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Abstract: Subgrade materials refer to the original ground underneath a road pavement, when these
materials are made up of expansive soil it is referred to as expansive subgrade. Sometimes, these
materials do not have sufficient capacity to support the weight of the road pavement and traffic
load, which means they require some form of modification and re-engineering to enhance their
load capacity. Chemical modification techniques using traditional stabilisers (such as cement and
lime) have proved to be an effective means of subgrade stabilisation. However, high costs and
environmental concerns associated with the use and production of these additives have highlighted
the need for more sustainable and environmentally friendly substitutes. This study reviews the
use of industrial by-products and other waste materials used for subgrade stabilisation, focusing
on the sustainability of using processed wastes and how they alter the engineering properties of
weak subgrade, compared to the use of cement and also reviews the availability of processed waste
materials in quantities sufficient to meet the current demand for subgrade stabilisation. The findings
illustrate that, processed waste is less expensive and has better sustainability credentials compared to
cement. Moreover, processed wastes are available in sufficient quantities to meet existing demands
for subgrade stabilisation. Therefore, it is recommended that the use of processed wastes should
be promoted and utilised to improve and enhance the geotechnical properties of weak subgrade
materials where possible.

Keywords: expansive soil; subgrade stabilisation; engineering properties; California bearing ratio;
unconfined compressive strength

1. Introduction

Expansive subgrade materials in road pavement structures can cause defects and
failure in road pavement structure leading to high cost of maintenance and sometimes total
redesign and reconstruction of the road infrastructure. The damage caused by expansive
subgrade in road structure runs into many billions of dollars, which is notably more than
damages caused by flooding [1]. For instance, the UK economy alone over the past ten years
has suffered costs in excess of GBP 3 billion, making it the most damaging geohazard [2,3].
Oftentimes, subgrade materials do not have sufficient capacity to support the weight
of the road pavement and traffic load and will require some sort of modification and
reengineering to enhance their load capacity. Chemical subgrade stabilisation techniques,
using traditional binders (such as cement and lime) are regularly used to stabilise expansive
subgrade materials and have proven to be an effective approach. However, using cement
and lime in road subgrade stabilisation has proved very costly and also unsustainable due
to environmental effects associated with the use of cement and its production [4,5]. Cement
is the most widely used material on earth after water however, cement is considered the
most destructive material on earth [2]. Cement production produces a large amount of
(4–8%) the world’s CO2, destroying natural resources such as vegetation, with limestone
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discharging wastewater and sludge from concrete batch plants having a harmful effect on
the water ecosystem [6]. Processed wastes derived from industrial by-products that are
often dumped in landfills can be used as additives in road subgrade stabilisation. The use of
processed wastes to improve the engineering and geotechnical properties of expansive road
subgrade is less costly than cement and lime and can reduce the amount of greenhouse
gas emitted into the atmosphere. Processed waste (such as ground granulated blast
furnace slag (GGBS), brick dust waste synthetic fibres, plastic waste and fly ash amongst
other construction and demolition wastes) have been used in subgrade stabilisation to
improve their engineering properties of road pavement and concomitantly reduce overall
construction costs. Figure 1a,b shows areas in the UK and the US that are susceptible
to swell–shrink effects, and Figure 1c,d shows a contours plot of swelling potential in
Louisiana, while Figure 2a,b shows a typical wet and dry expansive soil with high potential
to swelling and shrinkage. Figure 2c,d shows a road pavement defect caused by expansive
subgrade. Tables 1 and 2 show the estimated cost of damage due to expansive soils in some
countries and annual damage in the US from expansive soils.
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Figure 1. (a) Shrink–swell potential areas in the UK [3]; (b) Areas in the US where soils are susceptibileto swelling [7]; (c) 
contours plot of swelling potential in Louisiana [7]; (d) contours plot of swelling potential in Louisiana [7]. 
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Figure 2. (a) Typical wet expansive soil [14]; (b) typical dry expansive soil [15]; (c) uplifting of flex-
ible pavement due to expansive soil [16]; (d) typical longitudinal crack developed on pavements 
over expansive clays [17]. 

2. Scope of the Study 
This study reviews the use of processed waste materials for road subgrade stabilisa-

tion, with a focus on their availability, the costs of processing the waste and revealing 
associated environmental effects compared to those of cement production. The study also 
reviews the effects of using processed waste materials on the engineering properties of 
road subgrade (such as unconfined compressive strength (USC), California bearing ration 
(CBR), tensile strength and shrink–swell of expansive subgrade materials stabilised using 
processed waste).  

3. Characteristics and Minerals Structure of Clay Soil 
The swelling ability of expansive subgrade materials depends on the total internal 

and external areas of its mineral particles, such as montmorillonite expandable illite and 
vermiculite or if the liquid limit of the soil exceeds 50% and the plasticity index exceeds 
30% [2,11]. The types of expansive clay soils include smectite, bentonite, montmorillonite, 
beidellite, vermiculite, attapugite, nontronite and chlorite. The enlargement of the capil-
lary films in clay minerals can cause swelling to occur when water is absorbed through 
their outer surface [18,19]. According to [20], expansive soils contain smectite clay mate-
rials which when view under a microscope looks like layered sheets due to their moisture-
retaining abilities. When water is introduced to expansive soil, the water molecules are 
pulled into the gaps between the clay plates, which force the plates [21,22]. The hydraulic 
conductivity and other engineering properties of clayey soil are influenced by the diffused 
double layer. Clay minerals are major constituents of fine-grained sediments and rocks 
including mudrocks, shales, claystones, clayey siltstones, clayey oozes and argillites 
[2,23]. Clay minerals are defined by geologist as hydrous layer aluminosilicates with par-
ticle sizes <2 µm, whilst engineers defined clay as any mineral particle <4 µm which are a 
diverse group of hydrous layer aluminosilicate that constitutes the greater part of the 
phyllosilicate family of minerals.  

The physical structure of montmorillonite particles in clay is generally perceived in 
sheets and layers. Each layer is composed of two types of structural sheets namely octa-
hedral and tetrahedral. The tetrahedral sheet is composed of silicon-oxygen tetrahedral 
linked to neighbouring tetrahedra by sharing three corners resulting in a hexagonal net-
work. The remaining four corners of each tetrahedron form a part of the adjacent octahe-
dral sheet which are normally composed of aluminium or magnesium in six-fold coordi-
nation with oxygen from the tetrahedral sheet and with hydroxyl [24,25]. Figure 3 shows 
the expansion of a single smectite grain after introducing water between clay layers, Table 
3 shows swell potential of soil based on their liquid limit, Table 4 shows the classification 
of shrink potentials of expansive soil based on their plasticity index and Table 5 shows the 
relation of soil index properties and probable volume change for highly plastic soils, Table 
6 shows typical values for cation exchange capacities. Figure 4a shows clay mineral struc-
ture, Figure 4b shows bentonite clay structure, Figure 4c shows kaolinite clay structure. 

Figure 2. (a) Typical wet expansive soil [14]; (b) typical dry expansive soil [15]; (c) uplifting of flexible
pavement due to expansive soil [16]; (d) typical longitudinal crack developed on pavements over
expansive clays [17].

2. Scope of the Study

This study reviews the use of processed waste materials for road subgrade stabilisation,
with a focus on their availability, the costs of processing the waste and revealing associated
environmental effects compared to those of cement production. The study also reviews the
effects of using processed waste materials on the engineering properties of road subgrade
(such as unconfined compressive strength (USC), California bearing ration (CBR), tensile
strength and shrink–swell of expansive subgrade materials stabilised using processed
waste).

