strains and stresses, go to zero as distance from the source region R becomes large.

x

y

z

(-a,-b,0)(a,-b,0)

(-a,b,0)(a,b,0)

(a)

x

z

(a,0) (-a,0)

p(x')

q(x')

(b)

Figure 1. (a) Geometry of a three-dimensional Cartesian elastic half-space, with a loaded rectangular
region of width 2a and length 2b, centered at the origin. (b) Geometry of the plane-strain problem,
which results from taking the limit of the three-dimensional problem as b→ ∞.

Based originally on the work of Boussinesq [6] and Cerruti [22], the displacement,
stress, and strain fields under monomial traction distributions of order m, n can be con-
structed from three potential functions from H3 → R:

Amn =
∫∫
R

(x′)m(y′)n

r
dx′dy′ (2)

Bmn =
∫∫
R

(x′)m
(y′)n log(z + r)dx′dy′ (3)

Γmn =
∫∫
R

(x′)m
(y′)n

[z log(z + r)− r]dx′dy′, (4)

r =
√
(x′ − x)2 + (y′ − y)2 + z2

The superscripts mn on the three-dimensional potentials (2)–(4) correspond to the order of
the boundary conditions given spatially by monomial terms (x′)m(y′)n. These functions
satisfy the three-dimensional Laplace equation, i.e., ∆Amn = ∆Bmn = ∆Γmn = 0. It is also
relevant to note that the three functions Amn, Bmn, and Γmn are not fully independent but
are related by the following differential operations:

Bmn =
∂Γmn

∂z
,

Amn =
∂Bmn

∂z
=

∂2Γmn

∂z2 .

2.1.1. Calculation Approach

The potentials corresponding to the plane strain problem can be obtained from
Equations (2)–(4) by taking limits as one dimension of the boundary region R becomes
infinite. Let R = {(x, y) ∈ ∂H3|a2 ≤ x ≤ a1,−b ≤ y ≤ b}, such that the integrals in
Equations (2)–(4) are taken over a rectangle centered at the origin in the y-direction but
which lies on an arbitrary cut of the x-axis. Geometrical intuition assures us that as b
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becomes arbitrarily large, the potentials will exhibit less dependence on the spatial variable
y; as b becomes infinite, every y value, having infinite length of rectangle to either side of it,
becomes equivalent. This also corresponds to the intuitive geometrical definition of plane
strain problems. The potentials which solve the elastic plane strain problem in the xz-plane
for monomial boundary traction fields varying with x can formally be defined as:

∂j+k Am

∂xj∂zk = lim
b→∞

∂j+k Am0

∂xj∂zk = lim
b→∞

∂j+k

∂xj∂zk

∫ b

−b

∫ a1

a2

(x′)m

r
dx′dy′ (5)

∂j+kBm

∂xj∂zk = lim
b→∞

∂j+kBm0

∂xj∂zk = lim
b→∞

∂j+k

∂xj∂zk

∫ b

−b

∫ a1

a2

(x′)m log(z + r)dx′dy′ (6)

∂j+kΓm

∂xj∂zk = lim
b→∞

∂j+kΓm0

∂xj∂zk = lim
b→∞

∂j+k

∂xj∂zk

∫ b

−b

∫ a1

a2

(x′)m
[z log(z + r)− r]dx′dy′. (7)

Here, j, k are simply the (integer) orders of the x, z, partial derivatives, respectively. As
will be shown below, these expressions do not converge to well-defined limit functions for
some values (e.g., j = k = 0). However, the derivatives required to define the stress and
strain tensors (see [16,17]) are all well-defined. All partial derivatives with respect to the y
variable tend to zero in the limit, while the convergent functions (5)–(7) are independent
of y.

The analytical properties discussed earlier for Equations (2)–(4) (namely that they
satisfy the Laplace equation and are interrelated via differentiation) all hold in the limit for
Equations (5)–(7). The following identities can be derived:

∂3Γm

∂x3 = −∂Am

∂x
∂3Bm

∂x3 = −∂2 Am

∂x∂z
∂2Bm

∂x2 = −∂Am

∂z
∂2 Am

∂x2 = −∂2 Am

∂z2

The result is that the stress and strain tensors for the plane strain problem can be com-
pletely determined by only four potential functions for each case, expressible in terms of
Equation (5) alone.

The stress component fields when the normal traction is p(x′) = (x′)m and the tangen-
tial traction q(x′) = 0 are obtained from those for three-dimensional problem given in [16]
and are listed as follows:

(σxx)
m
p =

1
2π

(
∂Am

∂z
+ z

∂2 Am

∂z2

)
(8)

(
σyy
)m

p =
1

2π

(
λ

λ + µ

∂Am

∂z

)
(9)
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(σzz)
m
p =

1
2π

(
∂Am

∂z
− z

∂2 Am

∂z2

)
(10)

(σxz)
m
p = − 1

2π

(
z

∂2 Am

∂x∂z

)
(11)

The superscript m again indicates the order of the monomial boundary traction, while the
subscript p indicates the direction of the nonzero traction component for Equations (8)–(11).
The shearing components in the y plane are zero everywhere, i.e.,

(
σyz
)m

p =
(
σxy
)m

p = 0. It

is clear from the above expressions that the strain component
(
εyy
)m

p vanishes by Hooke’s

law. The out-of-plane stress
(
σyy
)m

p is a finite non-zero function of the x and z coordinates
due to Poisson’s effect. Note that in general, under plane strain conditions, all stress
components besides σyy are independent of the elastic constants of the material. Poisson’s
effect yields the dependence

σyy =
λ

2(λ + µ)
(σxx + σzz) = ν(σxx + σzz)

Thus, the stress tensor is dependent only on the boundary conditions and the Poisson
ratio ν.

The stress components for the case where tangential boundary traction is q(x′) = (x′)m

and the normal traction p(x′) = 0 are given as follows:

(σxx)
m
q =

1
2π

(
2

∂Am

∂x
+ z

∂2 Am

∂x∂z

)
(12)

(
σyy
)m

q =
1

2π

(
λ

λ + µ

∂Am

∂x

)
(13)

(σzz)
m
q = − 1

2π

(
z

∂2 Am

∂x∂z

)
(14)

(σxz)
m
q =

1
2π

(
∂Am

∂z
− z

∂2 Am

∂z2

)
(15)

The components of Equations (12)–(15) can be superimposed with those of Equations (8)–(11)
to obtain the stress fields for plane strain boundary value problems with nonzero p(x′)
and q(x′).

The required partial derivatives of Equations (2)–(4) are known in closed-form for
constant and linear traction fields; the potentials required to satisfy (8)–(15) can be obtained
by direct calculation from these closed-form solutions by taking a limit as in Equation (5).
For example, it is shown in [16] that for the rectangular region R defined here,
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∂A10

∂z
=

∂

∂z

∫ b

−b

∫ a1

a2

x′

r
dx′dy′

=

(
z log

(√
(a1 − x)2 + (b− y)2 + z2 + b− y

)
− x tan−1

(
(a1 − x)(b− y)

z
√
(a1 − x)2 + (b− y)2 + z2

))

−
(

z log
(√

(a1 − x)2 + (−b− y)2 + z2 − b− y
)
− x tan−1

(
(a1 − x)(−b− y)

z
√
(a1 − x)2 + (−b− y)2 + z2

))

−
(

z log
(√

(a2 − x)2 + (b− y)2 + z2 + b− y
)
− x tan−1

(
(a2 − x)(b− y)

z
√
(a2 − x)2 + (b− y)2 + z2

))

+

(
z log

(√
(a2 − x)2 + (−b− y)2 + z2 − b− y

)
− x tan−1

(
(a2 − x)(−b− y)

z
√
(a2 − x)2 + (−b− y)2 + z2

))

By directly calculating the limit of this expression as b→ ∞, it can be shown that

∂A1

∂z
= lim

b→∞

∂A10

∂z
=2x

(
tan−1

(
a2 − x

z

)
− tan−1

(
a1 − x

z

))

+ z
(

log
(
(a2 − x)2 + z2

)
− log

(
(a1 − x)2 + z2

))
from Equation (5). The closed-form solutions of the four functions ( ∂Am

∂x , ∂Am

∂z , ∂2 Am

∂z2 , and
∂2 Am

∂x∂z ) required to satisfy Equations (8)–(15) are calculated in this way for constant and linear
traction distributions (i.e., m = 0 and m = 1) and are given in the Appendices A.1 and A.2.
The solutions for various m can be combined in linear combination to produce solutions for
more general polynomial loads.

2.1.2. A Note on the Displacement Field

The discerning reader may question why the solutions here in Equations (8)–(15)
are given in terms of the stress components, while the 3D governing Equation (1) are
formulated in terms of displacements. In fact, there is some ambiguity in the literature
surrounding the specification of displacement fields corresponding to the plane strain
Neumann boundary value problem discussed herein. Using the notation of the prior
section, it is clear that in the limit associated with the plane strain conditions, v = 0 as a
consequence of εyy = 0. The governing Equations (1) become

(λ + µ)

(
∂2u
∂x2 +

∂2w
∂x∂z

)
+ µ

(
∂2u
∂x2 +

∂2u
∂z2

)
= 0

(λ + µ)

(
∂2u

∂x∂z
+

∂2w
∂z2

)
+ µ

(
∂2w
∂x2 +

∂2w
∂z2

)
= 0.