3. Characteristics and Minerals Structure of Clay Soil

The swelling ability of expansive subgrade materials depends on the total internal
and external areas of its mineral particles, such as montmorillonite expandable illite and
vermiculite or if the liquid limit of the soil exceeds 50% and the plasticity index exceeds
30% [2,11]. The types of expansive clay soils include smectite, bentonite, montmorillonite,
beidellite, vermiculite, attapugite, nontronite and chlorite. The enlargement of the capillary
films in clay minerals can cause swelling to occur when water is absorbed through their
outer surface [18,19]. According to [20], expansive soils contain smectite clay materials
which when view under a microscope looks like layered sheets due to their moisture-
retaining abilities. When water is introduced to expansive soil, the water molecules are
pulled into the gaps between the clay plates, which force the plates [21,22]. The hydraulic
conductivity and other engineering properties of clayey soil are influenced by the diffused
double layer. Clay minerals are major constituents of fine-grained sediments and rocks
including mudrocks, shales, claystones, clayey siltstones, clayey oozes and argillites [2,23].
Clay minerals are defined by geologist as hydrous layer aluminosilicates with particle sizes
<2 µm, whilst engineers defined clay as any mineral particle <4 µm which are a diverse
group of hydrous layer aluminosilicate that constitutes the greater part of the phyllosilicate
family of minerals.

The physical structure of montmorillonite particles in clay is generally perceived in
sheets and layers. Each layer is composed of two types of structural sheets namely octahe-
dral and tetrahedral. The tetrahedral sheet is composed of silicon-oxygen tetrahedral linked
to neighbouring tetrahedra by sharing three corners resulting in a hexagonal network.
The remaining four corners of each tetrahedron form a part of the adjacent octahedral
sheet which are normally composed of aluminium or magnesium in six-fold coordination
with oxygen from the tetrahedral sheet and with hydroxyl [24,25]. Figure 3 shows the
expansion of a single smectite grain after introducing water between clay layers, Table 3
shows swell potential of soil based on their liquid limit, Table 4 shows the classification of
shrink potentials of expansive soil based on their plasticity index and Table 5 shows the
relation of soil index properties and probable volume change for highly plastic soils, Table 6
shows typical values for cation exchange capacities. Figure 4a shows clay mineral structure,
Figure 4b shows bentonite clay structure, Figure 4c shows kaolinite clay structure.
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Table 3. Swelling potential of soils based on liquid limit [26].

Liquid Limit Classification

0–20 Non-Swelling
20–35 Low-Swelling
35–50 Medium-Swelling
50–70 High-Swelling
70–90 Very High-Swelling
>90 Extra High-Swelling

Table 4. Classification of shrink potentials based on plasticity index [3].

PI (%) Clay Fraction Shrinkage Potential

(<0.002 mm)

>35 >95 Very High
22–48 60–95 High
12–32 30–60 Medium
<18 <30 Low

PI = plasticity index.

Table 5. Relation of soil Index properties and probably volume change for highly plastic soils [27].

Data from Index Tests 1
Estimation of Probable

Expansion 2, Percent Total
Volume Change (Dry to

Saturated Condition)

Degree of
Expansion

Colloid Content Percent
Minus 0.00004 in.

(0.001 mm) (ASTM D422)

Plasticity Index
(ASTMD4318)

Shrinkage Limit
Percent (ASTM D427)

>28 >35 >11 >30 Very High
20–31 24–41 7–12 20–30 High
13–23 15–28 10–16 10–20 Medium
<15 <8 <15 <10 Low

1 All three index tests should be considered in estimating expansive properties. 2 Based on a vertical loading of 1.0 psi (0.007 MPa). For
higher loadings the amount of expansion is reduced, depending on the load and on the clay characteristics.

Table 6. Typical values for cation exchange capacities [25].

Liquid Limit meq/100 g

Kaolinite 3–18

Halloysite 5–40

Chlorite 10–40

Illite 10–40

Montmorillonite 60–150

Vermiculite 100–215
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4. Characteristics and Manufacturing Process of Some Industrial Waste

Ground granulated blast furnace slag (GGBS) is an industrial by-product from the
manufacturing of pig iron, during the production, the molten slag is cooled and solidified
to a greasy state by rapid water quenching, where no air or little crystallisation occurs.
This process results in the formation of sand size fragments with some flexible clinker-like
materials known as GGBS. The chemical composition of the slag, its temperature at the
time of water quenching and the method of production determines the physical structure
and gradation of GGBS [31]. Silica fume is a by-product of silicon metal or ferrosilicon
production in an electric furnace. The smoke generated from the furnace is collected
and known as silica fume of micro silica. Silica fume is the most valuable by-product
pozzolanic material due to its active and high pozzolanic properties [31]. Polypropylene
fibre is produced by slurry solution or gas phase process where propylene monomers
are subjected to heat and pressure in the presence of a catalyst system. Polypropylene
is achieved at relatively low temperature and pressure yielding a translucent product
known as polypropylene [32]. There are two varieties of glass fibre manufacturing: one
involves the preparation of marble that is melted in the fibrilization stage and the other
involves the direct melting route, where a furnace charges continuously with raw materials
that are melted and refined as the glass reaches the forehearth above a set of platinum–
rhodium brushing from which the fibres are drawn. Rice husk is a by-product of rice
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milling commonly known as rice hull is the coating on the seed or grain of rice. It is
formed from hard materials including silica and lignin to protect the seed during the
growing season and can be used in soil stabilisation [33]. Metakaolin is one type of calcined
clay, and it comes from the calcination of kaolin clay and has been explored as a partial
substitute for cement [34]. Fly ash is a fine powder formed from the mineral matter in
coal and consist of the non-combustible matter in coal and a small amount of carbon that
remains from incomplete combustion. It is either cementitious or pozzolanic and can be
used in soil stabilisation [35]. Particle size distribution of non-traditional stabiliser waste
materials such as silica fume, metakaolin, rice husk ash and fly ash compared to traditional
cement are shown in Figure 5. The manufacturing process and end product of GGBS,
silica fume, polypropylene fibre and glass fibre are shown in Figure 6a–h. Some properties
of waste materials used in soil stabilisation are shown in Table 7. Table 8 shows some
mechanical properties of polypropylene fibre and Table 9 shows the main physical and
chemical properties of plastic waste.
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Figure 6. (a) Schematic diagram of the manufacturing process of GGBS [31]; (b) manufacturing process of silica fume [37]; 
(c) the end product of processed GGBS [38]; (d) the end product of processed silica fume [39]; (e) manufacturing process 
of polypropylene [40]; (f) schematics of marble melt process for glass fibre production [40]; (g) the end product of pro-
cessed polypropylene fibre [41]; (h) the end product of processed glass fibre [42]. 

Table 7. Chemical composition mineralogy and physical properties of waste. 