By the same argument, the expected the solutions for the remaining nonzero displacement
components can be written in terms of Equations (5)–(7) for monomially-distributed traction
components p and q:

(u)m
p = − 1

4π

(
1

λ + µ

∂Bm

∂x
+

z
µ

∂Am

∂x

)
(16)
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(w)m
p =

1
4πµ

(
λ + 2µ

λ + µ
Am − z

∂Am

∂z

)
(17)

(u)m
q =

1
4πµ

(
λ + 2µ

λ + µ
Am + z

∂Am

∂z

)
(18)

(w)m
q =

1
4π

(
1

λ + µ

∂Bm

∂x
− z

µ

∂Am

∂x

)
(19)

However, a potential defined from Equation (5), namely Am, does not tend to well-defined
limits as b→ ∞.

This apparent lack of well-defined displacement fields for the plane strain elasticity
problem appears in the literature and is dealt with in different ways. Johnson [2] deals
with the issue by defining the surface displacements in terms of an indefinite integral and
presenting results in terms of an arbitrary constant, which he suggests can be chosen to
make the displacement field equal zero at some distance from the load. However, the
displacement fields defined in this fashion grow without bound as x → ∞, contrary to the
assumption that all stress, strain, and displacement fields go to zero as the distance from the
source becomes large. Johnson also suggests the study of the rate of change of the surface
vertical displacement in the horizontal direction (i.e., ∂w

∂x |z=0 in the present notation), which
gives an idea of the relative displacements without the choice of an arbitrary datum. The
lack of well-defined boundary displacements is also pointed out by Hemsley [3] in his
treatment of the problem involving Fourier transforms and the biharmonic equation. A
recent paper calls attention to the contradiction in the context of the problem of indentation
of a half-space by a long elastic cylinder [23], in which the normal displacement is ill-
defined. Those authors highlight a logarithmic dependency on cylinder radius in the
solution of the problem of parallel contact of two cylinders, of which the former problem
is obtained from a limit as a cylinder radius becomes large. The analytic solutions of
Equation (2) [8,16] have a similar logarithmic dependency on b, which makes the taking of
the required limit for Am impossible.

It is common practice in the geotechnical community to approximate surface displace-
ments by the integration of strain curves up to an assumed influence depth [10]. Analytical
expressions for the internal strain fields under normal load can be obtained from the stresses
in Equations (8)–(11) via Hooke’s law: for a chosen depth d, the surface displacement w0
could therefore be approximated as

w0 ≈
∫ 0

d
εzzdz (20)

However, this also involves a more-or-less arbitrary datum, as this integral grows without
bound as d becomes large. This is equivalent to stating that Equation (17) is ill-defined.

In general, it appears that a suitable displacement field, i.e., one that satisfies the plane
strain governing equations of elasticity and tends to zero with distance from a source load,
simply does not exist. The calculation approach employed here, namely the calculation
of closed-form plane strain potentials from fully three-dimensional potentials through the
limit procedure, may provide some intuitive insight as to why. As the loaded strip outlined
in Figure 1 becomes of infinite length and fixed width with constant force per area, the total
force applied to the system becomes infinite in the limit. While the stress and strain fields
tend to finite and well-defined limit functions, the displacements grow without bound,
as illustrated for a constant traction in Figure 2. Therefore, this lack of definition for the
displacement fields appears to be a fundamental feature of the plane strain Neumann
boundary value problem, rather than the result of some failure of our analysis.
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Figure 2. A demonstration that the magnitude of the three-dimensional potential A00 (Equation (2))
grows without bound as the dimension b of the loaded rectangular region R becomes large. Thus
Equations (17) and (18) are not well defined for constant surface traction.

2.2. Approximate Solutions to Higher-Order Problems Via Superposition

The analytical solutions which provide the plane strain stress and strain fields for low-
order (constant and linear) monomial traction boundary conditions in the
Appendices A.1 and A.2 can be applied to construct approximate analytical solutions to
general boundary value problems. The linearity of the governing partial differential
equations assures that the superposition of solutions under varying boundary conditions
provides a solution for more complex boundary data. The uniqueness of the solutions
then assures that a determined series of solutions which converges to a given expression
on the boundary converges to the solution of the corresponding boundary value problem
within the problem domain (see [16,17]). The plane strain assumption makes it so this can
be achieved through simple linear interpolation of arbitrary p(x′), q(x′). This is shown by
analytically approximating functions of the form

∂j+k A
∂xj∂zk ≡ lim

b→∞

∂j+k

∂xj∂zk

∫ b

−b

∫ a1

a2

f (x′)
r

dx′dy′, (21)

where f (x′) is an arbitrary, bounded, continuous (C0) function representing p or q.

A Simple Algorithm

Discretize the region a2 ≤ x′ ≤ a1 into N uniform subregions of width dx as shown
in Figure 3; the N + 1 nodal interpolation points are then xi = a2 + (i − 1)dx, where
dx ≡ a1−a2

N . The necessary derivatives of Equation (21) can be analytically approximated as
a sum of N linear combinations of solutions of those of Equation (5) which correspond to
the linear interpolations over the xi. For example, assume the derivative ∂A

∂z is required, as
in Equations (8)–(10) under arbitrary p. The potentials over the ith subregion xi ≤ x′ ≤ xi+1

corresponding to boundary traction of order m can then be written as ∂Am
i

∂z . The required
potential can then be written as

∂A
∂z
≈

N

∑
i=1

(
c0

i
∂A0

i
∂z

+ c1
i

∂A1
i

∂z

)
. (22)
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The relevant interpolation constants cm
i can be written as

c0
i =

xi+1 p(xi) + xi p(xi+1)

dx
(23)

c1
i =

p(xi+1) + p(xi)

dx
(24)

This procedure is valid for all partial derivatives of the required potential functions, and
also for arbitrary q(x′). It provides a simple but general means of approximating solutions
to arbitrary boundary value problems via the linear combination and superposition of the
few and simple expressions in the Appendices A.1 and A.2.

x

z

dx

N=6

x1 =a2 x7 =a1 x2 x3 x4 x5 x6

Figure 3. An example of the discretization of the loaded domain and the interpolation of a traction
field using linear elements.

The simplicity of the linear interpolation scheme also allows for ease in error estimation.
For example, let ep(x) be the error function between a normal traction distribution p and
its linear interpolation as shown in Figure 3; it is known (e.g., [24]) that a sharp error bound
can be given by

max(ep(x)) ≤ dx2

8
max |p′′(x)|. (25)

The uniqueness of the elastic field guarantees that the internal conditions converge along-
side the conditions on the boundary.

The present approximation approach can be categorized as a numerical method as
an instance of the Analytical Element Method (AEM) in elasticity. This method was
originally developed by Strack [25,26] for the analysis of groundwater flow problems. In
essence, AEM is equivalent to the Boundary Element Method (BEM), except the boundary
integrals, dependent on the boundary conditions, are evaluated analytically. The closed-
form solutions in the Appendices A.1 and A.2 can therefore be considered analytic elements
for plane strain elastic contact problems.
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3. Results
3.1. Verification Problem: Elastic Contact of Parallel Cylinders

The plane strain condition serves as an approximation of the problem of two long
parallel elastic cylinders in contact. The contact for an arbitrary cross-section is also
equivalent to the limit of a classic Hertzian contact [27] as the out-of-plane dimension
becomes large. Similarly, the stress and strain fields can be considered as limit of the three-
dimensional solutions given by Kunert [28] for Hertzian contact traction over a rectangular
area. The simple algorithm presented in the last section can be verified in comparison to
exact solutions for this classical problem.

Assuming a frictionless contact (i.e., q(x′) = 0), the contact traction field for an area of
width 2a, centered at the origin, is given by

p(x′) = p0

(
1− x′2

a2

)1/2

. (26)

Equation (26) is shown in Figure 4a alongside its linear intepolation. Closed-form solutions
for the internal stress fields beneath the center of the contact area are given in [29]. Figure 4b
compares these internal stress fields with those approximated by the present method for
N = 20 discretized subregions.
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Figure 4. (a) The plane strain Hertz contact pressure field given by Equation (26), along with a linear
interpolation consisting of N = 20 discretized subregions. (b) Comparison of the exact internal stress
fields given in [29] with those approximated using the superposition of 20 potentials corresponding
to the linear interpolants. The out-of-plane stress σyy is calculated for a Poisson’s ratio ν = 0.3.

The global error bound given by Equation (25) can not be calculated due to the fact
that the slope of the tangent line of Equation (26) is infinite at the edge of the contact area;
however, the stress fields still show strong convergence to the exact analytical solutions.
Figure 5 shows that the the maximum error in the stress approximations of Figure 4
converge to zero with increasing N. The rate of convergence of the stress fields given by
the present method is facilitated by the two-dimensional nature of plane strain problems. It
is noted that simple Matlab code converges quickly for small N, and is noticeably faster
than similar code employing bilinear interpolation for the fully three-dimensional contact
problem (see [16,17]).
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Figure 5. Convergence with N of the maximum error for the stress fields shown in Figure 4.

3.2. Applications to Shallow Foundation Analysis

The classical Boussinesq–Cerruti half-space problem has historically been applied
to the analysis of soil–structure interaction, in particular the settlement and stress states
in foundation systems [8,9,16,17,30]. The plane strain problem has been used as an ap-
proximation of strip foundations, wherein the aspect ratio of the footing is often large
enough to neglect the length dimension. However, the contact and penetration behavior of
granular soils is highly complex, and the observed contact traction and displacement fields
generally vary non-linearly with a large range of multi-scale material and loading variables.
There are therefore a large range of possibilities when selecting boundary conditions for
this type of analysis; the generality of the calculation approach outlined here allows for
the calculation and comparison of results for evolving contact traction fields from a wide
array of sources. Two examples are chosen to highlight this application. The first involves
an evolving normal contact traction field obtained analytically through an elastoplastic
analysis [31]. This is used to investigate the strain response due to an increasingly loaded
foundation. The second example applies traction fields which have been measured experi-
mentally by Bauer et al. [32], acting in both the normal and tangential directions. These
empirical traction fields are used to investigate the static stress behavior beneath a loaded
strip foundation.