Oxide SiO2 Al2O3 Fe2O3 MgO CaO K2O SO3 TiO2 Na2O Loss of Ignition Source 
BDW 52 41 0.7 0.12 4.32 0.53 0.33 0.65 0.05 2.01 [43] 
GGBS 34.72 19.11 0.5 8.46 35.27 0.58 0.18 0.65 0.16 - [44] 

Silica fume 93.38 0.15 0.21 0.10 0.67 - 0.37 - - 1.46 [45] 
Glass fibre 45.47 12.11 1.04 - 38.49 0.94 0.43 - - - [46] 

RHA [Malaysia] 93.10 0.21 0.21 1.59 0.41 2.31 - - - 2.36 [47] 
RHA (Brazil) 92.90 0.18 0.43 0.35 1.03 0.72 0.10 - 0,02 - [47] 

RHA (Netherlands) 86.90 0.84 0.73 0.57 1.40 2.46 - - 0.11 5.14 [47] 
RHA (India) 90.70 0.40 0.40 0.50 0.40 2.20 0.10 - 0.10 4.80 [47] 
RHA (Iraq) 86.80 0.40 0.19 0.37 1.40 3.84 1.54 - 1.15 3.30 [47] 
RHA (USA) 94.50 Trace Trace 0.23 0.25 1.10 1.13 - 0.78 - [47] 

RHA (Canada) 87.20 0.15 0.16 0.35 0.55 3.68 0.24 - 1.12 8.55 [47] 

Figure 6. (a) Schematic diagram of the manufacturing process of GGBS [31]; (b) manufacturing process of silica fume [37];
(c) the end product of processed GGBS [38]; (d) the end product of processed silica fume [39]; (e) manufacturing process of
polypropylene [40]; (f) schematics of marble melt process for glass fibre production [40]; (g) the end product of processed
polypropylene fibre [41]; (h) the end product of processed glass fibre [42].

Table 7. Chemical composition mineralogy and physical properties of waste.

Oxide SiO2 Al2O3 Fe2O3 MgO CaO K2O SO3 TiO2 Na2O Loss of Ignition Source

BDW 52 41 0.7 0.12 4.32 0.53 0.33 0.65 0.05 2.01 [43]
GGBS 34.72 19.11 0.5 8.46 35.27 0.58 0.18 0.65 0.16 - [44]

Silica fume 93.38 0.15 0.21 0.10 0.67 - 0.37 - - 1.46 [45]
Glass fibre 45.47 12.11 1.04 - 38.49 0.94 0.43 - - - [46]

RHA (Malaysia) 93.10 0.21 0.21 1.59 0.41 2.31 - - - 2.36 [47]
RHA (Brazil) 92.90 0.18 0.43 0.35 1.03 0.72 0.10 - 0,02 - [47]

RHA (Netherlands) 86.90 0.84 0.73 0.57 1.40 2.46 - - 0.11 5.14 [47]
RHA (India) 90.70 0.40 0.40 0.50 0.40 2.20 0.10 - 0.10 4.80 [47]
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Table 7. Cont.

Oxide SiO2 Al2O3 Fe2O3 MgO CaO K2O SO3 TiO2 Na2O Loss of Ignition Source

RHA (Iraq) 86.80 0.40 0.19 0.37 1.40 3.84 1.54 - 1.15 3.30 [47]
RHA (USA) 94.50 Trace Trace 0.23 0.25 1.10 1.13 - 0.78 - [47]

RHA (Canada) 87.20 0.15 0.16 0.35 0.55 3.68 0.24 - 1.12 8.55 [47]
Paper Sludge Ash 60.57 2.06 0.92 3.59 14.94 0.16 1.07 - 0.22 - [48]

Fly ash 48.28 27.72 7.19 2.51 10.51 - 3.16 1.28 - - [49]
Boron 21.64 0.75 0.19 9.40 - - - 16.77 7.88 35.38 [49]

Marble dust 0.2 0.07 0.11 0.3 54.5 - 0.08 - 0.01 44.52 [49]
Granite dust 89.30 0.19 0.23 0.46 0.58 - 0.06 - 0.37 8.26 [49]

Green Bayburt Stone 68.22 12.06 1.84 1.14 2.17 1.54 0.09 - 6.08 6.79 [50]

Table 8. Mechanical properties of polypropylene fibre [51].

Properties Description

Tensile strength (gf/den) 3.5–5.5
Elongation (%) 40–100

Abrasion resistance Good
Moisture absorption (%) 0–0.05

Softening point (◦C) 140
Melting point (◦C) 165

Chemical resistance General excellent
Relative density 0.91

Thermal conductivity 6.0 (with air as 1.0)
Electric insulation Excellent

Resistance to mildew and moth Excellent

Table 9. Main physical and chemical properties of plastic waste [52].

Properties Description

C (%) 85.0
H (%) 13.8
N (%) 0
S (%) 0
O (%) 0

Ashes (%) 1.0
Moisture (%) 0.2

Low heating value (kJ/kg) 45,500
Starting devolatilization temp (◦C) ≈250

Devolatization Temp (◦C) ≈410
Diameter and thickness of fuel pellets (mm) 5.2

Particle density (kg/m3) 940
Bulk density (kg/m3) 570

5. Production of Processed Waste and Their Utilisation in Road Subgrade

Various kinds of waste materials are being generated worldwide as a result of human
activities. Due to our inability to recycle all the waste society produces, a large section of
these waste materials is dumped in landfills and others dumped in water bodies which
have contributed to some of the environmental problems we face today. According to [53],
the world generates 2.01 billion tonnes of municipal solid waste annually and it is expected
to grow to 3.40 billion tonnes by 2050 Figure 7. In the approach to mitigate the problem,
many strategies have been put in place including recycling incineration. However, these
strategies are not enough to deal effectively with all the waste we produce. This has
encouraged the use of processed waste in the engineering and construction sector for the
construction of roads pavements and buildings. However, the availability of processed
waste for use quantities and the environmental effect associated with waste processing
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has been questioned. The [54] stated that, a huge amount of processed waste is produced
around the world for use in various engineering activities. Before waste materials can
be used in subgrade stabilisation, the waste must first of all be processed to remove
toxic chemicals and contamination to make them suitable for use as an additive in road
construction. The use of processed waste in subgrade stabilisation is arguably the new
trend in chemical stabilisation of subgrade materials. This is aimed at reducing the amount
of greenhouse gas emissions and the environmental effects associated with cement and
lime production. A huge amount of processed waste is produced around the world for use
in various engineering activities. However, many concerns have been raised with regard to
the cost and environmental effects associated with the production process of these waste
materials. These concerns include the amount of CO2 emitted during waste processing
and, are there enough processed waste available to meet the current demand for use in
subgrade stabilisation?

Research has shown that there are enough processed industrial by-products and waste
materials available to meet the current demands for soil stabilisation. The processing of
these waste materials is cheaper and sustainable compared to the cost of cement and its
production [55]. Over 20 million metric tonnes (22 million tonnes) of fly ash are used
annually in a variety of engineering applications typically highway engineering [53].
Table 10 shows that 62 million metric tonnes (68 million tonnes) of fly ash was produced in
2001 and only 20 million metric tonnes (22 million tonnes) or 32% of the total production
was used. The total production of hypo-sludge in Bangladesh which is capable of replacing
cement is equivalent to 550,000 × 6 = 3,300,000 kg per year. A reduction in the amount
of coal combustion products that must be disposed of in landfills has been observed due
to their use in subgrade stabilisation [53]. The use of waste in soil stabilisation provides
environmental and economic advantages [49]. Figure 7 shows projected waste generation,
by region Mt per year. According to Figure 7, there has been a significant increase in the
amount of waste generated by the various region since 2016 and it is projected to increase
from 177 to 602 Mt by the year 2030 and from 255 to 714 Mt by the year 2050 respectively.
Table 10 shows 61.84 million metric tonnes of fly ash was produced in 2001 and only
19.98 million metric tonnes were used (32.3%). Table 11 shows the annual production
of major industrial solid wastes generated in India which are not fully utilised. Figure
8a,b shows the modes and utilisation of fly ash in various engineering sectors in India
in the year 2014–2015, which includes the enhancement of the engineering properties of
subgrade materials. Hence, there are no projections of waste shortage in the future by
various statistics to hinder the reliance on the use of waste in subgrade stabilisation.
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Table 10. Fly ash production and use in the US in 2001 [53].

Million Metric Tonnes Million Short Tonnes Percent

Produced 61.84 68.12 100
Used 19.98 22.00 32.3

Table 11. Major industrial solid wastes generated in India [56].

Solid Waste Fly
Ash GGBS Steel

Slag
Red
Mud

Lime
Sludge

Lead-Zinc
Slag

Phosphorus
Furnace Slag PG Jarosite Kimberlite Mine

Rejects

Annual
production 184.14 10 12 4.71 4.5 0.5 0.5 11 0.6 0.6 750

(million tonnes)
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According to the [57] report, about 1.3 billion tonnes of solid waste are generated by
cities globally each year and the volume is expected to increase to about 2.2 billion tonnes
by 2025 [58]. Statistics have shown that approximately 780 million tonnes of waste are
generated worldwide. These wastes include coal combustion products (CCP) such as fly
ash, bottom ash, cenospheres, conditioned ash and flue gas desulphurisation gypsum. Out
of these, the largest CCP of 395 million tonnes were produced by China, 118 million tonnes
by North America, 105 million tonnes by India, 52.6 million tonnes by Europe, 31.1 million
tonnes by Africa and a minor contribution from the Middle East [59]. Table 12 shows
CCP production around the world. According to [60], approximately 400 million tonnes of
GGBS are produced annually worldwide whiles the production of steel slag is around 350
million tonnes. Studies have shown that an estimated amount of 70–120 million tonnes
per year of red mud is produced worldwide [61], while an estimated 100–280 million
tonnes of phosphogypsum is produced every year [62]. Cement kiln dust of approximately
510–680 million tonnes is produced yearly [63]. India had a fly ash production of about
163.56 million tonnes per year in 2014 which increased to 184.14 million tonnes in 2014 [57].
Meanwhile, the utilisation of fly ash in the tear 2012–2013 in India was 100.37 million
tonnes which are approximately 61.37% of the total waste produced that year [64]. About
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41.18% of fly ash was utilised by cement the cement industry in India whiles 11.78% and
6% fly ash was utilised for reclamation of low-lying areas and as fill for road embankments.
Table 13 shows some other industrial waste produces in India and Figure 9 shows modes
of fly ash utilisation in India from 2012–2013.

Table 12. CCP production around the world [59].

Country/Region CCP Production
(Mt) CCP Utilisation (Mt) Utilisation Rate

(%)
CCP

Production/Person
(Mt)

CCP
Utilisation/Person

(Mt)

Australia 13.1 6.0 45.8 0.60 0.27
Canada 6.8 2.3 33.8 0.20 0.07
China 395 265 67.1 0.20 0.20

Europe 52.6 47.8 90.9 0.11 0.10
India 105 14.5 13.8 0.09 0.01
Japan 11.1 10.7 96.4 0.09 0.08

Middle East and
Africa 32.2 3.4 10.6 0.02 0.01

United States 118 49.7 42.1 0.37 0.16
Other Asia 16.7 11.1 66.5 0.05 0.03

Russian Federation 26.6 5.0 18.8 0.19 0.04

Table 13. Summary of findings of improved engineering properties of subgrade using waste.

Waste Type Content (%)/Ratio Information Source Test
Results: UCS (kN/m2),
CBR (%), Swell (mm),

Shrinkage (%)
Standards

Brick dust 30–50 [65] CBR and UCS
increased CBR = 19 & UCS = 20 ASTM D1883-16

Brick dust 30–50 [66] Shrinkage reduced Shrinkage = 23.7 to 7.3 IS 2720
Brick dust 0–16 [67] CBR increased CBR = 7.9 ASTM D1883-16
Brick dust 10–30 [68] CBR increased CBR = 4.6 BS1377
Brick dust 5–25 [69] UCS and CBR

increased UCS = 3544 &CBR = 21.90 IS:2720 part 16

Brick dust 0–30 [70] UCS increased &
swell decreased UCS = 297.76 & Swell =

23.98
IS:2720 Part X1991

Brick dust 10–50 [71] Swell reduced &CBR
increased Sewll = 0 & CBR = 12.54 IS 2720

Brick dust 10–30 [72] CBR increased CBR = 7.4 IS:2720 part 16
Brick dust 30–50 [73] CBR improved from CBR = 1.6 to 6.8 IS:2720 Part 16
Brick dust 10–40 [74] UCS improved UCS = 197 IS:2720 Part 16
Brick dust 10–20 [75] UCS improved UCS = 142.2 IS:2720 Part 16
Brick dust 10–20 [75] CBR improved CBR = 2.86 ASTM D1883-16
Brick dust 10–20 [75] Swell decreased Swell = 0.83 1977STM D1883-16

Brick dust 10–20 [75] Shear strength
improved UCS = 67.15 BS 1377-1:2016

GGBS 5–10 [76] UCS increased with 5% and 10% GGBS IS:4332 Part 5 [1970]
GGBS 70 ratio [77] UCS increased UCS = 450 IS:2720 Part 16
GGBS 0–30 [78] CBR increased CBR = 2.69 IS:2720 Part 10-1991
GGBS 0–30 [79] UCS increased UCS = 263.5 IS:2720 Part 16
GGBS 3–9 [80] CBR increased CBR = 2.05 to 8.29 IS:2720 Part

40-1977STM
D1883-16

GGBS 3–12 [80] Swell reduced Swell = 67 and 21 IS:2720 Part 16
Plastic waste 0.0–1.0 [81] CBR values increased CBR = 1.967 to 2.479 IS-2720: Part 7
Plastic waste 0–1.5 [82] UCS and CBR

increased UCS = 40 and CBR = 2.35 IS:2720 Part 16

Polypropylene 0.5–2 [78] CBR increased CBR = 8.51 IS 2720 part 10
Polypropylene 0.05–0.25 [83] UCS increased UCS = 1280 IS:2720 Part 40-1977
Polypropylene 0.2–0.5 [84] Swell reduced

considerably Swell = 21.73 IS:2720 Part 40-1977

Polypropylene 0.5–2 [85] Swell pressure
reduced Swell = 110 to 59 IS 2720 part 10

Polypropylene 0.1–1.3 [39] UCS increased USC = 338.7 IS:4332 Part 5 [1970]
Polypropylene 0–1.4 [86] UCS increased by UCS = 29.87 IS:4332 Part 5 [1970]
Polypropylene 0.05–0.30 [87] UCS decreased UCS = 600 to 330
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6. Sustainability of Using Processed Waste in Subgrade Stabilisation

Climate change has been a huge challenge to the world and many efforts have been
made to remedy the situation by ensuring a more sustainable way of production especially
in the construction sector to reduce greenhouse gas emissions [88]. Cement and lime are
mostly used in subgrade stabilisation. However, there are many environmental effects
associated with the production of cement and lime. The lime-drying process produces
the biggest carbon emission (962.1 skg CO2-eq/t sludge) accounting for 89.0% of the total
emission [89]. According to [90], 7% of the world’s CO2 emission comes from cement
production this is due to the high demand for cement. One tonne of CO2 is emitted for
every ton of cement produced. During cement production, 50% of the carbon emitted as
a result of the calcination of the raw materials and 50% of the energy used [91]. Recent
studies have shown the efforts made by many countries to mitigate carbon emissions in
cement plants. However, the problem of greenhouse gas emission persists and the total
replacement of cement with processed waste materials can help mitigate the problem and
reduce the associated environmental problems.