3.2.1. Example 1: Foundation Contact as an Elastoplastic Rigid Punch Problem

A loaded shallow foundation system is naturally modelled as a rigid punch problem,
due to the fact that the footing is often relatively rigid in comparison to the underlying
granular soil body. This type of problem is initially formulated using a mixed boundary
condition [33–35], with displacements prescribed inside the contact region, and zero traction
conditions applied outside on the surface of the half-space. Once the resulting surface
traction fields are obtained corresponding to the prescribed displacements, equivalent
solutions can be obtained by prescribing purely Neumann (traction) boundary conditions.

Boussinesq obtained the first solution [6,35] for a flat punch and showed that for
purely elastic conditions, uniform surface displacement leads to singularities (infinite
values) in the normal traction field at the edge of contact for any magnitude of indentation.
Thus, any real elastic material will yield locally when indented any amount by a flat
rigid punch. Schultze [36] initially combined Boussinesq’s result for elastic plane strain
contact with the classical geotechnical theory of bearing capacity [37]; this led to a contact
traction distribution which mimicked Boussinesq’s in a central elastic region but varied
linearly to zero in an external plastic region. The contact traction therefore evolves with
increasing load magnitude. Balakrishna [38] later extended this elastoplastic analysis
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to the three-dimensional case of an axisymmetric circular punch. Abdullah [31] later
augmented Schultze’s results so that the traction in the plastic region varies quadratically.
This was shown to agree better with numerical results; it also coincides more accurately
with Terzaghi’s initial result for the traction at ultimate bearing capacity [37]. For these
reasons, Abdullah’s traction field will be employed in the present example. Evolution of
the contact traction from a purely elastic state to a quadratic plastic state at ultimate bearing
capacity is shown in Figure 6 for a surface footing on a dry, dense sand.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x'/2a

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
(x

')
/p

u
lt

0.2P
ult

0.4P
ult

0.6P
ult

0.8P
ult

P
ult

Figure 6. Example normal contact traction field distributions for an elastoplastic rigid punch foun-
dation loaded on the surface of a dry, cohesionless sand (from Abdullah [31]). The traction field
evolves inwards towards the bounding quadratic curve for a load Pult, determined by the classical
bearing capacity theory [37]. The traction fields are normalized by the ultimate average pressure
pult = Pult/2a.

The evolving traction fields shown in Figure 6 suggest a nonlinear displacement
response of the foundation with increasing load, and hence a nonlinear elastic stiffness
path. Recall from Section 2.1.2 that the displacement fields are not uniquely defined for the
boundary conditions at infinity. However, the strain fields are well-defined, and the surface
displacements can be approximated (at least qualitatively) by Equation (20), integrating a
know strain field through the depth.

Figure 7a–c depicts the distributions of vertical strain εzz with depth beneath three
points of the loaded surface region. εzz can be calculated from the stress components
(Equations (8)–(11)) using Hooke’s law. The strain values are dependent on the Lame’s pa-
rameters λ, µ; these are chosen so that that corresponding Young’s modulus is
E = 98, 000 kPa, and the Poisson’s ratio ν = 0.4. The peak strain location tends to
decrease with increasing load at the center (x = 0), while it increases at the midpoint
from the edge (x = 0.5a) and at the edge location (x = a). Furthermore, there exists a
small region of elastic vertical tension beneath the edge of the load. This agrees with the
three-dimensional elastic calculations of [16], and can be viewed as a necessary outcome
of Hooke’s law and the zero-stress boundary conditions at this point. This phenomenon
is therefore an outcome of the continuum-based approximation and must be considered
non-physical if dealing with a granular soil.
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Figure 7. Vertical strain εzz and approximate displacements beneath the evolving elastoplastic loading
conditions of Figure 6. Elastic constants are taken as E = 98, 000 kPa, ν = 0.4. (a) εzz at x = 0; (b) εzz

at x = 0.5a; (c) εzz at x = a; (d) Approximate displacements estimated by Equation (20) with applied
force, normalized by bearing capacity Pult.

Figure 7d shows approximate displacement points obtained by the numerical integra-
tion of the strain curves of Figure 7a–c. This provides a qualitative understanding of the
evolution of stiffness across the width of the loaded footing predicted by the present elasto-
plastic model. This corresponds predictably with the evolution of contact traction shown
in Figure 6. The bulk of the contact traction converges towards the center of the footing
with increasing load, which corresponds to a softening of the stiffness curve at x = 0. The
contact stiffens at the footing’s edge (x = a) as the load becomes less concentrated in the
neighborhood of this point, while the stiffness path halfway between the center and edge
remains more or less linear. Importantly, non-uniform settlement develops, from which
the vertical soil–foundation stiffness may affect bending moment distributions across the
width of a strip footing even when relative length b/a > 10.

The strain curves and displacements of Figure 7 are compared with a simplified
Schmertmann strain influence analysis [10,11], in particular the type outlined in [39] for
plane strain problems. For a critical analysis of Schmertmann’s method and variations,
see [40]. This method estimates the settlement as:

wSchmt = p
n

∑
i=1

(
Iz

E
∆z
)

i
,

where Iz in this case is given as a bilinear curve ranging linearly from 0.2 at z/2a = 0
to 0.6 at z/2a = 0.5, and then linearly to zero at z/2a = 4; p is the average applied
overpressure, and E the Young’s modulus, assumed constant in this case. The summation
is taken over even intervals so that ∆z = 8a/n. Note the difference of the characteristics of
Schmertmann’s influence factor and the strain curve under load Pult at x = 0 in Figure 7a.
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The Schmertmann strain influence curve takes its peak at a deeper location beneath the
load, and by assumption varies linearly to zero at z/2a = 4; the calculated strain curves
from elasticity have shallower peak locations and still take relatively large nonzero values
at z/2a = 4, as they go to zero in the limit at infinity. Note that Schmertmann’s method is
included in Figure 7 only for the sake of comparison and to highlight these differences.

3.2.2. Example 2: Empirically Measured Contact Traction Fields from Real
Granular Materials

A wide variety of experimental literature exists regarding contact traction fields
beneath model or real footings founded on granular soils, e.g., [32,36,41–44]. In general,
measurements of the frictional tangential contact traction fields are more difficult and
rarely appear alongside the more easily-obtained normal distributions. Bauer et al. [32] and
Muhs and Bub [43] provide measurements of both normal and tangential contact traction
for various load magnitudes. Of these, Bauer’s experimental apparatus was specifically
constructed to simulate plane strain conditions. For this reason, contact traction data from
one of Bauer’s experimental cases is selected for an example study of the elastostatic stress
equilibrium state beneath a strip footing.

The normal and tangential traction fields from the case selected from Bauer’s data
are shown in Figure 8. It is assumed that both traction components take zero values at
the footing’s edge; this is physically justified since the edge normal resistance of a surface
footing must be zero, while the tangential value is bounded by the normal under a finite
coefficient of friction. The assumption of zero edge values also allows for the removal of a
jump discontinuity in the boundary conditions which is known to lead to singularities in
the resulting stress tensor [8]. The distributions in Figure 8 are each the result of a curve fit
of the resulting eight data points with a polynomial of the form

f (x′) =
7

∑
n=0

αnx′n (27)

The curve-fit coefficients are listed in Table 1. The traction fields are normalized by the
average normal pressure pavg, obtained by the integration of the polynomial resulting from
the curve-fit of the normal traction data. The lack of perfect symmetry in the traction data
may stem from a combination of eccentricity in the load and inhomogeneity in the soil
samples in [32].
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Figure 8. Example normal and shear contact traction fields from Bauer et al. [32]. Data points from
test 1, load #2 of [32] curve-fit using 7th order polynomial functions to provide continuous expressions
for boundary conditions.
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Table 1. Curve-fit polynomial coefficients for Equation (27) which generate the traction distributions
in Figure 8.

α0 α1 α2 α3 α4 α5 α6 α7
p(x′) 1.3756 0.2337 −1.5549 −4.8744 −29.4222 36.5699 54.5259 −83.2448
q(x′) −0.0695 0.7026 2.8446 −12.6194 −27.3084 106.2138 68.1680 −267.9106

Figure 9 shows the vertical stress (σzz) distributions at various depths beneath the
loaded boundary region. Figure 9a,b show the components of σzz due to the normal and
tangential components of the boundary conditions, respectively. Note that the lack of
symmetry in the boundary conditions in rapidly smoothed out with depth within the
elastic media; this can be viewed as a necessary outcome of Saint Venant’s principle [45]. It
is clear that in this case σzz is dominated by the normal traction component, as one might
expect. The total combined values of σzz differ negligibly from those under the influence
of p(x′) alone, as shown in Figure 9c. This is in contrast to the results of [17,18], where
the assumed radial tangential contact traction was large enough to have a considerable
qualitative and quantitative effects on the internal vertical stress distributions.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x/2a

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

z
z
/p

a
v

g

z=0

z=0.5a

z=a

z=1.5a

z=2a

z=2.5a

z=3a

(a)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x/2a

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

z
z
/p

a
v

g

z=0

z=0.5a

z=a

z=1.5a

z=2a

z=2.5a

z=3a

(b)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x/2a

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

z
z
/p

a
v

g

z=0

z=0.5a

z=a

z=1.5a

z=2a

z=2.5a

z=3a

(c)

Figure 9. Vertical stress σzz at various depths due to (a) normal component of boundary traction
p(x′); (b) tangential component of boundary traction q(x′); (c) both p(x′) and q(x′).