Some concerns have been raised on the production of processed wastes including
their associated environmental effects such as CO2 emission and high energy consumption.
However, the environmental impact associated with the production of processed waste is
far less compared to the problems associated with the use of cement and its production.
Using GGBS in high volumes as supplementary cementitious materials is good from the
environmental point of view [92]. The higher the amount of GGBS used in replacing cement
in soil stabilisation the lesser carbon footprint is expected due to the reduction in the use
of cement [92]. The use of processed waste such as fly ash has significant environmental
benefits including a net reduction in energy use and greenhouse gas emission. Figure 10
shows the contribution of the top ten countries in global CO2 emission in 2008.
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7. Effect of Process Waste on the Engineering Properties of Road Subgrade

Brick dust waste is mainly sourced from the cutting and demolition of brick and
brick structures. Brick dust waste has been reportedly used in various studies to stabilise
expansive road subgrade material. According to [94], the California bearing ratio (CBR)
value increased to over 400% and a high unconfined compressive strength (UCS) was
achieved when an optimum brick dust waste (BDW) content of 40% was used during
expansive subgrade stabilisation. Compressive strength and CBR of soil reached their
maximum values based on the standard compaction test when an optimum content of 40%
BDW was used in subgrade stabilisation in accordance with ASTM D2166/D2166M-13 and
ASTM D1883-14.

Other studies have shown an increase in CBR values at optimum BDW content from
5% to 20% [95]. The best stabilisation effects were obtained with brick dust waste at an
optimum content of 50% [96]. A reduction in swell linear shrinkage and compaction water
content was recorded when an optimum content of 50% brick dust waste was used in
subgrade stabilisation [65]. Good CBR and swelling results were achieved when 20% of
brick dust waste proportions were used in expansive subgrade stabilisation for flexible
pavement [97]. Unconfined compressive strength increased with the addition of 30%
brick dust waste and began to decrease at 40% brick waste in accordance with ASTM
D2166/D2166M-13 [74]. Studies under the use of brick waste as a partial replacement for
cement in expansive subgrade stabilisation have shown that the optimum or the highest
proportion of brick waste used in subgrade stabilisation to achieve good engineering
properties of soil is up to 50%. Brick dust waste proportion from 5%, 10%, 15%, 20% and
25% was used in subgrade stabilisation and the results obtained are as follows CBR 7.36,
8.54, 13.70, 19,13 and 7.36. UCS 0.60, 2.60, 4.31 and 2.84 kg/cm2 respectively. Unconfined
compressive strength increased with the addition of 30% brick dust waste and began to
decrease at 40% brick waste [74].

GGBS is a by-product of the steel manufacturing process and has been successfully
used in various studies as cement replacement to stabilise expansive road subgrade material.
The first application of GGBS based stabiliser combination in road pavement construction
in the UK was on the A421 Tingwick Bypass in Buckinghamshire, and on the A130 road
near London [98]. The engineering properties of expansive soil was improved with the
addition of up to 7.5% GGBS [99]. Subgrade materials were stabilised with 16% GGBS
and the results obtained shows an increase in UCS value over time to 1500 kN/m2 in
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accordance with ASTM 1633 [100]. The addition of 6% GGBS to a lime treated soil reduced
swell from 8% to 0% [101]. High compressive strength of 14.2, 89, 211.9 and 656 kPa
was achieved when GGBS proportions of 6%, 12%, 18% and 24% were used in subgrade
stabilisation after 28 days of curing [102]. Plastic waste has been successfully used in
various studies as an additive to stabilise expansive road subgrade material. CBR value of
3.04 was achieved for soil stabilised with up to 2% plastic strip and UCS values of up to
316.4 kN were achieved [103]. Synthetic fibres such as polypropylene have been reportedly
used in various studies as an additive to stabilise expansive road subgrade material. Plastic
waste has been successfully used in various studies as an additive to stabilise expansive
road subgrade material. CBR value of 3.04 was achieved for soil stabilised with up to 2%
plastic strip and UCS values of up to 316.4 kN were achieved [103]. Synthetic fibres such
as polypropylene have been reportedly used in various studies as an additive to stabilise
expansive road subgrade material. Figure 11a shows the effect of polypropylene fibre on
UCS; Figure 11b shows the UCS results of polypropylene fibre content, and Figure 11c
shows the effect of brick dust waste on CBR. Table 13 shows a summary of findings of
improved engineering properties of expansive subgrade stabilised using various types of
processed waste.
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8. Enhancement Mechanisms of Waste, Cement and Lime in Subgrade Stabilisation
8.1. Lime

Before cement, quick lime or hydraulic lime was the most common lime used in
subgrade stabilisation. It has proven to be a good modification agent for the stabilisation of
highway and airport pavement subgrade. When the soil is mixed with lime, a lime-soil
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reaction takes place which may change the moisture and density relationship of the soil.
The addition of lime as a binder to soil triggers a lime hydration process responsible for pH
increase in soil. The lime hydration process with the aid of calcium, release cementitious
products (calcium–silicate–hydrate (C–S–H) and calcium-aluminate-hydrate (C–A–H))
responsible for soil stabilisation. When lime is mixed with pozzolanic materials such
as fly ash, a pozzolanic reaction takes place which releases cementitious products C–S–
H and C–A–H gel. Pozzolanic materials are any material with the ability to react with
calcium hydroxide to produce C–S–H and C–A–H gel. Pozzolanic reaction is the process
where cement-like compounds are formed between lime and certain clay materials to
bind soil particles together. This reaction further increases the strength and durability of
stabilised subgrade depend on curing time and temperature [104]. Lime works well with
clay minerals in soil with plasticity greater than 10% and a minimum clay content of 10%.
A soil with a plasticity index between 20% and 30% with a liquid limit from 25% to 50% is
recommended for lime stabilisation in most civil engineering applications [105]. Unlike
cement, lime is slow in achieving its strength resulting in a long curing time. Long-term
stabilisation effects are generated as a result of pozzolanic reactions which occur depending
on the characteristics of the soil being treated.

8.2. Cement

Portland cement is a common subgrade stabilisation material used to improve the en-
gineering properties of subgrade materials. It is a finely ground powder (hydraulic binder)
that becomes solid when mixed with water through the process called hydration [106].
During the hydration process cement gel matrix is produced (C–S–H) which binds the soil
particles together and is responsible for strength gain [107]. In subgrade stabilisation, the
amount of cement used is in the range of 4% and 15% to increase the strength of subgrade
materials [108]. According to [109], cement is suitable for the stabilisation of subgrade
with a low plasticity index ranging between 2% and 30%. Additionally, a high pH can be
recorded during cement hydration and C–S–H production as alkalis become solubilised
due to pozzolanic reactions [110]. Figure 12a shows the pozzolanic reaction between
clay particles and binder Figure 12b shows cementitious hydration activity between clay
particles and binder.
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8.3. Waste Materials

Any waste materials which possess pozzolanic properties has the ability to enhance
the engineering properties of subgrade materials just like cement and lime. Waste materials
are mostly used as a partial replacement for cement and lime for high strength gain and
durability. The following pozzolanic waste materials reacts the same way as cement and
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lime when used in subgrade stabilisation; fly ash, GGBS, silica fume, rice husk ash, phos-
phogypsum, ceramic wastes, and construction and demolition waste based on pozzolanic
materials. GGBS is a latent hydraulic binder when rapidly quenched in water at the molten
stage [112]. GGBS forms a supplementary binder in many cement applications to enhance
durability. In subgrade stabilisation, the addition of GGBS introduces additional alumina,
calcia, silica and magnesia to the system [113]. Construction and demolition waste such as
brick dust are produced by the calcination of alumina-silicate clay which are ground into
fines powder giving it pozzolanic properties and can be used as cement replacement in sub-
grade stabilisation [114]. Brick waste is pozzolanic, materials that contain alumina/silica
which react to form new compounds (calcium silicate hydrate (C–S–H) and calcium alu-
minate hydrate (C–A–H). The addition of pozzolanic waste materials to a soil mix will
enhance the engineering properties and speedup setting time with increased strength and
durability. Rice husk ash and silica fume are rich in amorphous SiO2 which have great
pozzolanic properties [115]. Phosphogypsum has been used together with cement lime
and fly ash to stabilise soil despite its high sulfate content [115]. Ceramic wastes possess
pozzolanic properties because they are produced from clay and the thermal process leaves
the Al and Si oxides in an amorphous state [115].