Figures 10 and 11 show the same distributions for the horizontal and shear stresses
σxx and σxz, respectively. In both the cases the stress components are more noticeably
influenced by the presence of the surface frictional tangential traction q. This component
of contact traction will therefore influence the overall behavior of the principle stress
fields in the present case. This suggests that the modes of distribution of the shearing
traction component may be non-negligible when assessing the equilibrium states of shallow
foundation systems.
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Figure 10. Horizontal stress σxx at various depths due to (a) normal component of boundary traction
p(x′); (b) tangential component of boundary traction q(x′); (c) both p(x′) and q(x′).
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Figure 11. Shearing stress σxz at various depths due to (a) normal component of boundary traction
p(x′); (b) tangential component of boundary traction q(x′); (c) both p(x′) and q(x′).
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The preceding stress tensor calculations can be combined to form the following
two quantities: the hydrostatic pressure

P =
1
3
(σxx + σyy + σzz), (28)

and the von Mises stress

σv =
√

3J2, (29)

J2 =
1
6

(
(σxx − σyy)

2 + (σyy − σzz)
2 + (σzz − σxx)

2
)
+ σ2

xz.

Recall that the presence of σyy in quantities (28) and (29) implies a dependence on the
Poisson ratio ν. The hydrostatic pressure and von Mises stress are plotted in Figure 12 for a
value of ν = 0.4.
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Figure 12. (a) The hydrostatic pressure P from Equation (28) under the combined normal and
tangential traction boundary conditions shown in Figure 8 for Poisson ratio ν = 0.4. (b) The von
Mises stress σv from Equation (29) under the same conditions.

Finally, Bauer’s paper appears unique in that it provides load–settlement data along-
side the contact traction measurements. This allows for a calibration of the strain-influence
method of settlement estimation used in Example 1 via Equation (20). For reference, the
footing in Bauer’s experiment had total width of 0.305 m; the traction values for our exam-
ple shown in Figure 8 have been normalized by a factor of pavg = 119.09 kPa, calculated
by integrating the polynomial fit of Bauer’s data using Equation (27). The soil sample
was a crushed quartz sand with known density (15.7 kN/m3) and internal friction angle
(45 degrees). Bauer reported a settlement of approximately 1 cm for this loading case
(test 1, load 2).

Figure 13 shows the strain under the center of the footing estimated by the present
method with a fixed Poisson ratio of 0.4. The strain values are multiplied by the Young’s
modulus, which is unknown in this case. Note that the presence of the shearing traction
has negligible effect on the normal strain (and thus the soil–structure stiffness): this is in
good agreement with the results of [17,18]. Integrating the strain curves from the combined
loading yields a value of wE = 48.798 kPa-m; thus, the model requires a Young’s modulus
of around 5000 kPa to match the measured settlement value.
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Figure 13. Calculated strains beneath the center of the examined load case from Bauer et al. [32]
(Figure 8).

4. Discussion and Conclusions

Constant and linear analytic elements have been developed for the Neumann bound-
ary value problem of a homogeneous and isotropic elastic half-plane under plane strain
conditions. These are derived as the spatial limit of similar three-dimensional solutions
over rectangular areas. A simple algorithm for superposition of solutions corresponding to
linear interpolants of boundary conditions provides a convenient method for the analysis
of general contact problems prescribing arbitrary distributions of normal and tangential
surface traction.

Examples related to soil–structure interaction were selected to highlight the application
of the proposed method. The elastoplastic normal tractions from Example 1 were selected
in part to highlight the fact that contact is almost always a nonlinear phenomenon; evolving
boundary conditions will introduce nonlinearity to an otherwise linear problem. It is worth
noting that some error in this case is likely, due to the application of boundary conditions
derived in part from plasticity in a purely elastic domain. However, based on Figure 7, it is
clear that some of the expected nonlinearity in the load–displacement behavior is captured
by the present method, while absent from the Schmertmann example. Interestingly, despite
the discussed physical differences between the strain curves in the two methods, the present
method yields settlement estimates at the center of the load which are strikingly close to
the Schmertmann values. The similarity in the estimated settlements suggests that analysis
can be improved by employing well-derived or measured boundary conditions, even when
using a simple linear elastic constitutive model.