As much as partial replacement of cement and lime is important in the fight to reduce
greenhouse gas emissions, the total replacement of cement and lime in subgrade stabilisa-
tion would speed up the global fight towards zero carbon. Recently, geopolymers have
been used as cement replacement in subgrade stabilisation, providing an avenue for the
total replacement of cement. The name “geopolymer” was coined by Davidovits, the in-
ventor and developer of polymerisation to classify the newly discovered geosynthetic that
produces inorganic polymeric materials now used in several industrial applications [116].
Geopolymers can be produced using waste materials such as fly ash, slag, silica fume, ben-
tonite etc. amongst these waste materials, fly ash-based geopolymer cementitious binder
has emerged as a promising new cement alternative in road subgrade stabilisation [117].
Fly ash-based geopolymers are produced by the chemical reaction of aluminosilicate oxides
(Si2O5, Al2O2) with alkali polysilicates yielding polymeric Si–O–Al bonds. Geopolymer can
be produced with any waste materials containing silica, alumina and calcium content-rich
composition. Preferably, low-calcium fly ash should be used than high calcium (ASTM
class C) fly ash for the formation of geopolymers. This is because the presence of a high
amount of calcium may affect the polymerisation process [118]. Fly ash with sodium
hydroxide and sodium silicate as well as potassium hydroxide with potassium silicate
combinations was used to produce geopolymer [119]. The presence of calcium content
in fly ash significantly improved compressive strength development during subgrade
stabilisation in a short curing time [120]. Using polymers in road subgrade stabilisation
improves the density and load-bearing capacity of the pavement subgrade [2].

9. Limitations in the Use of Waste Compared to Cement and Lime in
Subgrade Stabilisation

The use of waste as additives in subgrade stabilisation comes with some limitations
that need to be addressed. Some of these limitations include contamination through the
leaching of toxic substances into waste dumped in landfills. The engineering properties
and performance of road subgrade can be affected due to these toxic materials found in
the waste. Additionally, the cost-effectiveness of decontaminating these wastes can be a
limitation to the use of waste materials in subgrade stabilisation. Many times, greenhouse
gas emissions are associated with the production of cement and lime. However, there is
a significant amount of carbon dioxide emission associated with the processing of waste
materials for use as additives in subgrade stabilisation. Even though the processing of
waste materials and cement and lime production produce some amount of carbon dioxide,
the low cost of waste materials used in subgrade stabilisation holds promising keys to a
sustainable future.
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10. Summary of Findings and Future Focus

The effects of expansive subgrade materials in road pavement structure and the
damage they cause to road pavement and other infrastructure has been reviewed. The
study has shown that the problem of expansive subgrade is not limited to one geographical
location, and the damage caused by expansive soils can run into billions of pounds as cost of
maintenance or redesign of the road structure. The study has proven that cement and lime
are mostly used in subgrade stabilisation. However, processed waste materials are effective
for use as cement and lime replacement in road subgrade stabilisation using chemical
stabilisation techniques. Waste materials and industrial by-products possess characteristics
and engineering properties that can be found in cement and lime making these wastes
materials a suitable substitute for cement and lime in road subgrade stabilisation.

It has been established in this study that the use of waste materials in subgrade
stabilisation is cheaper compared to using cement and lime. Although the process of
transforming waste materials used as additives in subgrade stabilisation is associated
with some amount of greenhouse gas emission, this study has shown that the amount
of greenhouse gas emitted during the processing of waste materials is far less compared
to the carbon dioxide emitted during cement production. This makes the use of waste
in subgrade stabilisation more sustainable, environmentally friendly and cost-effective.
The availability of possessed waste materials to meet the current demand of subgrade
stabilisation has been investigated and proven in this study, that there is enough processed
waste available to meet the current demand. The future of sustainable engineering and
achieving the United Nation Sustainable Development Goals (Goal 9: Industry, Innovation,
and Infrastructure; Goal 12: Responsible Consumption and Production, and Goal 13:
Climate Action) can be feasible when a conscious effort is made to use waste materials in
road subgrade stabilisation [121].

11. Conclusion and Recommendations

Efforts have been made by many countries and organisations to tackle the challenges
of climate change which is caused by human activities. Activities within the engineering
and construction sector have contributed largely to the high amount of carbon dioxide in
the atmosphere, which is the main cause of climate change. The use of traditional additives
such as cement and lime in road subgrade stabilisation has contributed negatively to the
environment due to the emission of greenhouse gas, pollution of water bodies, ecosystems
and the destruction of natural resources during cement production. The greener ways of
road subgrade stabilisation established in this study using non-traditional additives (such
as waste materials and industrial by-products) in subgrade stabilisation have always been
successful.

The study has proven that processed waste materials in subgrade stabilisation is
sustainable, less costly, environmentally friendly and effective in enhancing the engineer-
ing properties of expansive subgrade materials. the availability of processed waste and
industrial by-products to meet current demand has been established in this study. This
study reveals the possibility of using waste materials like cement and lime replacement
in road construction due to their cementitious properties, engineering properties and
characteristics of these waste which as similar to cement and lime.

Based on the findings of this review, the following recommendations are proposed:

1. Research should be conducted to investigate new/novel and more sustainable waste
materials that can be used in road subgrade stabilisation.

2. Companies and firms should encourage contractors by giving them some incentives
for using sustainable waste materials in road construction. This will help achieve the
global fight against climate change by 2050.

3. Strict rules or legislation should be put in place during the bidding process for
contracts to ensure a certain amount of sustainable waste materials are used in
construction.
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4. Further investigation should be conducted into the whole life cycle cost of road
stabilised with waste materials compared to cement and lime stabilised subgrade.
This will provide a wider picture of the cost benefits of using waste materials in road
construction

5. Further investigation can be carried out in the future to determine long-term durability
and how elevated and freezing temperatures can affect subgrade materials stabilised
using processed waste.

Author Contributions: Conceptualisation, S.J.A. and S.Y.A.; methodology, S.Y.A. and S.J.A.; valida-
tion, S.Y.A. and S.J.A.; formal analysis, S.Y.A. and S.J.A.; investigation, S.Y.A. and S.J.A.; resources,
S.J.A., C.A.B. and A.-M.M.; data curation, S.Y.A. and S.J.A.; writing—original draft preparation, S.Y.A.
and S.J.A.; writing—review and editing, S.Y.A., S.J.A. and C.A.B.; visualisation, S.J.A., C.A.B. and
A.-M.M.; supervision, S.J.A., C.A.B. and A.-M.M.; project administration, C.A.B., A.-M.M. and S.J.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sector.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Acknowledgments: The authors acknowledge the advice, comments and suggestions from anony-
mous reviewers significantly improved the quality of this paper.

Conflicts of Interest: The authors declare that they have no conflict of interest associated with this
publication and no financial support has been given to influence the outcome of this work.