The selection of the empirically-measured normal and tangential tractions in Example 2
were motivated by recent work that suggests that the presence of the tangential contact
traction fields may have a non-negligible effect on the analysis [17,18]. In particular, the
tangential traction field should be included in a contact problem with friction if accuracy
in the local stress tensor is desired. The data from [32] was chosen because it is one of
few places where both normal and tangential fields were recorded and published for a
problem approximating plane strain conditions. Far more research is needed before the
normal and tangential contact traction fields can be accurately predicted a priori for a given
soil–structure system, as they are dependent on the load magnitude and geometry and a
plethora of uncertain multiscale properties of the granular material. The uncertainty and
heterogeneity related to the evolution of contact traction fields generated between structural
footings and underlying soils may make the present method attractive to geotechnical
engineers and analysts wishing to assess the elastic settlement and equilibrium states of
shallow foundation systems under varying assumptions.



Geotechnics 2022, 2 667

One major limitation of the application of this model to soil–structure interaction is
the problem of scaling: there is a known scale-dependency of soil–foundation vertical
stiffness. The present examples have normalized the boundary conditions by footing size
and load magnitude, while some of the real scale-dependency stems from the interactions
with a complex granular body. Further work may try to calibrate the model to site-scale
settlement measurements (e.g., [46]), but the true utility of this model can only be assessed
if load–settlement data is presented alongside the measured contact traction fields. The
argument here is that some of the nonlinearity from the scale and load dependence can be
captured by accurate boundary conditions.

There is further uncertainty introduced in the present model when assessing the
material constants. Clearly, there are natural limitations when using any continuum method
to describe the mechanics of granular materials. The uncertainty increases when using the
simplest possible constitutive model with two elastic constants. The effects of varying the
Poisson ratio in the present model is non-negligible when exact results are required, but
small when compared with uncertainty in the boundary conditions, influence depth, and
Young’s modulus; thus, the value of 0.4 was deemed reasonable for use throughout this
entire paper.

The value of Young’s modulus used in Example 1 (i.e., 98,000 kPa) was deemed a
decent estimate for a dense homogeneous sand by assessing values listed in a classic
geotechnical reference [47]. However, the value required to match the settlement measure-
ment of Bauer in Example 2 was an order of magnitude smaller (approximately 5000 kPa).
This value also seems reasonable when when compared to those used by Schmertmann
when estimating the modulus from cone penetration test data [10]. Even a “homogeneous”
soil will have variations in the modulus from this estimate with depth. This further ex-
acerbates the issue of sensitivity to strain influence depth and the problem with scaling.
The Schmertmann method is designed to account for this material heterogeneity, while the
present solutions are for a truly homogeneous material sans body forces. Applying the
strain predictions from this model over layers of varying elastic moduli has not been tested
or verified against any known data. One approximate workaround is to do the analysis
based on in-situ measurements and then take an average to assess the effective Young’s
modulus for the homogeneous problem. Ultimately, the “elastic modulus” is not a real
attribute of a granular body, but instead a parameter of idealized models which may take
different values in different contexts. The value determined from triaxial test data may not
be the same as the value correlated from a cone penetration test (or that which is required
to match a measured settlement when analyzing the soil–structure contact problem). The
analyst must be ever-cognizant of this fact.

The solutions presented here are analytic solutions to a type of boundary value prob-
lem that has historically been applied to geotechnical problems, but the assumptions in
the model are vast over-simplifications of any real soil–structure interaction problem. The
purpose of this work was to provide incremental progress by generalizing the types of
boundary conditions that can easily be assessed. However, the solutions and method are
applicable to more general non-Hertzian contacts and may also be of use to practitioners
in the field of tribology. They can be applied to assess the internal stress and strain field
for any contact situation in which the plane strain assumption is valid and when surface
traction fields can be measured or deduced a priori.
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Abbreviations

The following abbreviations are used in this manuscript:
AEM Analytic Element Method
BEM Boundary Element Method

Appendix A. Plane Strain Potential Functions

This appendix presents the closed-form solutions of the derivatives of Equation (5) which
are present in Equations (8)–(15) for constant and linear monomial boundary conditions.

Appendix A.1. Constant Traction (m = 0)

∂A0

∂x
= log

(
(a1 − x)2 + z2

)
− log

(
(a2 − x)2 + z2

)

∂2 A0

∂x∂z
= 2

(
z

(a1 − x)2 + z2 −
z

(a2 − x)2 + z2

)

∂A0

∂z
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(
tan−1

(
a2 − x

z

)
− tan−1

(
a1 − x

z

))

∂2 A0

∂z2 = 2
(

a1 − x
(a1 − x)2 + z2 −

a2 − x
(a2 − x)2 + z2

)
Appendix A.2. Linear Traction (m = 1)

∂A1

∂x
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a1 − a2 + z
(

tan−1
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a2 − x
z

)
− tan−1

(
a1 − x

z
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+

x
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log
(
(a1 − x)2 + z2

)
− log

(
(a2 − x)2 + z2
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∂2 A1

∂x∂z
= 2
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a1z

(a1 − x)2 + z2 −
a2z
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)
− tan−1

(
a1 − x

z
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∂A1
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=2x
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+

z
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log
(
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