References
1. López-Lara, T.; Hernández-Zaragoza, J.; Horta-Rangel, J.; Rojas-González, E.; López-Ayala, S.; Castaño, V. Expansion reduction of

clayey soils through Surcharge application and Lime Treatment. Case Stud. Constr. Mater. 2017, 7, 102–109. [CrossRef]
2. Amakye, S.Y.; Abbey, S.J. Understanding the performance of expansive subgrade materials treated with non-traditional stabilisers:

A review. Clean. Eng. Technol. 2021, 4, 100159. [CrossRef]
3. Jones, L.D.; Jefferson, I. Institution of civil engineers manuals series. In Expansive Soils; ICE Publishing British Geological Survey:

Nottingham, UK, 2012; pp. 413–441. [CrossRef]
4. Eyo, E.; Ng'Ambi, S.; Abbey, S.J. Incorporation of a nanotechnology-based additive in cementitious products for clay stabilisation.

J. Rock Mech. Geotech. Eng. 2020, 12, 1056–1069. [CrossRef]
5. Abbey, S.J.; Ngambi, S.; Ganjian, E. Development of Strength Models for Prediction of Unconfined Compressive Strength of

Cement/Byproduct Material Improved Soils. Geotech. Test. J. 2017, 40, 20160138. [CrossRef]
6. Federica, C.; Idiano, D.; Massimo, G. Sustainable management of waste-to-energy facilities. Renew. Sustain. Energy Rev. 2014, 33,

719–728.
7. Wang, J.X. Expansive Soil and Practice in Foundation Engineering. PhD. Thesis, P.E. Programs of Civil Engineering Programs

Louisiana Tech University, Ruston, LA, USA, 2016. Available online: https://www.ltrc.lsu.edu/ltc_16/pdf/presentations/10
-University%20Transportation%20Centers%20[Part%201]-Characterization%20of%20Expansive%20Soils%20in%20Northern%
20Louisiana.pdf (accessed on 7 March 2021).

8. Jones, L.D.; Jefferson, I. Institution of Civil Engineers Manuals Series 2019. Available online: http://nora.nerc.ac.uk/id/eprint/
17002/1/C5_expansive_soils_Oct.pdf (accessed on 18 January 2021).

9. Jalal, F.E.; Xu, Y.; Jamhiri, B.; Memon, S.A. On the Recent Trends in Expansive Soil Stabilization Using Calcium-Based Stabilizer
Materials (CSMs): A Comprehensive Review. Adv. Mater. Sci. Eng. 2020, 2020, 1–23. [CrossRef]

10. Sabat, A. A Study on Some Geotechnical Properties of Lime Stabilised Expansive Soil –Quarry Dust Mixes. Int. J. Emerg. Trends
Eng. Dev. 2012, 1, 42–49.

11. Elarabi, H. Damage Mechanism of Expansive Soils Damage Mechanism of Expansive Soils 2010. Available online: Gov.uk/pdf/
GEHO1111BVDF-E-E.pdf (accessed on 13 April 2020).

12. Osinubi, K.; Ijimdiya, T.S.; Nmadu, I. Lime Stabilization of Black Cotton Soil Using Bagasse Ash as Admixture. Adv. Mater. Res.
2009, 62–64, 3–10. [CrossRef]

13. Nelson, J.D.; Miller, D.J. Expansive Soils: Problems and Practice in Foundation and Pavement Engineering, 1st ed.; Wiley: New York,
NY, USA, 1992; ISBN 0471511862.

14. Hossain, A.S.M.F.; Sultana, N.; Bhowmic, S.; Hoque, M.S.; Shantana, F.A. Modification of expansive soil using recycled plastic
bottle chips. J. Geotech. Stud. 2019. [CrossRef]

http://doi.org/10.1016/j.cscm.2017.06.003
http://doi.org/10.1016/j.clet.2021.100159
http://doi.org/10.1680/moge.57074.0413
http://doi.org/10.1016/j.jrmge.2019.12.018
http://doi.org/10.1520/GTJ20160138
https://www.ltrc.lsu.edu/ltc_16/pdf/presentations/10-University%20Transportation%20Centers%20[Part%201]-Characterization%20of%20Expansive%20Soils%20in%20Northern%20Louisiana.pdf
https://www.ltrc.lsu.edu/ltc_16/pdf/presentations/10-University%20Transportation%20Centers%20[Part%201]-Characterization%20of%20Expansive%20Soils%20in%20Northern%20Louisiana.pdf
https://www.ltrc.lsu.edu/ltc_16/pdf/presentations/10-University%20Transportation%20Centers%20[Part%201]-Characterization%20of%20Expansive%20Soils%20in%20Northern%20Louisiana.pdf
http://nora.nerc.ac.uk/id/eprint/17002/1/C5_expansive_soils_Oct.pdf
http://nora.nerc.ac.uk/id/eprint/17002/1/C5_expansive_soils_Oct.pdf
http://doi.org/10.1155/2020/1510969
Gov.uk/pdf/GEHO1111BVDF-E-E.pdf
Gov.uk/pdf/GEHO1111BVDF-E-E.pdf
http://doi.org/10.4028/www.scientific.net/AMR.62-64.3
http://doi.org/10.5281/zenodo.3366954


Geotechnics 2021, 1 326

15. British Geological Survey. Available online: https://www.bgs.ac.uk/geology-projects/shallow-geohazards/clay-shrink-swell/
(accessed on 17 August 2021).

16. White, J.D.; Vennapusa, P. Low-cost rural surface alternatives: Literature review and recommendations 2013. InTrans Project
Reports. 28. Available online: https://lib.dr.iastate.edu/intrans_reports/28 (accessed on 16 March 2021).

17. The geological society. 2012. Available online: https://www.geolsoc.org.uk/Geoscientist/Archive/March-2014/Cracking-up-in-
Lincolnshire (accessed on 16 March 2021).

18. Eyo, E.U.; Ng'Ambi, S.; Abbey, S.J. Performance of clay stabilized by cementitious materials and inclusion of zeolite/alkaline
metals-based additive. Transp. Geotech. 2020, 23, 100330. [CrossRef]

19. Al-Rawas, A.A.; Goosen, F.A. Expansive Soils: Recent Advances in Characterization and Treatment; Taylor & Francis: London, UK,
2006. [CrossRef]

20. Reda, A.; Ibrahim, E.; Houssami, L. A Cure for Swelling 2016. Available online: https://dar.com/news/details/a-cure-for-
swelling (accessed on 21 February 2021).

21. Eyo, E.U.; Abbey, S.J.; Ngambi, S.; Ganjian, E.; Coakley, E. Incorporation of a nanotechnology-based product in cementitious
binders for sustainable mitigation of sulphate-induced heaving of stabilised soils. Eng. Sci. Technol. Int. J. 2020, 24, 436–448.
[CrossRef]

22. Zaid, A. Swelling Expansion and Dilation of Soil 2017. Available online: https://www.slideshare.net/AhmedZaid11/swelling-
expansion-and-dilation-of-soil (accessed on 11 February 2021).

23. Huggett, J. Clay Minerals; Elsevier: Amsterdam, The Netherlands, 2015. [CrossRef]
24. Eyo, E.; Ng’Ambi, S.; Abbey, S. Investigative Study of Behaviour of Treated Expansive Soil Using Empirical Correlations. IFCEE

2018 2018, 373–384. [CrossRef]
25. Uddin, F. Montmorillonite: An Introduction to Properties and Utilization; IntechOpen: London, UK, 2018. [CrossRef]
26. Dakshanamurthy, V.; Raman, V. A Simple Method of Identifying an Expansive Soil. Soils Found. 1973, 13, 97–104. [CrossRef]
27. ACPA Concrete Pavement Technology Series. Available online: http://1204075.sites.myregisteredsite.com/downloads/TS/EB2

04P/TS204.2P.pdf (accessed on 13 January 2021).
28. Murray, H.H. Chapter 2 structure and Composition of the Clay Minerals and their Physical and Chemical Properties. Dev. Clay

Sci. 2006, 2, 7–31. [CrossRef]
29. Bananezhad, B.; Islami, M.R.; Ghonchepour, E.; Mostafavi, H.; Tikdari, A.M.; Rafiei, H.R. Bentonite clay as an efficient substrate

for the synthesis of the super stable and recoverable magnetic nanocomposite of palladium (Fe3O4/Bentonite-Pd). Polyhedron
2019, 162, 192–200. [CrossRef]

30. Jaradat, K.A.; Darbari, Z.; Elbakhshwan, M.; Abdelaziz, S.L.; Gill, S.K.; Dooryhee, E.; Ecker, L.E. Heating-freezing effects on the
orientation of kaolin clay particles. Appl. Clay Sci. 2017, 150, 163–174. [CrossRef]

31. Oti, J.E. The Development of Unfired Clay Building Materials for Sustainable Building Construction 2010. Available on-
line: https://unilearn.southwales.ac.uk/webapps/blackboard/content/listContent.jsp?course_id=_141532_1&content_id=_2
997727_1&mode=reset (accessed on 15 February 2021).

32. British Plastic Federation (2019). Polypropylene. Available online: http://www.bpf.co.uk/plastipedia/polymers/pp.aspx
(accessed on 16 March 2021).

33. Behak, L. Soil Stabilization with Rice Husk Ash. Rice Technol. Prod. 2017, 29. [CrossRef]
34. Khatib, J.M.; Baalbaki, O.; ElKordi, A.A. Waste and supplementary cementitious materials in concrete. Woodhead Publ. Ser. Civ.

Struct. Eng. 2018, 493–511. [CrossRef]
35. Ghassemi, M.; Andersen, P.K.; Ghassemi, A.; Chianelli, R.R. Hazardous Waste from Fossil Fuels. Encycl. Energy 2004, 119–131.

[CrossRef]
36. Gholhaki, M.; Kheyroddin, A.; Hajforoush, M.; Kazemi, M. An investigation on the fresh and hardened properties of self-

compacting concrete incorporating magnetic water with various pozzolanic materials. Constr. Build. Mater. 2018, 158, 173–180.
[CrossRef]

37. Lafarge Cement UK. Manufacturing Process of Silica Fume 2012. Available online: https://www.aggregate.com/ (accessed on 17
February 2021).

38. Miorslags. Available online: http://miorslags.com/ggbs.html (accessed on 14 February 2021).
39. Bianco Construction & Industrial Supplies. Available online: https://www.bianco.com.au/product/view/7008 (accessed on 16

March 2021).
40. Guichon Valves. Manufacturing Process of Polypropylene 2019. Available online: https://guichon-valves.com/pp-valves/

(accessed on 17 August 2021).
41. Tomar, A.; Sharma, T.; Singh, S. Strength properties and durability of clay soil treated with mixture of nano silica and Polypropy-

lene fiber. Mater. Today: Proc. 2020, 26, 3449–3457. [CrossRef]
42. Mindiamart, 2021. Available online: https://www.indiamart.com/proddetail/alkali-resistant-glass-fiber-21702650255.html

(accessed on 16 March 2021).
43. Amakye, S.Y.; Abbey, S.J.; Olubanwo, A.O. Consistency and mechanical properties of sustainable concrete blended with brick

dust waste cementitious materials. SN Appl. Sci. 2021, 3, 1–12. [CrossRef]
44. Thakur, I.C.; Kisku, N.; Singh, J.P.; Kumar, S. Properties of concrete incorporated with GGBS. Int. J. Res. Eng. Technol. 2016, 5,

275–281. Available online: https://ijret.org/volumes/2016v05/i08/IJRET20160508046.pdf (accessed on 7 March 2021).

https://www.bgs.ac.uk/geology-projects/shallow-geohazards/clay-shrink-swell/
https://lib.dr.iastate.edu/intrans_reports/28
https://www.geolsoc.org.uk/Geoscientist/Archive/March-2014/Cracking-up-in-Lincolnshire
https://www.geolsoc.org.uk/Geoscientist/Archive/March-2014/Cracking-up-in-Lincolnshire
http://doi.org/10.1016/j.trgeo.2020.100330
http://doi.org/10.1201/9780203968079
https://dar.com/news/details/a-cure-for-swelling
https://dar.com/news/details/a-cure-for-swelling
http://doi.org/10.1016/j.jestch.2020.09.002
https://www.slideshare.net/AhmedZaid11/swelling-expansion-and-dilation-of-soil
https://www.slideshare.net/AhmedZaid11/swelling-expansion-and-dilation-of-soil
http://doi.org/10.1016/b978-0-12-409548-9.09519-1
http://doi.org/10.1061/9780784481592.037
http://doi.org/10.5772/intechopen.77987
http://doi.org/10.3208/sandf1972.13.97
http://1204075.sites.myregisteredsite.com/downloads/TS/EB204P/TS204.2P.pdf
http://1204075.sites.myregisteredsite.com/downloads/TS/EB204P/TS204.2P.pdf
http://doi.org/10.1016/S1572-4352[06]02002-2
http://doi.org/10.1016/j.poly.2019.01.054
http://doi.org/10.1016/j.clay.2017.09.028
https://unilearn.southwales.ac.uk/webapps/blackboard/content/listContent.jsp?course_id=_141532_1&content_id=_2997727_1&mode=reset
https://unilearn.southwales.ac.uk/webapps/blackboard/content/listContent.jsp?course_id=_141532_1&content_id=_2997727_1&mode=reset
http://www.bpf.co.uk/plastipedia/polymers/pp.aspx
http://doi.org/10.5772/66311
http://doi.org/10.1016/b978-0-08-102156-9.00015-8
http://doi.org/10.1016/b0-12-176480-x/00395-8
http://doi.org/10.1016/j.conbuildmat.2017.09.135
https://www.aggregate.com/
http://miorslags.com/ggbs.html
https://www.bianco.com.au/product/view/7008
https://guichon-valves.com/pp-valves/
http://doi.org/10.1016/j.matpr.2019.12.239
https://www.indiamart.com/proddetail/alkali-resistant-glass-fiber-21702650255.html
http://doi.org/10.1007/s42452-021-04430-w
https://ijret.org/volumes/2016v05/i08/IJRET20160508046.pdf


Geotechnics 2021, 1 327

45. Kalantari, B.; Prasad, A.; Huat, B.B.K. Cement and Silica Fume Treated Columns to Improve Peat Ground. Arab. J. Sci. Eng. 2012,
38, 805–816. [CrossRef]

46. Khalil, A.A.; Siswomiharjo, W.; Sunarintyas, S. Effect of non dental glass fiber orientation on transverse strength of dental fiber
reinforced composite. J. Teknosains 2017, 5, 104–110. [CrossRef]

47. Prasad, P.D.; Nagarnaik, P.B.; Gajbhiye, A.R. Utilization of solid waste for soil stabilization: A Review. Electron. J. Geotech.
Eng. 2012. Available online: https://www.researchgate.net/publication/267723862_Utilization_of_Solid_Waste_for_Soil_
Stabilization_A_Review (accessed on 21 February 2021).

48. Ahmad, S. Study of Concrete Involving Use of Waste Paper Sludge Ash as Partial Replacement of Cement. IOSR J. Eng. 2013, 3,
6–15. [CrossRef]

49. Zorluer, I.; Afyon Kocatepe University; Gucek, S. The usability of industrial wastes on soil stabilization. Rev. De La Construcción
2020, 19, 80–89. [CrossRef]
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